1
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 PMCID: PMC9449480 DOI: 10.1098/rsos.220363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/10/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
2
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 DOI: 10.6084/m9.figshare.c.6168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/25/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
3
|
Giglio ML, Boland W, Heras H. Egg toxic compounds in the animal kingdom. A comprehensive review. Nat Prod Rep 2022; 39:1938-1969. [PMID: 35916025 DOI: 10.1039/d2np00029f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1951 to 2022Packed with nutrients and unable to escape, eggs are the most vulnerable stage of an animal's life cycle. Consequently, many species have evolved chemical defenses and teamed up their eggs with a vast array of toxic molecules for defense against predators, parasites, or pathogens. However, studies on egg toxins are rather scarce and the available information is scattered. The aim of this review is to provide an overview of animal egg toxins and to analyze the trends and patterns with respect to the chemistry and biosynthesis of these toxins. We analyzed their ecology, distribution, sources, occurrence, structure, function, relative toxicity, and mechanistic aspects and include a brief section on the aposematic coloration of toxic eggs. We propose criteria for a multiparametric classification that accounts for the complexity of analyzing the full set of toxins of animal eggs. Around 100 properly identified egg toxins are found in 188 species, distributed in 5 phyla: cnidarians (2) platyhelminths (2), mollusks (9), arthropods (125), and chordates (50). Their scattered pattern among animals suggests that species have evolved this strategy independently on numerous occasions. Alkaloids are the most abundant and widespread, among the 13 types of egg toxins recognized. Egg toxins are derived directly from the environment or are endogenously synthesized, and most of them are transferred by females inside the eggs. Their toxicity ranges from ρmol kg-1 to mmol kg-1, and for some species, experiments support their role in predation deterrence. There is still a huge gap in information to complete the whole picture of this field and the number of toxic eggs seems largely underestimated.
Collapse
Affiliation(s)
- Matías L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
4
|
Kikuchi DW, Waldron SJ, Valkonen JK, Dobler S, Mappes J. Biased predation could promote convergence yet maintain diversity within Müllerian mimicry rings of Oreina leaf beetles. J Evol Biol 2020; 33:887-898. [PMID: 32202678 DOI: 10.1111/jeb.13620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/10/2020] [Accepted: 03/15/2020] [Indexed: 12/01/2022]
Abstract
Müllerian mimicry is a classic example of adaptation, yet Müller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Müllerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Müllerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within-community diversity in warning coloration, providing a solution to a long-standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Samuel J Waldron
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Molecular Evolutionary Biology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Janne K Valkonen
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland
| | - Susanne Dobler
- Molecular Evolutionary Biology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Rafter JL, Vendettuoli JF, Gonda-King L, Niesen D, Seeram NP, Rigsby CM, Preisser EL. Pretty Picky for a Generalist: Impacts of Toxicity and Nutritional Quality on Mantid Prey Processing. ENVIRONMENTAL ENTOMOLOGY 2017; 46:626-632. [PMID: 28334410 PMCID: PMC7263701 DOI: 10.1093/ee/nvx038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Prey have evolved a number of defenses against predation, and predators have developed means of countering these protective measures. Although caterpillars of the monarch butterfly, Danaus plexippus L., are defended by cardenolides sequestered from their host plants, the Chinese mantid Tenodera sinensis Saussure guts the caterpillar before consuming the rest of the body. We hypothesized that this gutting behavior might be driven by the heterogeneous quality of prey tissue with respect to toxicity and/or nutrients. We conducted behavioral trials in which mantids were offered cardenolide-containing and cardenolide-free D. plexippus caterpillars and butterflies. In addition, we fed mantids starved and unstarved D. plexippus caterpillars from each cardenolide treatment and nontoxic Ostrinia nubilalis Hübner caterpillars. These trials were coupled with elemental analysis of the gut and body tissues of both D. plexippus caterpillars and corn borers. Cardenolides did not affect mantid behavior: mantids gutted both cardenolide-containing and cardenolide-free caterpillars. In contrast, mantids consumed both O. nubilalis and starved D. plexippus caterpillars entirely. Danaus plexippus body tissue has a lower C:N ratio than their gut contents, while O. nubilalis have similar ratios; gutting may reflect the mantid's ability to regulate nutrient uptake. Our results suggest that post-capture prey processing by mantids is likely driven by a sophisticated assessment of resource quality.
Collapse
Affiliation(s)
- Jamie L Rafter
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881 ( ; ; ; ; )
- Department of Biology, Muskingum University, Concord, OH 43762
| | - Justin F Vendettuoli
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881 (; ; ; ; )
| | - Liahna Gonda-King
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881 (; ; ; ; )
| | - Daniel Niesen
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (; )
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (; )
| | - Chad M Rigsby
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881 (; ; ; ; )
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881 (; ; ; ; )
| |
Collapse
|
6
|
Impact of Consuming 'Toxic' Monarch Caterpillars on Adult Chinese Mantid Mass Gain and Fecundity. INSECTS 2017; 8:insects8010023. [PMID: 28218646 PMCID: PMC5371951 DOI: 10.3390/insects8010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/11/2017] [Accepted: 02/12/2017] [Indexed: 11/16/2022]
Abstract
Predators that feed on chemically-defended prey often experience non-lethal effects that result in learned avoidance of the prey species. Some predators are able to consume toxic prey without ill-effect. The Chinese mantid is able to consume cardenolide-containing monarch caterpillars without immediate adverse effects. Although they discard the caterpillars’ gut contents, mantids consume sequestered cardenolides. Although consumption of these cardenolides does not elicit an acute response, there may be long-term costs associated with cardenolide consumption. We tested the hypothesis that consumption of monarch caterpillars will adversely affect adult mantid biomass gain and reproductive condition. We reared mantids from egg to adult and assigned them to one of four toxicity groups that differed in the number of monarch caterpillars offered over a 15-day period. Mantids consumed similar amounts of prey biomass during the experiment. Yet, mantids in the high-toxicity group had a higher conversion efficiency and gained more biomass than mantids in other groups. Mantids in all treatment groups produced similar numbers of eggs. However, mantids in the high-toxicity group produced heavier eggs and devoted a greater portion of their biomass toward egg production than those in the control group. This increase in reproductive condition is probably driven by variation in prey nutritional value and/or the nutritional advantages inherent in eating multiple food types. Our results demonstrate the mantid is able to incorporate ‘toxic’ monarch prey into its diet without acute or chronic ill-effects.
Collapse
|
7
|
Distribution of autogenous and host-derived chemical defenses inOreina leaf beetles (Coleoptera: Chrysomelidae). J Chem Ecol 2013; 21:1163-79. [PMID: 24234524 DOI: 10.1007/bf02228318] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1994] [Accepted: 04/06/1995] [Indexed: 10/25/2022]
Abstract
The pronotal and elytral defensive secretions of 10Oreina species were analyzed. Species feeding on Apiaceae, i.e.,O. frigida andO. viridis, or on Cardueae (Asteraceae), i.e.,O. bidentata, O. coerulea, andO. virgulata, produce species-specific complex mixtures of autogenous cardenolides.O. melanocephala, which feeds onDoronicum clusii (Senecioneae, Asteraceae), devoid of pyrrolizidine alkaloids (PAs) in its leaves, secretes, at best, traces of cardenolides. Sequestration of host-plant PAs was observed in all the other species when feeding on Senecioneae containing these alkaloids in their leaves.O. cacaliae is the only species that secretes host-derived PA N-oxides and no autogenous cardenolides. Differences were observed in the secretions of specimens collected in various localities, because of local differences in the vegetation. The other species, such asO. elongata, O. intricata, andO. speciosissima, have a mixed defensive strategy and are able both to synthesize de novo cardenolides and to sequester plant PA N-oxides. This allows a great flexibility in defense, especially inO. elongata andO. speciosissima, which feed on both PA and non-PA plants. Populations of these species were found exclusively producing cardenolides, or exclusively sequestering PA N-oxides, or still doing both, depending on the local availability of food-plants. Differences were observed between species in their ability to sequester different plant PA N-oxides and to transform them. Therefore sympatric species demonstrate differences in the composition of their host-derived secretions, also resulting from differences in host-plant preference. Finally, within-population individual differences were observed because of local plant heterogeneity in PAs. To some extent these intrapopulation variations in chemical defense are tempered by mixing diet and by the long-term storage of PA N-oxides in the insect body that are used to refill the defensive glands.
Collapse
|
8
|
|
9
|
Triponez Y, Naisbit RE, Jean-Denis JB, Rahier M, Alvarez N. Genetic and Environmental Sources of Variation in the Autogenous Chemical Defense of a Leaf Beetle. J Chem Ecol 2007; 33:2011-24. [PMID: 17885795 DOI: 10.1007/s10886-007-9351-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/26/2007] [Accepted: 08/20/2007] [Indexed: 11/25/2022]
Abstract
Chemical defense plays a central role for many herbivorous insects in their interactions with predators and host plants. The leaf beetle genus Oreina (Coleoptera, Chrysomelidae) includes species able to both sequester pyrrolizidine alkaloids and autogenously produce cardenolides. Sequestered compounds are clearly related to patterns of host-plant use, but variation in de novo synthesized cardenolides is less obviously linked to the environment. In this study, intraspecific variation in cardenolide composition was examined by HPLC-MS analysis in 18 populations of Oreina speciosa spanning Europe from the Massif Central to the Balkans. This revealed the defense secretion to be a complex blend of up to 42 compounds per population. There was considerable geographical variation in the total sample of 50 compounds detected, with only 14 found in all sites. The environmental and genetic influences on defense chemistry were investigated by correlation with distance matrices based on habitat factors, host-plant use, and genetics (sequence data from COI, COII, and 16s rRNA). This demonstrated an influence of both genetics and host-plant use on the overall blend of cardenolides and on the presence of some of the individual compounds. The implications of this result are discussed for the evolution of defense chemistry and for the use of cardenolide compounds as markers of the evolutionary history of the species.
Collapse
Affiliation(s)
- Y Triponez
- Laboratoire d'Entomologie Evolutive, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, CP 158, CH-2009, Neuchâtel, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Gotthard K, Margraf N, Rasmann S, Rahier M. The evolution of larval foraging behaviour in response to host plant variation in a leaf beetle. OIKOS 2005. [DOI: 10.1111/j.0030-1299.2005.14074.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Margraf N, Gotthard K, Rahier M. The growth strategy of an alpine beetle: maximization or individual growth adjustment in relation to seasonal time horizons? Funct Ecol 2003. [DOI: 10.1046/j.1365-2435.2003.00775.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Labeyrie E, Blanckenhorn WU, Rahier M. Mate choice and toxicity in two species of leaf beetles with different types of chemical defense. J Chem Ecol 2003; 29:1665-80. [PMID: 12921444 DOI: 10.1023/a:1024283016219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evidence for the use of defensive compounds for sexual purposes is scarce, even though sexual selection might have some importance for the evolution of defensive traits. This study investigates the effect of defense-related traits and body size on mating success in two sister species of leaf beetle differing in their type of chemical defense. Oreina gloriosa produces autogenous cardenolides, whereas O. cacaliae sequesters pyrrolizidine alkaloids from its food plant. Larger O. gloriosa males with more toxin or higher toxin concentration had a mating advantage, likely due to direct or indirect female choice. In the laboratory, particular pairings recurred repeatedly in this species, indicating mate fidelity. O. gloriosa females were also subject to sexual selection, possibly by male choice, because larger females and those with higher toxin concentration mated more readily and more often. In O. cacaliae, in contrast, sexual selection for toxicity and body size was not detected, or at best was much weaker. Because toxicity is heritable in O. gloriosa but environment-dependent in O. cacaliae, individuals of the former species could be choosing well-defended partners with "good genes." Our study suggests that sexual selection may contribute to the maintenance of heritable defensive traits.
Collapse
Affiliation(s)
- Estelle Labeyrie
- LEAE, Institut de Zoologie, Université de Neuchâtel, rue Emile-Argand 11, CH-2007, Neuchâtel, Switzerland.
| | | | | |
Collapse
|
13
|
Pasteels JM, Theuring C, Witte L, Hartmann T. Sequestration and metabolism of protoxic pyrrolizidine alkaloids by larvae of the leaf beetle Platyphora boucardi and their transfer via pupae into defensive secretions of adults. J Chem Ecol 2003; 29:337-55. [PMID: 12737262 DOI: 10.1023/a:1022629911304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several neotropical leaf-beetles of the genus Platyphora ingest and specifically metabolize plant acquired pyrrolizidine alkaloids (PAs) of the lycopsamine type (e.g., rinderine or intermedine) and enrich the processed alkaloids in their exocrine defensive secretions. In contrast to the related palaearctic leaf beetles of the genus Oreina, which absorb and store only the non-toxic alkaloid N-oxides, Platyphora sequesters PAs exclusively as protoxic tertiary amines. In this study, the ability of P. boucardi larvae to accumulate PAs was investigated. Tracer studies with [14C]rinderine and its N-oxide revealed that P. boucardi larvae, like adult beetles, utilize the two alkaloidal forms with the same efficiency, but accumulate the alkaloid as a tertiary amine exclusively. Ingested rinderine is rapidly epimerized to intermedine, which is localized in the hemolymph and all other tissues; it is also detected on the larval surface. Like adults, larvae are able to synthesize their own alkaloid esters (beetle PAs) from orally administered [14C]retronecine and endogenous aliphatic 2-hydroxy acids. These retronecine esters show the same tissue distribution as intermedine. A long-term feeding experiment lasting for almost four months revealed that retronecine esters synthesized from [14C]retronecine in the larvae are transferred from larvae via pupae into the exocrine glands of adult beetles. Pupae contain ca. 45% of the labeled retronecine originally ingested, metabolized, and stored by larvae; ca. 12% of larval radioactivity could be recovered from the defensive secretions of adults sampled successively over two and a half months. Almost all of this radioactivity is found in the insect-made retronecine esters that are highly enriched in the defensive secretions, i.e., more than 200-fold higher concentration compared to pupae.
Collapse
Affiliation(s)
- Jacques M Pasteels
- Laboratoire de Biologie Animale et Cellulaire, Université Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Bruxelles, Belgium
| | | | | | | |
Collapse
|
14
|
Kalberer NM, Turlings TC, Rahier M. Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J Chem Ecol 2001; 27:647-61. [PMID: 11446291 DOI: 10.1023/a:1010389500009] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Early in spring, just after the snow melts, the leaf beetle Oreina cacaliae feeds on flowers of Petasites paradoxus. Later in spring they switch to their principle host plant Adenostyles alliariae. The attractiveness of short- and long-term damaged host plants was studied in a wind tunnel. The spring host P. paradoxus was more attractive to the beetles after it had been damaged overnight by conspecifics or artificially, but not when the plants were damaged half an hour before the wind-tunnel experiments. Contrary to P. paradoxus, the principle host plant, A. alliariae was more attractive shortly after an attack by conspecifics (half an hour before the experiment) compared to a undamaged plant, but lost its increased attractiveness when damaged overnight. The enhanced attraction of damaged plants was longer lasting in the spring host P. paradoxus than in the main host A. alliariae. Volatiles emitted by host plants were collected and gas chromatographic analyses of the odors collected showed qualitative and quantitative differences between damaged and undamaged plants. Among the volatiles recorded, green leaf volatiles and mono- and sesquiterpenes dominated. In overnight damaged P. paradoxus plants with an enhanced attractiveness, limonene was emitted in higher amounts. In freshly damaged A. alliariae leaves, more alpha-humulene and germacrene D were emitted compared to (E,E)-alpha-farnesene, whereas in the less attractive A. alliariae plants, more (E,E)-alpha-farnesene was emitted compared to alpha-humulene and germacrene D. In the field, the long lasting attraction of flowering P. paradoxus early in the season may facilitate mating in O. cacaliae after a successful overwintering.
Collapse
Affiliation(s)
- N M Kalberer
- Institute de Zoologie, Université de Neuchâtel, CH-2007 Neuchâtel, Switzerland
| | | | | |
Collapse
|
15
|
Hartmann T, Ober D. Biosynthesis and Metabolism of Pyrrolizidine Alkaloids in Plants and Specialized Insect Herbivores. BIOSYNTHESIS 2000. [DOI: 10.1007/3-540-48146-x_5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Hartmann T, Theuring C, Schmidt J, Rahier M, Pasteels JM. Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. JOURNAL OF INSECT PHYSIOLOGY 1999; 45:1085-1095. [PMID: 12770269 DOI: 10.1016/s0022-1910(99)00093-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tracer feeding experiments with (14)C-labeled senecionine and senecionine N-oxide were carried out to identify the biochemical mechanisms of pyrrolizidine alkaloid sequestration in the alkaloid-adapted leaf beetle Oreina cacaliae (Chrysomelidae). The taxonomically closely related mint beetle (Chrysolina coerulans) which in its life history never faces pyrrolizidine alkaloids was chosen as a 'biochemically naive' control. In C. coerulans ingestion of the two tracers resulted in a transient occurrence of low levels of radioactivity in the hemolymph (1-5% of radioactivity fed). With both tracers, up to 90% of the radioactivity recovered from the hemolymph was senecionine. This indicates reduction of the alkaloid N-oxide in the gut. Adults and larvae of O. cacaliae sequester ingested senecionine N-oxide almost unchanged in their bodies (up to 95% of sequestered total radioactivity), whereas the tertiary alkaloid is converted into a polar metabolite (up to 90% of total sequestered radioactivity). This polar metabolite, which accumulates in the hemolymph and body, was identified by LC/MS analysis as an alkaloid glycoside, most likely senecionine O-glucoside. The following mechanism of alkaloid sequestration in O. cacaliae is suggested to have developed during the evolutionary adaptation of O. cacaliae to its alkaloid containing host plant: (i) suppression of the gut specific reduction of the alkaloid N-oxides, (ii) efficient uptake of the alkaloid N-oxides, and (iii) detoxification of the tertiary alkaloids by O-glucosylation. The biochemical mechanisms of sequestration of pyrrolizidine alkaloid N-oxides in Chysomelidae leaf beetles and Lepidoptera are compared with respect to toxicity, safe storage and defensive role of the alkaloids.
Collapse
Affiliation(s)
- T Hartmann
- Institut für Pharmazeutische Biologie der Technischen Universität Braunschweig, Mendelssohnstrasse 1, D-38106, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
17
|
Renwick JA. The role of cardenolides in a crucifer-insect relationship. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 405:111-21. [PMID: 8910699 DOI: 10.1007/978-1-4613-0413-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J A Renwick
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Dobler S, Rowell-Rahier M. Response of a leaf beetle to two food plants, only one of which provides a sequestrable defensive chemical. Oecologia 1994; 97:271-277. [DOI: 10.1007/bf00323160] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1993] [Accepted: 11/15/1993] [Indexed: 11/30/2022]
|