1
|
Baraibar AM, de Pascual R, Carretero VJ, Liccardi N, Juárez NH, Hernández-Guijo JM. Aluminum alters excitability by inhibiting calcium, sodium, and potassium currents in bovine chromaffin cells. J Neurochem 2023; 165:162-176. [PMID: 36800503 DOI: 10.1111/jnc.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
Aluminum (Al3+ ) has long been related to neurotoxicity and neurological diseases. This study aims to describe the specific actions of this metal on cellular excitability and neurotransmitter release in primary culture of bovine chromaffin cells. Using voltage-clamp and current-clamp recordings with the whole-cell configuration of the patch clamp technique, online measurement of catecholamine release, and measurements of [Ca2+ ]c with Fluo-4-AM, we have observed that Al3+ reduced intracellular calcium concentrations around 25% and decreased catecholamine secretion in a dose-dependent manner, with an IC50 of 89.1 μM. Al3+ blocked calcium currents in a time- and concentration-dependent manner with an IC50 of 560 μM. This blockade was irreversible since it did not recover after washout. Moreover, Al3+ produced a bigger blockade on N-, P-, and Q-type calcium channels subtypes (69.5%) than on L-type channels subtypes (50.5%). Sodium currents were also inhibited by Al3+ in a time- and concentration-dependent manner, 24.3% blockade at the closest concentration to the IC50 (399 μM). This inhibition was reversible. Voltage-dependent potassium currents were low affected by Al3+ . Nonetheless, calcium/voltage-dependent potassium currents were inhibited in a concentration-dependent manner, with an IC50 of 447 μM. This inhibition was related to the depression of calcium influx through voltage-dependent calcium channels subtypes coupled to BK channels. In summary, the blockade of these ionic conductance altered cellular excitability that reduced the action potentials firing and so, the neurotransmitter release and the synaptic transmission. These findings prove that aluminum has neurotoxic properties because it alters neuronal excitability by inhibiting the sodium currents responsible for the generation and propagation of impulse nerve, the potassium current responsible for the termination of action potentials, and the calcium current responsible for the neurotransmitters release.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Baracaldo, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Ninfa Liccardi
- Department of Pharmacology and Therapeutic, Madrid, Spain
| | | | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
2
|
Cheraghi E, Golkar A, Roshanaei K, Alani B. Aluminium-Induced Oxidative Stress, Apoptosis and Alterations in Testicular Tissue and Sperm Quality in Wistar Rats: Ameliorative Effects of Curcumin. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:166-175. [PMID: 28868838 PMCID: PMC5582144 DOI: 10.22074/ijfs.2017.4859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/07/2016] [Indexed: 11/04/2022]
Abstract
Background Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. No studies have evaluated the possible effects of curcumin (CUR) on Al-induced reproductive dysfunction. Therefore, this study investigated the effects of CUR treatment on Al-induced reproductive damage. MATERIALS AND METHODS In this experimental study, 40 male Wistar rats were allocated to the five groups (n=8) based on the treatment they received: no treatment (control), solvent [dimethyl sulfoxide (DMSO) or distilled water], CUR 10 mg/kg body weight (BW), Al chloride 10 mg/kg BW, and CUR+Al chloride (10 mg/kg BW/each alone). Treatments were performed by intraperitoneal (IP) injections for 28 days. The left testis was assessed for histopathological analysis as well as the incidence of germ cell apoptosis. One-way analysis of variance (ANOVA) followed by the Tukey's test was used. P<0.05 was considered significant. RESULTS Significant reductions in body and testis weight; plasma testosterone and luteinizing hormone levels; sperm count, motility, morphology, and viability; germinal epithelium thickness; seminiferous tubules diameter; as well as, superoxide dismutase activity were observed in rats treated with Al. Moreover, Al exposure caused significant increments in the lumen diameter of tubules, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and malondialdehyde (MDA) levels compared to the control group. However, in rats receiving CUR+Al, CUR significantly reversed the adverse effects of Al on testis and sperm quality. No significant differences in follicle-stimulating hormone (FSH) levels and nuclear diameter of spermatogonia were detected among all groups. CONCLUSION It can be concluded that Al causes reproductive dysfunction by creating oxidative damage. CUR, on the other hand, reduces the toxic effects of Al and improves the antioxidant status and sperm quality in male rats.
Collapse
Affiliation(s)
- Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran.
| | - Alireza Golkar
- Sciences Research Laboratory, Department of Biology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Kambiz Roshanaei
- Department of Biology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
4
|
Mohammad NS, Arafa MH, Atteia HH. Coenzyme Q10 and fish oil synergistically alleviate aluminum chloride-induced suppression of testicular steroidogenesis and antioxidant defense. Free Radic Res 2015; 49:1319-34. [DOI: 10.3109/10715762.2015.1069290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Quercetin encapsulation in modified silica nanoparticles: potential use against Cu(II)-induced oxidative stress in neurodegeneration. J Inorg Biochem 2015; 145:51-64. [DOI: 10.1016/j.jinorgbio.2015.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/04/2015] [Accepted: 01/04/2015] [Indexed: 01/08/2023]
|
6
|
Aluminum-induced entropy in biological systems: implications for neurological disease. J Toxicol 2014; 2014:491316. [PMID: 25349607 PMCID: PMC4202242 DOI: 10.1155/2014/491316] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022] Open
Abstract
Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed.
Collapse
|
7
|
Wenting L, Ping L, Haitao J, Meng Q, Xiaofei R. Therapeutic effect of taurine against aluminum-induced impairment on learning, memory and brain neurotransmitters in rats. Neurol Sci 2014; 35:1579-84. [DOI: 10.1007/s10072-014-1801-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/11/2014] [Indexed: 01/02/2023]
|
8
|
Rawi SM, Seif Al Nassr FM. Zinc sulphate and vitamin E alleviate reproductive toxicity caused by aluminium sulphate in male albino rats. Toxicol Ind Health 2013; 31:221-34. [PMID: 23282999 DOI: 10.1177/0748233712469650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study was designed to investigate the reproductive toxicity of aluminium sulphate and the therapeutic effects of administration of zinc sulphate and vitamin E individually or in combination against the toxic effect caused by aluminium (Al) in male albino rats. The animals were divided into five groups: group 1 received distilled water and served as control; group 2 received only aluminium sulphate (50 mg/kg body weight (b.w.)); group 3 received aluminium sulphate (50 mg/kg b.w.) plus zinc sulphate (50 mg/kg b.w.); group 4 received aluminium sulphate (50 mg/kg b.w.) and vitamin E (15 mg/kg b.w.); group 5 received aluminium sulphate plus a combination of zinc sulphate and vitamin E in similar doses as above. Doses were administered orally once daily for 45 consecutive days. The results revealed that aluminium sulphate induced significant decrease in body weight gain and testis weight and significant increase in Al level in both serum and testes of male rats. Biochemical analysis showed significant decrease in serum total protein and phospholipids levels, while serum total lipid was significantly elevated post Al treatment. In addition, significant decrease in total protein, phospholipids and cholesterol levels in the testes of Al-treated rats was recorded. The data also showed significant decrease in the levels of serum testosterone, leutinizing hormone and follicle stimulating hormone and significant increase in the level of serum prolactin in Al-intoxicated rats. Moreover, histological examination showed that aluminium sulphate caused apparent alterations in the testicular structure of the treated animals. Treatment with zinc sulphate and vitamin E individually or in combination ameliorated the harmful effects of Al, which was proved histopathologically by the noticeable improvement in the testicular tissues. We can conclude that the tested dose of aluminium sulphate induced toxic effect on the reproductive system of male albino rats and the treatment with zinc sulphate and/or vitamin E alleviated these toxic effects. In some cases, vitamin E exerted a more potent effect, while in other cases, the more potent effect is related to zinc sulphate and the combination of both at most of the recorded data.
Collapse
Affiliation(s)
- Sayed M Rawi
- Faculty of Science and Arts, King Abdul Aziz University, Khulais, Kingdom of Saudi Arabia
| | | |
Collapse
|
9
|
|
10
|
Ige SF, Akhigbe RE. The role of Allium cepa on aluminum-induced reproductive dysfunction in experimental male rat models. J Hum Reprod Sci 2012; 5:200-5. [PMID: 23162360 PMCID: PMC3493836 DOI: 10.4103/0974-1208.101022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/30/2012] [Accepted: 06/23/2012] [Indexed: 11/04/2022] Open
Abstract
AIM Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Studies that associated Al with reproductive dysfunction did not account for the possible influence of Allium cepa extract. This study, therefore, investigates the influence of A. cepa on aluminum-induced reproductive dysfunction. MATERIALS AND METHODS SIX MALE RATS PER GROUP WERE ASSIGNED TO ONE OF THE FOLLOWING FOUR TREATMENT GROUPS: The control animals were on control diet. A. cepa-treated rats received 1 ml of the extract/100 g body weight (BW), Al-treated rats received 100 mg AlCl(3) /kg BW, and A.cepa+Al received 1 ml of the extract/100 g BW plus 100 mg AlCl(3) /kg BW. Rats were orally administered their respective doses. A. cepa treatment was for 8 weeks, while Al treatment was for the last 3 days of the experimental period. RESULTS Results obtained showed that Al significantly decreased (P < 0.05) plasma testosterone, follicular stimulating hormone (FSH), luteinizing hormone (LH), sperm count, motility, morphology and viability, superoxide dismutase (SOD) and catalase (CAT) activities, while lipid peroxidation index [malondialdehyde (MDA)] was significantly (P < 0.05) increased. Reproductive hormones (except testosterone), sperm qualities, and enzymatic antioxidants were significantly (P < 0.05) increased in A. cepa-treated rats and A. cepa plus Al-treated rats, while MDA was significantly (P < 0.05) improved. Weights of testes were comparable in all groups. CONCLUSION It is thus suggested that Al exerts reproductive dysfunction by oxidative damage. A. cepa antagonizes the toxic effects of AlCl(3) and improves the antioxidant status and sperm quality of male rat. However, testosterone level did not increase with A. cepa treatment.
Collapse
Affiliation(s)
- Serah F Ige
- Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland E Akhigbe
- Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
11
|
Sethi P, Jyoti A, Singh R, Hussain E, Sharma D. Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology 2008; 29:1069-79. [DOI: 10.1016/j.neuro.2008.08.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/14/2008] [Accepted: 08/22/2008] [Indexed: 12/14/2022]
|
12
|
Shahraki M, Mony EP, Asl SZ, Sarkaki A, Shahraki A. Effects of Aluminium Chloride Injection in Lateral Ventricle on Serum Gonadothropines, Testosterone and Spermatogenesis in Rats. JOURNAL OF MEDICAL SCIENCES 2008. [DOI: 10.3923/jms.2008.410.414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Hu WP, Li XM, Chen JG, Li ZW. Potentiation of the nicotinic acetylcholine receptor by aluminum in mammalian neurons. Neuroscience 2007; 149:1-6. [PMID: 17869436 DOI: 10.1016/j.neuroscience.2007.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/23/2007] [Accepted: 07/18/2007] [Indexed: 11/17/2022]
Abstract
Aluminum (Al(3+)), a known neurotoxic substance, has long been implicated in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases. Al(3+) targets many ligand-gated and voltage-gated ion channels and modulates their functions. In the present study, the actions of Al(3+) on the nicotinic acetylcholine receptor (nAChR) were investigated by whole-cell patch clamp technique in acutely isolated rat trigeminal ganglion neurons. We observed that Al(3+) potentiated nicotine-evoked inward currents in a concentration-dependent manner (10-1000 microM). The effects of Al(3+) on nicotine-evoked currents were voltage independent. Al(3+) appeared to increase the affinity of nicotine to nAChR but not the efficacy. Al(3+) reduced the agonist concentration producing a half-maximal response (EC(50)) for nicotine from 74.4+/-1.9 microM to 32.9+/-2.6 microM, but did not alter the threshold nor maximal response. On the contrary, another trivalent cation, Ga(3+), had little effect on nicotine-evoked currents. The present results indicated that Al(3+) enhanced the function of nAChR and this potentiation might underlie the neurological alteration induced by Al(3+).
Collapse
Affiliation(s)
- W-P Hu
- Department of Physiology, Xianning College, Xianning 437100, PR China.
| | | | | | | |
Collapse
|
14
|
Gonçalves PP, Silva VS. Does neurotransmission impairment accompany aluminium neurotoxicity? J Inorg Biochem 2007; 101:1291-338. [PMID: 17675244 DOI: 10.1016/j.jinorgbio.2007.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 02/05/2023]
Abstract
Neurobehavioral disorders, except their most overt form, tend to lie beyond the reach of clinicians. Presently, the use of molecular data in the decision-making processes is limited. However, as details of the mechanisms of neurotoxic action of aluminium become clearer, a more complete picture of possible molecular targets of aluminium can be anticipated, which promises better prediction of the neurotoxicological potential of aluminium exposure. In practical terms, a critical analysis of current data on the effects of aluminium on neurotransmission can be of great benefit due to the rapidly expanding knowledge of the neurotoxicological potential of aluminium. This review concludes that impairment of neurotransmission is a strong predictor of outcome in neurobehavioral disorders. Key questions and challenges for future research into aluminium neurotoxicity are also identified.
Collapse
Affiliation(s)
- Paula P Gonçalves
- Departamento de Biologia, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|
15
|
Platt B, Drysdale AJ, Nday C, Roloff EVL, Drever BD, Salifoglou A. Differential toxicity of novel aluminium compounds in hippocampal culture. Neurotoxicology 2007; 28:576-86. [PMID: 17303244 DOI: 10.1016/j.neuro.2006.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 12/19/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
The dependence of aluminium (Al) toxicity on its chemical form has been implicated in previous studies, but the complex chemistry of Al in solutions of biological preparations has hampered a reliable assessment. Here, we assessed the toxicity of select and pure Al(III) citrate compounds, well-characterized at physiological pH, and compared it with Al from standard solution (in HCl). Cell death rates of neurones and glia were established in hippocampal cultures following 3h incubations in a HEPES-buffered solution and 24h incubations in full culture medium. Overall, Al toxicity was found to vary considerably between compounds, with duration of exposure, medium type, and cell type as factors. While Al (from atomic absorption standard solution) induced the highest levels of cell death, AlCit1, ((NH(4))(5)[Al(C(6)H(4)O(7))(2)].2H(2)O) was the most toxic citrate compound, and affected viability of neurones more than glia (viability at 500 microM/3h-neurones: 40%; glia: 60%). AlCit2 (K(4)[Al(C(6)H(4)O(7))(C(6)H(5)O(7))].4H(2)O) did not show any toxicity after 3h, but severe toxicity after 24h in both cell types (viability at 500 microM/24h-neurones: 50%, glia: 30%). AlCit3 ((NH(4))(5)[Al(3)(C(6)H(4)O(7))(3)(OH)(H(2)O)].(NO(3)).6H(2)O), exhibited a cell type specific toxicity profile, and only affected neuronal viability at both time points (neuronal viability at 500 microM/3h: 20%). The medium type and presence of serum (FBS) was also found to contribute to the toxicity pattern, with serum providing partial protection. Since the Al(III) compounds introduced here are assumed to form in vivo, our data raise further awareness for the toxicity of Al(III) in general, and for the importance of Al speciation and cell type specific actions in its toxicity.
Collapse
Affiliation(s)
- Bettina Platt
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
16
|
. SMR, . MP. Effect of Aluminium on Testosterone Hormones in Male Rat. JOURNAL OF MEDICAL SCIENCES 2006. [DOI: 10.3923/jms.2006.296.299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Chen L, Liu CJ, Tang M, Li A, Hu XW, Du YM, Shen JJ, Lu YL, Heschler J. Action of aluminum on high voltage-dependent calcium current and its modulation by ginkgolide B. Acta Pharmacol Sin 2005; 26:539-45. [PMID: 15842770 DOI: 10.1111/j.1745-7254.2005.00073.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To investigate the effect of aluminum (Al) on high voltage-dependent calcium current (I(HVA)) and its modulation by ginkgolide B (Gin B). METHODS The whole-cell, patch-clamp technique was used to record IHVA from acutely isolated hippocampal CA1 pyramydal neurons in rats. RESULTS Al 0.1 mmol/L (low concentration) reduced I(HVA); Al 0.75 and 1.0 mmol/L (high concentrations) increased I(HVA), and Al decreased and increased I(HVA) at intermediate concentrations of 0.25 and 0.5 mmol/L. The increase of I(HVA) by Al 1.0 mmol/L was enhanced by the adenylyl cyclase (AC) agonist forskolin and was partly abolished by the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) antagonist H-89, whereas the decrease observed with Al 0.1 mmol/L was neither reversed by forskolin nor affected by H-89. Gin B had no effect on I(HVA) in normal neurons, but canceled the increase in I(HVA) by 1.0 mmol/L Al. CONCLUSION The results indicate that the mechanism of Al affecting I(HVA) differs at different concentrations, and this may be attributed to its complex actions. Gin B could prevent neurons from injury by inhibiting calcium influx.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Platt B, Fiddler G, Riedel G, Henderson Z. Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull 2001; 55:257-67. [PMID: 11470325 DOI: 10.1016/s0361-9230(01)00511-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the neurotoxic actions of aluminium (Al) have been well documented, its contribution to neurodegenerative diseases such as Alzheimer's disease remains controversial. In the present study, we applied histochemical techniques to identify changes induced by intracerebroventricular Al injections (5.4 microg in 5.5 microl, daily over a period of 5 successive days) in the adult rat brain after survival periods of either 1 or 6 weeks. For both Al- and saline-infused controls, no major signs of gross histological changes were evident in cresyl violet-stained sections. Al (as indicated by the fluorescent Morin staining) was concentrated in white matter of the medial striatum, corpus callosum, and cingulate bundle. Immunoreactivity of astrocytes and phagocytic microglia based on glial fibrillary acidic protein and ED1 markers, respectively, revealed a greater inflammatory response in Al-injected animals compared to controls. Damage of the cingulate bundle in Al-treated animals led to a severe anterograde degeneration of cholinergic terminals in cortex and hippocampus, as indicated by acetylcholinesterase labelling. Our data suggest that the enhancement of inflammation and the interference with cholinergic projections may be the modes of action through which Al may cause learning and memory deficits, and contribute to pathological processes in Alzheimer's disease.
Collapse
Affiliation(s)
- B Platt
- Biomedical Sciences, Aberdeen University, Scotland, Aberdeen, UK.
| | | | | | | |
Collapse
|
20
|
Csóti T, Győri J, Erdélyi L. Aluminum enhances the voltage activated sodium currents in the neurons of the pond snail Lymnaea stagnalis L. ACTA BIOLOGICA HUNGARICA 1999. [DOI: 10.1007/bf03543029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Suárez-Fernández MB, Soldado AB, Sanz-Medel A, Vega JA, Novelli A, Fernández-Sánchez MT. Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res 1999; 835:125-36. [PMID: 10415367 DOI: 10.1016/s0006-8993(99)01536-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms by which aluminum interacts with the nervous system are only partly understood. In this study, we used cultured astrocytes and neurons to investigate the effects of long exposures to aluminum (1 mM). We found that aluminum accumulated both in neurons and astrocytes. After 8-12 days exposure, aluminum caused strong changes in the morphology of astrocytes including shrinkage of cell bodies and retraction of processes. Exposures over 15-18 days reduced astrocytes viability by 50%. Aluminum-induced degeneration of astrocytes involved the DNA fragmentation characteristic of apoptosis, and staining of aluminum-treated astrocytes with the DNA-binding fluorochrome Hoeschst 33258 revealed the typical apoptotic condensation and fragmentation of chromatin. Aluminum was also found to be neurotoxic, causing first (4-6 days) abnormal clustering and aggregation, and later (8-12 days) neuronal death. Interestingly, aluminum neurotoxicity occurred in neuroglial cultures containing approximately 10% astrocytes but not in near-pure neuronal cultures containing only 1% astrocytes. Staining of co-cultured cells with Hoeschst 33258 showed apoptotic condensation and fragmentation of chromatin in aluminum-treated astrocytes but not in co-cultured neurons. Our study demonstrates that aluminum can induce the apoptotic degeneration of astrocytes, and that this toxicity is critical in determining neuronal degeneration and death. Aluminum-mediated apoptosis of cultured astrocytes may be also a valuable model system to study the mechanisms underlying apoptosis in glial cells.
Collapse
Affiliation(s)
- M B Suárez-Fernández
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, 33071, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Aluminum has been implicated in several neurodegenerative conditions including Alzheimer's disease. Because the mammalian olfactory system has an unusual capacity for the uptake and transneuronal spread of inhaled substances such as aluminum, whole cell recording techniques were used to examine the actions of aluminum on basic membrane properties and amino acid receptors on rat olfactory bulb mitral/tufted (M/T) neurons in culture. Aluminum had little direct effects on M/T neurons. Aluminum (100 microM) did not evoke a membrane current or alter action-potential shape or duration. Aluminum also had no marked effects on the family of voltage-gated membrane currents evoked by a series of 10-mV, 50-ms depolarizing steps. However, aluminum dramatically potentiated the current evoked by 30 microM gamma-aminobutyric acid (GABA) at concentrations <100 microM. Conversely, higher concentrations of aluminum blocked the GABA-evoked current. The effects of aluminum on GABA-evoked currents were not voltage dependent. Aluminum (100 microM) equally potentiated both inward currents at -30 mV and outward currents at + 30 mV. At 300 microM, aluminum blocked both inward and outward currents to a similar extent. In some neurons, aluminum only blocked the current and potentiation was not observed. The biphasic action of aluminum on GABA-evoked currents suggests separate binding sites: a high-affinity potentiating site and a low-affinity inhibiting site. Despite its effects on GABA-evoked currents, aluminum did not alter membrane currents evoked by glutamate, N-methyl-D-aspartate, kainate, or glycine. Aluminum also did not reduce spontaneous excitatory synaptic activity, suggesting little, if any, effect on glutamate release. Although a causal role for aluminum in Alzheimer's disease and other neuropathological conditions remains controversial, it is clear that elevated aluminum concentrations in the brain are associated with a variety of cognitive impairments. The present results indicate that aluminum can alter the function of GABAA receptors and may suggest that aluminum can contribute to cognitive impairment through disruption of inhibitory circuits.
Collapse
Affiliation(s)
- P Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA
| |
Collapse
|
23
|
Gandolfi L, Stella MP, Zambenedetti P, Zatta P. Aluminum alters intracellular calcium homeostasis in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:315-20. [PMID: 9630699 DOI: 10.1016/s0925-4439(98)00018-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present paper reports data regarding the influence of aluminum, at micromolar concentrations, on intracellular calcium homeostasis. Al3+ modifies Ca2+ uptake in the endoplasmic reticulum (ER), accelerates Ca2+ release from mitochondria and strongly inhibits Ca2+-ATPase activity with a consequent high-level calcium accumulation inside the cell. These results suggest that Al3+ neurotoxicity may be related to an alteration of the intracellular calcium regulatory system.
Collapse
Affiliation(s)
- L Gandolfi
- Dipartimento di Scienze Farmaceutiche, Università di Padova, Padova, Italy
| | | | | | | |
Collapse
|
24
|
Abstract
Zinc (Zn), aluminium (Al), mercury (Hg), methylmercury (MeHg) and lead (Pb) extracellulary applied reduce voltage-activated calcium channel currents (VACCCs); Pb and Al also reduce N-methyl-D-aspartate (NMDA)-activated channel currents (NACCs). Pb is most effective in reducing VACCCs, with an IC50 of 0.46 microM, followed by Hg (IC50 = 1.1 microM) and MeHg (IC50 = 2.6 microM). Zn and Al were less potent (IC50 = 69 and 84 microM, respectively). Al acts on channels in the open state; its effect is pH dependent. The effects of Pb were specific for VACCCs and NACCs. Hg, Al and Zn had only minor effects on voltage-activated potassium and sodium channels, while MeHg reduced potassium channel currents (IC50 = 2.2 microM) and, at higher concentrations, sodium channel currents (IC50 = 12.3 microM). Al also reduced other receptor-activated channel currents. These results demonstrate that a variety of metal species produce different actions at the level of the cell membrane.
Collapse
|