1
|
Behren S, Westerlind U. Glycopeptides and -Mimetics to Detect, Monitor and Inhibit Bacterial and Viral Infections: Recent Advances and Perspectives. Molecules 2019; 24:E1004. [PMID: 30871155 PMCID: PMC6471658 DOI: 10.3390/molecules24061004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
The initial contact of pathogens with host cells is usually mediated by their adhesion to glycan structures present on the cell surface in order to enable infection. Furthermore, glycans play important roles in the modulation of the host immune responses to infection. Understanding the carbohydrate-pathogen interactions are of importance for the development of novel and efficient strategies to either prevent, or interfere with pathogenic infection. Synthetic glycopeptides and mimetics thereof are capable of imitating the multivalent display of carbohydrates at the cell surface, which have become an important objective of research over the last decade. Glycopeptide based constructs may function as vaccines or anti-adhesive agents that interfere with the ability of pathogens to adhere to the host cell glycans and thus possess the potential to improve or replace treatments that suffer from resistance. Additionally, synthetic glycopeptides are used as tools for epitope mapping of antibodies directed against structures present on various pathogens and have become important to improve serodiagnostic methods and to develop novel epitope-based vaccines. This review will provide an overview of the most recent advances in the synthesis and application of glycopeptides and glycopeptide mimetics exhibiting a peptide-like backbone in glycobiology.
Collapse
Affiliation(s)
- Sandra Behren
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | | |
Collapse
|
2
|
Host-soluble galectin-1 promotes HIV-1 replication through a direct interaction with glycans of viral gp120 and host CD4. J Virol 2011; 85:11742-51. [PMID: 21880749 DOI: 10.1128/jvi.05351-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sexual transmission of HIV-1 requires virus adsorption to a target cell, typically a CD4(+) T lymphocyte residing in the lamina propria, beneath the epithelium. To escape the mucosal clearance system and reach its target cells, HIV-1 has evolved strategies to circumvent deleterious host factors. Galectin-1, a soluble lectin found in the underlayers of the epithelium, increases HIV-1 infectivity by accelerating its binding to susceptible cells. By comparison, galectin-3, a family member expressed by epithelial cells and part of the mucosal clearance system, does not perform similarly. We show here that galectin-1 directly binds to HIV-1 in a β-galactoside-dependent fashion through recognition of clusters of N-linked glycans on the viral envelope gp120. Unexpectedly, this preferential binding of galectin-1 does not rely on the primary sequence of any particular glycans. Instead, glycan clustering arising from the tertiary structure of gp120 hinders its binding by galectin-3. Increased polyvalency of a specific ligand epitope is a common strategy for glycans to increase their avidity for lectins. In this peculiar occurrence, glycan clustering is instead exploited to prevent binding of gp120 by galectin-3, which would lead to a biological dead-end for the virus. Our data also suggest that galectin-1 binds preferentially to CD4, the host receptor for gp120. Together, these results suggest that HIV-1 exploits galectin-1 to enhance gp120-CD4 interactions, thereby promoting virus attachment and infection events. Since viral adhesion is a rate-limiting step for HIV-1 entry, modulation of the gp120 interaction with galectin-1 could thus represent a novel approach for the prevention of HIV-1 transmission.
Collapse
|
3
|
Abstract
Initial binding of human immunodeficiency virus-1 (HIV-1) to its susceptible CD4(+) cells is the limiting step for the establishment of infection as the avidity of viral envelope gp120 for CD4 is not high and the number of viral envelope spikes on the surface is found to be low compared to highly infectious viruses. Several host factors, such as C-type lectins, are listed as being able to enforce or facilitate the crucial interaction of HIV-1 to the susceptible cell. Recent works suggest that a host soluble beta-galactoside-binding lectin, galectin-1, also facilitates both virion binding and the infection of target cells in a manner dependent on lactose but not mannose, suggesting that this soluble galectin can be considered as a host factor that influences HIV-1 pathogenesis. In this chapter, we describe methods used to investigate the potential role of the galectin family in HIV-1-mediated disease progression.
Collapse
Affiliation(s)
- Christian St-Pierre
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | |
Collapse
|
4
|
Zhao Q, Ma L, Jiang S, Lu H, Liu S, He Y, Strick N, Neamati N, Debnath AK. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology 2005; 339:213-25. [PMID: 15996703 DOI: 10.1016/j.virol.2005.06.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/02/2005] [Accepted: 06/02/2005] [Indexed: 11/19/2022]
Abstract
We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Molecular Modeling and Drug Design of the Lindsley F. Kimball Research Institute of The New York Blood Center, 310 E 67th Street, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pugach P, Kuhmann SE, Taylor J, Marozsan AJ, Snyder A, Ketas T, Wolinsky SM, Korber BT, Moore JP. The prolonged culture of human immunodeficiency virus type 1 in primary lymphocytes increases its sensitivity to neutralization by soluble CD4. Virology 2004; 321:8-22. [PMID: 15033560 DOI: 10.1016/j.virol.2003.12.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/15/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
Primary strains of human immunodeficiency virus type 1 (HIV-1) are known to adapt to replication in cell lines in vitro by becoming sensitive to soluble CD4 (sCD4) and neutralizing antibodies (NAb). T-cell lines favor isolation of variants that use CXCR4 as a co-receptor, while primary isolates predominantly use CCR5. We have now studied how a primary R5 isolate, CC1/85, adapts to prolonged replication in primary human peripheral blood mononuclear cells (PBMC). After 19 passages, a variant virus, CCcon.19, had increased sensitivity to both sCD4 and NAb b12 that binds to a CD4-binding site (CD4BS)-associated epitope, but decreased sensitivity to anti-CD4 antibodies. CCcon.19 retains the R5 phenotype, its resistance to other NAbs was unaltered, its sensitivity to various entry inhibitors was unchanged, and its ability to replicate in macrophages was modestly increased. We define CCcon.19 as a primary T-cell adapted (PTCA) variant. Genetic sequence analysis combined with mutagenesis studies on clonal, chimeric viruses derived from CC1/85 and the PTCA variant showed that the most important changes were in the V1/V2 loop structure, one of them involving the loss of an N-linked glycosylation site. Monomeric gp120 proteins expressed from CC1/85 and the PTCA variant did not differ in their affinities for sCD4, suggesting that the structural consequences of the sequence changes were manifested at the level of the native, trimeric Env complex. Overall, the adaptation process probably involves selection for variants with higher CD4 affinity and hence greater fusion efficiency, but this also involves the loss of some resistance to neutralization by agents directed at or near to the CD4BS. The loss of neutralization resistance is of no relevance under in vitro conditions, but NAbs would presumably be a counter-selection pressure against such adaptive changes in vivo, at least when the humoral immune response is intact.
Collapse
Affiliation(s)
- Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The worldwide infection rate for HIV-1 is estimated to be 14,000 per day, but only now, more than 20 years into the epidemic, are the immediate events between exposure to infectious virus and the establishment of infection becoming clear. Defining the mechanisms of HIV-1 transmission, the target cells involved and how the virus attaches to and fuses with these cells, could reveal ways to block the sexual spread of the virus. In this review, we will discuss how our increasing knowledge of the ways in which HIV-1 is transmitted is shaping the development of new, more sophisticated intervention strategies based on the application of vaginal or rectal microbicides.
Collapse
Affiliation(s)
- Robin J Shattock
- Department of Cellular and Molecular Medicine, Infectious Diseases, St. George's Hospital Medical School, London, UK.
| | | |
Collapse
|
7
|
|
8
|
Perez JJ, Filizola M, Corcho F. Docking of peptide-T onto the D1 domain of the CD4 receptor. J Biomol Struct Dyn 2000; 17:725-33. [PMID: 10698109 DOI: 10.1080/07391102.2000.10506562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Peptide T (pepT) is a segment of the human immunodeficiency virus (HIV) envelope protein gp120. The peptide competitively binds to the CD4 receptor of a subset of peripheral T lymphocytes and inhibits binding of gp120. Previous studies of this laboratory allowed the assessment of a bioactive form of the peptide and a pharmacophore for the peptide-receptor interaction. In the present study the proposed bioactive form of pepT and its (4-8) segment, the smallest pepT fragment shown to retain full activity, were docked onto the D1 domain of the CD4 receptor. The bioactive conformation of the peptides complements well a cleft on the surface of the CD4 receptor, shown to be the attachment site of gp120 from site directed mutagenesis experiments. These studies provide an improved description of the ligand-receptor pharmacophore.
Collapse
Affiliation(s)
- J J Perez
- Dept. d'Enginyeria Quimica, UPC; ETS d'Enginyers Industrials, Barcelona, Spain.
| | | | | |
Collapse
|
9
|
Doranz BJ, Baik SS, Doms RW. Use of a gp120 binding assay to dissect the requirements and kinetics of human immunodeficiency virus fusion events. J Virol 1999; 73:10346-58. [PMID: 10559353 PMCID: PMC113090 DOI: 10.1128/jvi.73.12.10346-10358.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Binding of the extracellular subunit of human immunodeficiency type 1 (HIV-1) envelope (Env) glycoprotein (gp120) to CD4 triggers the induction or exposure of a highly conserved coreceptor binding site in gp120 that helps mediate membrane fusion. Characterizing the structural features involved in gp120-coreceptor binding and the conditions under which binding occurs is important for understanding the fusion process, the evolution of pathogenic strains in vivo, the identification of novel anti-HIV compounds, and the development of HIV vaccines that utilize triggered structures of Env. Here we use the kinetics of interaction between CCR5 and gp120 to understand temporal and structural changes that occur during viral fusion. Using saturation binding and homologous competition analysis, we estimated the K(d) of interaction between CCR5 and gp120 from the macrophage tropic HIV-1 strain JRFL to be 4 nM. Unlike Env-mediated fusion, gp120 binding to CCR5 did not require divalent cations or elevated temperatures. Binding was not significantly affected by the pH of binding, G-protein coupling of CCR5, or partial gp120 deglycosylation. Oligomeric, uncleaved JRFL gp140 failed to bind CCR5 despite its ability to bind CD4 and monoclonal antibody 17b, suggesting that the uncleaved ectodomain of gp41 interferes with full exposure of the chemokine receptor binding site. Exposure of the chemokine receptor binding site on gp120 could be induced rapidly by CD4, but exposure of this site was lost upon CD4 dissociation from gp120, indicating that the conformational changes in gp120 induced by CD4 binding are fully reversible. The functional gp120-soluble CD4 complex was remarkably stable over time and temperature ranges, offering the possibility that complexes in which the highly conserved coreceptor binding site in gp120 is exposed can be used for vaccine development.
Collapse
Affiliation(s)
- B J Doranz
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
10
|
Cabrera C, Witvrouw M, Gutiérrez A, Clotet B, Kuipers ME, Swart PJ, Meijer DK, Desmyter J, De Clercq E, Esté JA. Resistance of the human immunodeficiency virus to the inhibitory action of negatively charged albumins on virus binding to CD4. AIDS Res Hum Retroviruses 1999; 15:1535-43. [PMID: 10580404 DOI: 10.1089/088922299309829] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Negatively charged albumins (NCAs) have been identified as potent inhibitors of HIV-1 replication in vitro. Time of addition studies suggest that succinylated and aconitylated human serum albumin (Suc-HSA and Aco-HSA) act at an early stage of the virus life cycle, and surface plasmon resonance (BIAcore) experiments have confirmed a direct interaction of NCAs with HIV-1 gp120. Resistance to Suc-HSA and Aco-HSA was analyzed by characterizing HIV-1 variants that were selected in cell culture after serial passage of the NL4-3 strain in the presence of the compounds. After 24 passages (126 days) we isolated variants that were resistant to Suc-HSA (>27-fold) and Aco-HSA (37-fold), as compared with the wild-type NL4-3 virus. The binding of the NCA-resistant HIV strains to CD4+ MT-4 cells could no longer be inhibited by either Suc- or Aco-HSA. The emergence of mutations in the envelope gp120 of the resistant virus paralleled the emergence of the resistant phenotype. The Suc-HSA-resistant strain was 100-fold cross-resistant to the G quartet-containing oligonucleotide AR177 (Zintevir, an HIV-binding inhibitor), and partially cross-resistant to dextran sulfate, but remained sensitive to the bicyclam AMD3100 and the chemokine SDF-1alpha, which block HIV replication by interaction with the chemokine receptor CXCR4. Furthermore, neither Suc-HSA nor Aco-HSA inhibited the binding of monoclonal antibodies 12G5 and 2D7 (directed to CXCR4 and CCR5, respectively) in SUPT-1 cells or THP-1 cells. These results confirm that NCAs bind primarily to gp120 and do not interact directly with the HIV chemokine receptor but block the binding of the virus particles (through gp120) with CD4+ cells.
Collapse
Affiliation(s)
- C Cabrera
- Institut de Recerca de la SIDA-Caixa, Retrovirology Laboratory, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Olson WC, Rabut GE, Nagashima KA, Tran DN, Anselma DJ, Monard SP, Segal JP, Thompson DA, Kajumo F, Guo Y, Moore JP, Maddon PJ, Dragic T. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol 1999; 73:4145-55. [PMID: 10196311 PMCID: PMC104194 DOI: 10.1128/jvi.73.5.4145-4155.1999] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CC-chemokine receptor CCR5 mediates fusion and entry of the most commonly transmitted human immunodeficiency virus type 1 (HIV-1) strains. We have isolated six new anti-CCR5 murine monoclonal antibodies (MAbs), designated PA8, PA9, PA10, PA11, PA12, and PA14. A panel of CCR5 alanine point mutants was used to map the epitopes of these MAbs and the previously described MAb 2D7 to specific amino acid residues in the N terminus and/or second extracellular loop regions of CCR5. This structural information was correlated with the MAbs' abilities to inhibit (i) HIV-1 entry, (ii) HIV-1 envelope glycoprotein-mediated membrane fusion, (iii) gp120 binding to CCR5, and (iv) CC-chemokine activity. Surprisingly, there was no correlation between the ability of a MAb to inhibit HIV-1 fusion-entry and its ability to inhibit either the binding of a gp120-soluble CD4 complex to CCR5 or CC-chemokine activity. MAbs PA9 to PA12, whose epitopes include residues in the CCR5 N terminus, strongly inhibited gp120 binding but only moderately inhibited HIV-1 fusion and entry and had no effect on RANTES-induced calcium mobilization. MAbs PA14 and 2D7, the most potent inhibitors of HIV-1 entry and fusion, were less effective at inhibiting gp120 binding and were variably potent at inhibiting RANTES-induced signaling. With respect to inhibiting HIV-1 entry and fusion, PA12 but not PA14 was potently synergistic when used in combination with 2D7, RANTES, and CD4-immunoglobulin G2, which inhibits HIV-1 attachment. The data support a model wherein HIV-1 entry occurs in three stages: receptor (CD4) binding, coreceptor (CCR5) binding, and coreceptor-mediated membrane fusion. The antibodies described will be useful for further dissecting these events.
Collapse
Affiliation(s)
- W C Olson
- Progenics Pharmaceuticals, Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaul PN. Drug discovery: past, present and future. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1998; 50:9-105. [PMID: 9670776 DOI: 10.1007/978-3-0348-8833-2_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New drug discovery from early on involved a trial-and-error approach on naturally derived materials and substances until the end of the nineteenth century. The first half of the twentieth century witnessed systematic pharmacological evaluations of both natural and synthetic compounds. However, most new drugs until the 1970s were discovered by serendipity. With the exponential development of molecular biology on one hand and computer technology on the other, it became possible from 1980 onwards to place drug discovery on a rational basis. Cloning of genes has led to the development of methodologies for specific receptor-directed and enzyme-directed drug discoveries. Advances in recombinant DNA and transgenic technologies have enabled the production of human hormonal and other endogenous biomolecules as new drugs. As we understand more about the co-ordinating and regulating powers of the cerebral cortex during the next century, especially of the frontal lobe, man may be able to use bio-feedback training to voluntarily regulate the release of neurotransmitters, hormones, and other molecules involved in the regulation of various physiological processes in health as well as in disease.
Collapse
Affiliation(s)
- P N Kaul
- Clark Atlanta University, GA 30314, USA
| |
Collapse
|
13
|
Perrin C, Fenouillet E, Jones IM. Role of gp41 glycosylation sites in the biological activity of human immunodeficiency virus type 1 envelope glycoprotein. Virology 1998; 242:338-45. [PMID: 9514971 DOI: 10.1006/viro.1997.9016] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The requirement for glycosylation in the transmembrane protein, gp41, of human immunodeficiency virus type 1 envelope protein for fusion activity has been studied. By using a mutant gene in which three conserved sites have been removed and which shows no fusion ability, genes were constructed which replace one, two, or three sites in all possible combinations. Following expression of the resultant proteins using the vaccinia T7 system, each Env variant was assessed by visual and quantitative syncytium assays. Our data indicate that two sites are sufficient for high levels of fusion and that the single site at position 621 is the most critical of all positions. We interpret our data in the light of previous contradictory reports on the role of gp41 glycosylation in bioactivity and the emerging structure of gp41.
Collapse
Affiliation(s)
- C Perrin
- NERC Institute of Virology, Oxford, United Kingdom
| | | | | |
Collapse
|
14
|
Binding between the CD4 receptor and polysulfonated azo-dyes. An exploratory theoretical study on action-mechanism. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0166-1280(97)00363-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Trkola A, Paxton WA, Monard SP, Hoxie JA, Siani MA, Thompson DA, Wu L, Mackay CR, Horuk R, Moore JP. Genetic subtype-independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC chemokines. J Virol 1998; 72:396-404. [PMID: 9420238 PMCID: PMC109387 DOI: 10.1128/jvi.72.1.396-404.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the breadth and potency of the inhibitory actions of the CC chemokines macrophage inhibitory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES against macrophage-tropic (M-tropic) primary isolates of human immunodeficiency virus type 1 (HIV-1) and of the CXC chemokine stromal cell-derived factor 1alpha against T-cell-tropic (T-tropic) isolates, using mitogen-stimulated primary CD4+ T cells as targets. There was considerable interisolate variation in the sensitivity of HIV-1 to chemokine inhibition, which was especially pronounced for the CC chemokines and M-tropic strains. However, this variation was not obviously dependent on the genetic subtype (A through F) of the virus isolates. Peripheral blood mononuclear cell donor-dependent variation in chemokine inhibition potency was also observed. Among the CC chemokines, the rank order for potency (from most to least potent) was RANTES, MIP-1beta, MIP-1alpha. Some M-tropic isolates, unexpectedly, were much more sensitive to RANTES than to MIP-1beta, whereas other isolates showed sensitivities comparable to those of these two chemokines. Down-regulation of the CCR5 and CXCR4 receptors occurred in cells treated with the cognate chemokines and probably contributes to anti-HIV-1 activity. Thus, for CCR5, the rank order for down-regulation was also RANTES, MIP-1beta, MIP-1alpha.
Collapse
Affiliation(s)
- A Trkola
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Krykbaev R, McKeating J, Jones I. Mutant CD4 molecules with improved binding to HIV envelope protein gp120 selected by phage display. Virology 1997; 234:196-202. [PMID: 9268150 DOI: 10.1006/viro.1997.8651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phage-display methodology has been used to select variant CD4 proteins exhibiting increased binding to the surface envelope glycoprotein, gp120, of Human Immunodeficiency Virus Type-1. To facilitate the selection, a library of mutant CD4 proteins was constructed by cloning a PCR-generated error prone population of the first two domains of CD4 into the phagemid expression vector pHEN1. Phage displaying CD4 in functional form were confirmed by Western blot with CD4-specific antibody and by phage ELISA on immobilized gp120. Biopanning of CD4 phage on immobilized gp120 followed by individual characterization identified five clones with increased binding to gp120. All of the selected variants had one or two amino acid substitutions within the V1 domain of CD4, notably at positions 15, 27, 30, 50, and 66 located in the strands surrounding the main binding loop. Variants which exhibited increased binding to recombinant gp120 in vitro were also shown to have an increased capacity for virus neutralization broadly in line with their in vitro binding activity.
Collapse
Affiliation(s)
- R Krykbaev
- NERC Institute of Virology, Oxford, United Kingdom
| | | | | |
Collapse
|
17
|
Abstract
HIV-1 enters its target cells by fusion at the plasma membrane. The primary cellular receptor for HIV is CD4, but this molecule is insufficient to permit viral fusion. During 1996, the necessary entry co-factors (co-receptors or second receptors) were identified as being members of the seven-transmembrane-spanning receptor family fusin: CXCR4 for T-tropic strains and CCR5, principally, for M-tropic strains. The co-receptor functions of these proteins are inhibited by their natural alpha- and beta-chemokine ligands.
Collapse
Affiliation(s)
- J P Moore
- The Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
18
|
Attanasio R, Pehler K, Scinicariello F. DNA-based immunization induces anti-CD4 antibodies directed primarily to native epitopes. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1997; 17:207-15. [PMID: 9143878 DOI: 10.1111/j.1574-695x.1997.tb01014.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA-based immunization is one of the most promising strategies to induce protective immunity against a variety of pathogens, presenting clear advantages as compared to the use of recombinant antigens. One of these advantages might be the ability to induce antibodies directed primarily against conformational determinants, as compared to immunization with recombinant proteins. To test this possibility, we have analyzed the antibody responses induced in mice by immunization with either recombinant soluble CD4 (rCD4) or by immunization with plasmid DNA-encoding CD4 (CD4-DNA). Mice immunized with CD4-DNA had lower titers of antibodies able to recognize rCD4 than mice immunized with rCD4. However, immunization with CD4-DNA induced antibodies reactive with the native cell surface CD4 molecule in all mice, whereas only two out of five mice immunized with rCD4 produced antibodies reactive with cell surface CD4, thus demonstrating that the genetic immunization approach may lead to an antibody response more consistent and superior at a qualitative level as compared to immunization with the corresponding recombinant protein. In addition, differences in the kinetics of appearance of antibodies directed against the native CD4 molecule were observed between mice immunized with CD4-DNA or rCD4. In the first case, antibodies reacting with cell surface CD4 were present 28 days after the first immunization, whereas mice immunized with rCD4 produced antibodies directed against the native molecule only following a booster injection. Finally, the two groups of mice produced antibodies with a different isotype distribution. No clear predominance of a specific IgG subclass was detected in the antibody population produced in response to DNA immunization. Conversely, mice immunized with rCD4 produced predominantly antibodies of the IgG1 isotype, indicating generation of a TH2 response. Together, results from this study indicate that the CD4 molecule endogenously produced following DNA immunization is expressed, at least partially, in a native conformation. This feature confers a major advantage to the DNA immunization approach as compared to immunization with the corresponding recombinant protein, which seems to elicit antibodies predominantly directed to epitopes uniquely expressed on the recombinant molecule.
Collapse
Affiliation(s)
- R Attanasio
- Division of Microbiology and Immunology, Yerkes Regional Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
19
|
Groenink M, Swart PJ, Broersen S, Kuipers M, Meijer DK, Schuitemaker H. Potent inhibition of replication of primary HIV type 1 isolates in peripheral blood lymphocytes by negatively charged human serum albumins. AIDS Res Hum Retroviruses 1997; 13:179-85. [PMID: 9007203 DOI: 10.1089/aid.1997.13.179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously reported the antiviral capacity of human serum albumin (HSA), which was modified by the introduction of a single (Suc-HSA) or two carboxylic groups (Aco-HSA) per lysine residue, yielding strongly negatively charged polypeptides. Here we report the antiviral effect of these modified HSAs on replication of primary HIV-1 isolates that differed with respect to syncytium-inducing (SI) capacity and cell tropism. Both Suc-HSA and Aco-HSA potently inhibited replication of primary HIV-1 variants, independent of the SI capacity of the HIV-1 variant, with IC50 values in the range of 50 to 187 microg/ml. The inhibition of the formation of syncytia and the absence of proviral DNA products in cells inoculated with HIV-1 in the presence of Suc-HSA or Aco-HSA pointed to interference at an early level in the virus replication cycle. The inhibitory capacity of Suc-HSA and Aco-HSA on primary HIV-1 variants suggests that these agents are potential candidates for use in antiviral therapy in HIV-infected individuals.
Collapse
Affiliation(s)
- M Groenink
- Department of Clinical Viro-Immunology, Central Laboratory of The Netherlands Red Cross Blood Transfusion Service and Laboratory for Experimental and Clinical Immunology of the University of Amsterdam
| | | | | | | | | | | |
Collapse
|
20
|
Storage stability of the solution formulation of sCD4 determined by DSC in comparison with two functional assays. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf01992848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Pantaleo G, Demarest JF, Vaccarezza M, Graziosi C, Bansal GP, Koenig S, Fauci AS. Effect of anti-V3 antibodies on cell-free and cell-to-cell human immunodeficiency virus transmission. Eur J Immunol 1995; 25:226-31. [PMID: 7843235 DOI: 10.1002/eji.1830250137] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study was undertaken to compare the effects of a type-specific (HIV-1 MN) anti-V3 antibody on in vitro human immunodeficiency virus (HIV) infection of peripheral blood mononuclear cells in systems of cell-free versus cell-to-cell transmission of virus. Anti-V3 antibody completely prevented HIV-1 infection when cell-free virus was the sole mechanism of infection. A significant reduction of the neutralizing activity of the anti-V3 antibody was observed when infectivity was dependent on both cell-free and cell-to-cell mechanisms of infection. Furthermore, when cell-to-cell transfer of virions was the primary mechanism of HIV-1 infection, inhibition of HIV-1 infection was not observed. Therefore, a potent neutralizing antibody with a single epitope specificity failed to effectively control dissemination of a persistent HIV-1 infection in a system characterized predominantly by cell-to-cell transfer of virus.
Collapse
Affiliation(s)
- G Pantaleo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
22
|
Moore JP, Cao Y, Qing L, Sattentau QJ, Pyati J, Koduri R, Robinson J, Barbas CF, Burton DR, Ho DD. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol 1995; 69:101-9. [PMID: 7527081 PMCID: PMC188553 DOI: 10.1128/jvi.69.1.101-109.1995] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A panel of anti-gp120 human monoclonal antibodies (HuMAbs), CD4-IgG, and sera from people infected with human immunodeficiency virus type 1 (HIV-1) was tested for neutralization of nine primary HIV-1 isolates, one molecularly cloned primary strain (JR-CSF), and two strains (IIIB and MN) adapted for growth in transformed T-cell lines. All the viruses were grown in mitogen-stimulated peripheral blood mononuclear cells and were tested for their ability to infect these cells in the presence and absence of the reagents mentioned above. In general, the primary isolates were relatively resistant to neutralization by the MAbs tested, compared with the T-cell line-adapted strains. However, one HuMAb, IgG1b12, was able to neutralize most of the primary isolates at concentrations of < or = 1 microgram/ml. Usually, the inability of a HuMAb to neutralize a primary isolate was not due merely to the absence of the antibody epitope from the virus; the majority of the HuMAbs bound with high affinity to monomeric gp120 molecules derived from various strains but neutralized the viruses inefficiently. We infer therefore that the mechanism of resistance of primary isolates to most neutralizing antibodies is complex, and we suggest that it involves an inaccessibility of antibody binding sites in the context of the native glycoprotein complex on the virion. Such a mechanism would parallel that which was previously postulated for soluble CD4 resistance. We conclude that studies of HIV-1 neutralization that rely on strains adapted to growth in transformed T-cell lines yield the misleading impression that HIV-1 is readily neutralized. The more relevant primary HIV-1 isolates are relatively resistant to neutralization, although these isolates can be potently neutralized by a subset of human polyclonal or monoclonal antibodies.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Groenink M, Moore JP, Broersen S, Schuitemaker H. Equal levels of gp120 retention and neutralization resistance of phenotypically distinct primary human immunodeficiency virus type 1 variants upon soluble CD4 treatment. J Virol 1995; 69:523-7. [PMID: 7983749 PMCID: PMC188603 DOI: 10.1128/jvi.69.1.523-527.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) variants passaged in T-cell lines, often called laboratory isolates, are potently neutralized by soluble CD4 (sCD4), whereas primary HIV-1 variants are highly resistant to sCD4 neutralization. Previously, it was demonstrated that the domain from V1 to V3 of the HIV-1 gp120 molecule contains one of the major determinants of sCD4 neutralization sensitivity, and the same region has also been implicated as influencing syncytium-inducing (SI) capacity and T-cell-line tropism. To determine possible differences in sCD4 neutralization sensitivity between phenotypically distinct primary HIV-1 variants, a panel of non-syncytium-inducing (NSI) and SI HIV-1 variants was studied. Primary NSI and SI HIV-1 variants appeared to be equally resistant to sCD4 neutralization. Consistent with this observation, sCD4 did not induce gp120 shedding from either primary NSI or SI HIV-1 variants at 37 degrees C. Thus, it is not the potential of certain primary HIV-1 variants to infect T-cell lines but rather their adaptation to T-cell lines that is reflected in specific properties of the viral envelope which influence sCD4 neutralization sensitivity.
Collapse
Affiliation(s)
- M Groenink
- Department of Clinical Viro-Immunology, The Netherlands Red Cross Blood Transfusion Service, Amsterdam
| | | | | | | |
Collapse
|
24
|
Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, Farthing C, Ho DD. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1994; 68:4650-5. [PMID: 8207839 PMCID: PMC236393 DOI: 10.1128/jvi.68.7.4650-4655.1994] [Citation(s) in RCA: 1891] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Virologic and immunologic studies were performed on five patients presenting with primary human immunodeficiency virus type 1 (HIV-1) infection. CD8+ cytotoxic T lymphocyte (CTL) precursors specific for cells expressing antigens of HIV-1 Gag, Pol, and Env were detected at or within 3 weeks of presentation in four of the five patients and were detected in all five patients by 3 to 6 months after presentation. The one patient with an absent initial CTL response had prolonged symptoms, persistent viremia, and low CD4+ T-cell count. Neutralizing antibody activity was absent at the time of presentation in all five patients. These findings suggest that cellular immunity is involved in the initial control of virus replication in primary HIV-1 infection and indicate a role for CTL in protective immunity to HIV-1 in vivo.
Collapse
Affiliation(s)
- R A Koup
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gammon G, Chandler G, Depledge P, Elcock C, Wrigley S, Moore J, Cammarota G, Sinigaglia F, Moore M. A fungal metabolite which inhibits the interaction of CD4 with major histocompatibility complex-encoded class II molecules. Eur J Immunol 1994; 24:991-8. [PMID: 8149967 DOI: 10.1002/eji.1830240432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CD4, a cell-surface glycoprotein expressed on a subpopulation of T cells, is the receptor for class II molecules of the major histocompatibility complex (MHC II) and a receptor for the envelope glycoprotein (gp 120) of human immunodeficiency virus-1 (HIV-1). Screening of microbial metabolites for CD4-binding activity using an enzyme-linked immunosorbent assay based on the binding of the CD4-specific monoclonal antibody (mAb), anti-Leu3a, identified a family of compounds comprising several novel polyketides. The parent compound (411F, Vinaxanthone) is a C28 molecule probably arising from a dimerization of two C14 polyketide units. It strongly inhibited the interaction of anti-Leu 3a and that of several other D1/D2 epitope-specific mAb with CD4, but only weakly inhibited the binding of HIV-1 gp120. Binding of a representative MHC class II molecule, HLA-DRB*0401, was also inhibited by 411F with a comparable inhibitory concentration (IC50 = 1 microM). In functional assays 411F inhibited antigen-induced CD4-dependent T cell proliferative responses of peripheral blood mononuclear cells. At the clonal level 411F exhibited selectivity in that the compound inhibited peptide-induced CD4+ T cell proliferative responses but not alloantigen-induced CD8+ T cell proliferation. It is hypothesized that 411F, a polyanionic compound in aqueous solution at neutral pH, inhibits CD4-dependent functions by binding over a broad area of the positively charged amino-terminal D1 and D2 domains implicated in the interaction with MHC II molecules. 411F has the potential for development as an immunosuppressive agent with a novel mechanism of action.
Collapse
Affiliation(s)
- G Gammon
- Department of Molecular Sciences, Xenova Ltd, Slough, Berks, GB
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Moore JP, Sattentau QJ, Wyatt R, Sodroski J. Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies. J Virol 1994; 68:469-84. [PMID: 7504741 PMCID: PMC236308 DOI: 10.1128/jvi.68.1.469-484.1994] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have probed the structures of monomeric and oligomeric gp120 glycoproteins from the LAI isolate of human immunodeficiency virus type 1 (HIV-1) with a panel of monoclonal antibodies (MAbs); most of these MAbs are directed against continuous epitopes. On native monomeric gp120, most of the first conserved (C1) domain is accessible to MAbs, although some regions of C1 are relatively inaccessible. All of the MAbs directed against the C2, C3, and C5 domains bind preferentially to denatured monomeric gp120, indicating that these regions of gp120 are poorly accessible on the native monomer, although the extreme C terminus in C5 is well exposed. Segments of the V1, V2, and V3 loops are exposed on the surface of monomeric gp120, although the base of the V3 loop is inaccessible. A portion of C4 is also available for MAb binding on monomeric gp120, as is the extreme C terminus in C5. However, on oligomeric gp120-gp41 complexes, only the V2 and V3 loops (and perhaps V1) are well exposed and a segment of the C4 region is partially exposed; continuous epitopes in C1 and C5 that are accessible to antibodies on monomeric gp120 are occluded on the oligomer. Although deletion of the V1, V2, and V3 loops resulted in increased exposure of several discontinuous epitopes overlapping the CD4-binding site, the exposure of most continuous epitopes on the monomeric gp120 glycoprotein was not affected. These results imply a HIV-1 gp120 structure in which the conserved continuous determinants are inaccessible; in some cases, this inaccessibility is due to intramolecular interactions between conserved regions, and in other cases, it is due to intermolecular interactions with other components of the glycoprotein spike. These findings have implications for the design of subunit vaccines based on gp120.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | |
Collapse
|
27
|
Moore JP, Sattentau QJ. Detecting SIV gp120 and its interaction with soluble CD4 by ELISA. AIDS Res Hum Retroviruses 1993; 9:1297-9. [PMID: 8142147 DOI: 10.1089/aid.1993.9.1297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York, New York 10018
| | | |
Collapse
|
28
|
Moore JP, Jameson BA, Sattentau QJ, Willey R, Sodroski J. Towards a structure of the HIV-1 envelope glycoprotein gp120: an immunochemical approach. Philos Trans R Soc Lond B Biol Sci 1993; 342:83-8. [PMID: 7904352 DOI: 10.1098/rstb.1993.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 surface glycoprotein gp120 binds CD4 in the initial state of virus-cell fusion. The extensive glycosylation of gp120 has thus far precluded definition of its structure by crystallographic methods. As an initial approach to a gp120 structure, the surface topology was mapped using antibodies. First, the regions of gp120 that are accessible on the surface of the native molecule, and those that are internal but exposed after denaturation, are identified. Second, epitopes for antibodies that recognize complex surface structures comprising segments of different domains are identified. Third, we define how mutations in one domain of gp120 influence the binding of antibodies to defined epitopes on other domains. These latter approaches enable us to start to understand the inter-domain interactions that contribute to the overall structure of the gp120 molecule. Information from these studies is being used to model the structures of individual gp120 domains, and the way in which these interact in the folded protein.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | |
Collapse
|