1
|
Huang Q, Hu R, Hui zhu, Peng C, Chen L. Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2
|
Lin X, O'Tousa JE, Duman JG. Expression of two self-enhancing antifreeze proteins from the beetle Dendroides canadensis in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:341-349. [PMID: 19931275 DOI: 10.1016/j.jinsphys.2009.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/07/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Antifreeze proteins (AFPs) lower the freezing point of water without affecting the melting point. This difference between melting point and freezing point has been termed thermal hysteresis. Antifreeze protein genes, dafp-1 and/or dafp-4, from the freeze-avoiding insect, Dendroides canadensis, were transferred to Drosophila melanogaster via P-element-mediated transformation. The Northern and Western blots showed expression of DAFP(s) at both transcript and protein levels. The highest thermal hysteresis activity of 6.78+/-0.12 degrees C was detected in 5-day adult flies containing two copies of each of the dafp-1 and dafp-4 genes, while flies with two copies of either dafp-1 or dafp-4 had less activity, 5.52 and 3.24 degrees C, respectively (measured by nanoliter osmometer). This suggests synergistic enhancement of thermal hysteresis activity between DAFP-1 and DAFP-4 in transgenic D. melanogaster containing both DAFPs. Supercooling points without ice in contact with the insects were lowered in all 5 transgenic lines compared with controls, however, when ice was in contact with the flies, supercooling points were lowered only in the heterozygous <DAFP-1>+<DAFP-4> transgenic line. Also, transgenic D. melanogaster exhibited higher survivorship compared with controls when placed at low non-freezing temperatures (0 and 4 degrees C), however, DAFP-1 and DAFP-4 did not display any synergistic enhancement in these non-freezing survival experiments.
Collapse
Affiliation(s)
- Xia Lin
- Department of Biological Sciences, 107 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
3
|
Venketesh S, Dayananda C. Properties, Potentials, and Prospects of Antifreeze Proteins. Crit Rev Biotechnol 2008; 28:57-82. [DOI: 10.1080/07388550801891152] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Bagis H, Tas A, Kankavi O. Determination of the expression of fish antifreeze protein (AFP) in 7th generation transgenic mice tissues and serum. ACTA ACUST UNITED AC 2008; 309:255-61. [PMID: 18366101 DOI: 10.1002/jez.455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, the presence of antifreeze protein (AFP) gene expression through successive generations in transgenic mice carrying the chimeric gene construct of the coding sequence for the AFP protein from ocean pout was investigated. AFP transgenic hemizygote mice were used for AFP gene expression. AFP genome expressions in transgenic mice were analyzed by Western blotting, and tissue location of AFP protein was shown by immunohistochemical and immunofluorescence techniques. Seventh transgenic mice from the established founders demonstrated the expression of AFP in organs such as the skin, oviduct, lung, kidney and liver tissues and serum except for the heart. Our results demonstrate successful expression of AFP gene products in several tissues and serum of transgenic mice, the association of in vivo expressed AFP protein, for the first time. These results indicate that the coding sequence for the AFP protein gene (ocean pout type III AFP gene) could be integrated and stably transcribed and expressed in the 7th generation of transgenic mice. In conclusion transgenic mouse lines would be a good model for the cryostudy of AFP and for the determination of AFP roles in several organs and tissues.
Collapse
Affiliation(s)
- Haydar Bagis
- TUBITAK, Marmara Research Center (MRC), Genetic Engineering and Biotechnology Institute (GEBI), Transgenic Core Facility, Kocaeli, Turkey.
| | | | | |
Collapse
|
5
|
Bagis H, Aktoprakligil D, Mercan HO, Yurdusev N, Turgut G, Sekmen S, Arat S, Cetin S. Stable transmission and transcription of newfoundland ocean pout type III fish antifreeze protein (AFP) gene in transgenic mice and hypothermic storage of transgenic ovary and testis. Mol Reprod Dev 2006; 73:1404-11. [PMID: 16894545 DOI: 10.1002/mrd.20601] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here we describe the generation of transgenic mice carrying type III fish antifreeze protein (AFP) gene and evaluate whether AFP type III protects transgenic mouse ovaries and testes from hypothermic storage. AFPs exist in many different organisms. In fish, AFPs protect the host from freezing at temperatures below the colligative freezing point by adsorbing to the surface of nucleating ice crystals and inhibiting their growth. The transgenic expression of AFP holds great promise for conferring freeze-resistant plant and animal species. AFP also exhibits a potential for the cryopreservation of tissues and cells. In this study, we have generated 42 founder mice harboring the Newfoundland ocean pout (OP5A) type III AFP transgene and established one transgenic line (the line #6). This study demonstrated that AFP gene construct has been stably transmitted to the mouse progeny in the F3 generations in the line #6. Furthermore, the presence of AFP transcripts was confirmed by RT-PCR analysis on cDNAs from liver, kidney, ovarian, and testis tissues of the mouse from F3 generation in this line. These results indicate that ocean pout type III AFP gene could be integrated and transmitted to the next generation and stably transcribed in transgenic mice. In histological analysis of testis and ovarian tissues of nontransgenic control and AFP transgenic mice it has been shown that both tissues of AFP transgenic mice were protected from hypothermic storage (+4 degrees C). The AFP III transgenic mice obtained for the first time in this study would be useful for investigating the biological functions of AFP in mammalian systems and also its potential role in cryopreservation.
Collapse
Affiliation(s)
- Haydar Bagis
- TUBITAK, Marmara Research Center (MRC), Research Institute for Genetic Engineering and Biotechnology (RIGEB), Transgenic Core Facility, Kocaeli, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Scotter AJ, Kuntz DA, Saul M, Graham LA, Davies PL, Rose DR. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells. Protein Expr Purif 2006; 47:374-83. [PMID: 16330225 DOI: 10.1016/j.pep.2005.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 10/26/2005] [Accepted: 10/27/2005] [Indexed: 11/19/2022]
Abstract
We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.
Collapse
Affiliation(s)
- Andrew J Scotter
- Department of Biochemistry and the Protein Engineering Network Centres of Excellence, Queen's University, Kingston, Ont., Canada.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.
Collapse
Affiliation(s)
- J Barrett
- Institute of Biological Sciences, University of Wales, Aberystwyth, Penglais, Ceredigion SY23 3DA, Aberystwyth, UK.
| |
Collapse
|
8
|
Abstract
Fish metabolism needs special enzymes that have maximum activity at very different conditions than their mammalian counterparts. Due to the differences in activity, these enzymes, especially cold-adapted proteases, could be used advantageously for the production of some foods. In addition to the enzymes, this review describes some other unique fish polypeptides such as antifreeze proteins, fluorescent proteins, antitumor peptides, antibiotics, and hormones, that have already been cloned and used in food processing, genetic engineering, medicine, and aquaculture. Recombinant DNA technology, which allows these biological molecules to be cloned and overexpressed in microorganisms is also described, highlighting innovative applications. The expected impact of cloning fish proteins in different fields of technology is discussed.
Collapse
Affiliation(s)
- M Macouzet
- Department of Food Science, McGill University, Quebec, Canada
| | | | | |
Collapse
|
9
|
Kenward KD, Brandle J, McPherson J, Davies PL. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgenic Res 1999; 8:105-17. [PMID: 10481310 DOI: 10.1023/a:1008886629825] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type II fish antifreeze protein (AFP) is active in both freezing point depression and the inhibition of ice recrystallization. This extensively disulfide-bonded 14 kDa protein was targeted for accumulation in its pro- and mature forms in the cytosol and apoplast of transgenic tobacco plants. Type II AFP gene constructs under control of a duplicate cauliflower mosaic virus 35S promoter, both with and without a native plant transit peptide sequence, were introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. AFP did not accumulate in the cytosol of transgenic plants, but active AFP was present as 2% the total protein present in the apoplast. Plant-produced AFP was the same size as mature Type II AFP isolated from fish, and was comparable to wild-type AFP in thermal hysteresis activity and its effect on ice crystal morphology. Field trials conducted in late summer on R1 generation transgenic plants showed similar AFP accumulation in plants under field conditions at levels suitable for large-scale production: but no difference in frost resistance was observed between transgenic and wild-type plants during the onset of early fall frosts.
Collapse
Affiliation(s)
- K D Kenward
- Department of Biochemistry, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
10
|
Duncker BP, Davies PL, Walker VK. Increased gene dosage augments antifreeze protein levels in transgenic Drosophila melanogaster. Transgenic Res 1999; 8:45-50. [PMID: 10399366 DOI: 10.1023/a:1008873906177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the principal environmental adaptations of certain fishes inhabiting polar and northern coastal waters is the synthesis of antifreeze proteins (AFPs). AFPs bind to and prevent the growth of nascent ice crystals, thus depressing the serum freezing point. The transgenic expression of AFP holds great promise for conferring freeze resistance to commercially important plant and animal species. Since fish at the greatest risk of freezing have multiple AFP gene copies in order to synthesize higher levels of this protein, we have evaluated this evolutionary strategy as a way to maximize AFP expression in a model transgenic host, the fruit fly Drosophila melanogaster. A construct in which AFP genes of the Atlantic wolffish are fused to the Drosophila yolk protein 1,2 promoter/enhancer region was transferred to flies through P-element mediated transformation. Several independent transgenic fly lines were used in genetic crosses to obtain multi-insert lines. Haemolymph freezing point depression (thermal hysteresis) was greater in homozygotes relative to heterozygotes for a given insert. Similarly, multi-insert lines consistently displayed greater haemolymph AFP activity than the single insert lines from which they were derived. The thermal hysteresis value obtained with a fly line harboring 8 AFP gene copies, 0.43 degree C, represents the highest such value to date recorded in a transgenic host, and is even higher than the levels found in some AFP-producing fish.
Collapse
Affiliation(s)
- B P Duncker
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|