1
|
Kleczkowska P, Smaga I, Filip M, Bujalska-Zadrozny M. Are Alcohol Anti-relapsing and Alcohol Withdrawal Drugs Useful in Cannabinoid Users? Neurotox Res 2016; 30:698-714. [PMID: 27484692 DOI: 10.1007/s12640-016-9655-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022]
Abstract
Cannabinoids are still classified as illegal psychoactive drugs despite their broad and increasingly acknowledged therapeutic potential. These substances are most famous for their wide recreational use, particularly among young adults to either alter the state of consciousness, intensify pleasure induced by other psychoactive substances or as an alternative to the previously abused drugs. It is important to emphasize that cannabinoids are often taken together with a variety of medications intended for the treatment of alcohol use disorder (AUD) or alcohol withdrawal syndrome (AWS). These medications include disulfiram, acamprosate, and naltrexone. In this paper, we summarize recent advances in the knowledge of possible beneficial effects and interactions between cannabinoids and drugs commonly used for treatment of AUD and AWS either comorbid or existing as a separate disorder.
Collapse
Affiliation(s)
- Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str, 02-097, Warsaw, Poland.
| | - Irena Smaga
- Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
The role of L-type calcium channels in the development and expression of behavioral sensitization to ethanol. Neurosci Lett 2013; 553:196-200. [PMID: 23994059 DOI: 10.1016/j.neulet.2013.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 11/21/2022]
Abstract
Behavioral sensitization is thought to play a significant role in drug addiction. L-type calcium channels have been implicated in sensitization to stimulant and opiate drugs but it is unclear if these channels also contribute to sensitization to ethanol. The effects of three L-type calcium channel blockers, nifedipine (1-7.5 mg/kg), diltiazem (12.5-50 mg/kg), and verapamil (12.5 and 25 mg/kg), on sensitization to ethanol (2 g/kg) were examined in DBA/2J mice. All three blockers reduced but did not prevent expression of sensitization. Only nifedipine blocked acquisition of sensitization. Nifedipine and verapamil decreased blood ethanol levels. The current findings suggest L-type calcium channels do not play a substantial role in sensitization to ethanol and that the neural mechanisms underlying sensitization to ethanol are distinct from those mediating sensitization to stimulants and opiates.
Collapse
|
3
|
Tarragon E, Baliño P, Aragon CMG. Dantrolene blockade of ryanodine receptor impairs ethanol-induced behavioral stimulation, ethanol intake and loss of righting reflex. Behav Brain Res 2012; 233:554-62. [PMID: 22677274 DOI: 10.1016/j.bbr.2012.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/22/2012] [Accepted: 05/26/2012] [Indexed: 12/21/2022]
Abstract
Calcium has been characterized as one of the most ubiquitous, universal and versatile intracellular signals. Among other substances with the ability to alter intracellular calcium levels, ethanol has been described as particularly relevant because of its social and economic impact. Ethanol effects on calcium distribution and flux in vitro have been widely studied, showing that acute ethanol administration can modulate intracellular calcium concentrations in a dose dependent manner. Intracellular calcium released from the endoplasmic reticulum plays a determinant role in several cellular processes. In this study, we aim to assess the effect of dantrolene, a ryanodine receptor antagonist, on three different ethanol-elicited behaviors: locomotor activity, loss of righting reflex and ethanol intake. Mice were challenged with an injection of dantrolene (0-5 mg/kg, i.p.) 30 min before ethanol (0-4 g/kg, i.p.) administration. Animals were immediately placed in an open field cylinder to monitor distance travelled horizontally or in a V-shaped trough to measure righting reflex recovery time. For ethanol intake, dantrolene (0-5mg/kg, i.p.) was administered 30 min before ethanol (20%, v/v) exposure, following a drinking in the dark paradigm. Our results showed that dantrolene selectively reduces ethanol-induced stimulation, loss of righting reflex, and ethanol intake in a dose dependent manner. Together, these data suggest that intracellular calcium released from the endoplasmic reticulum may play a critical role in behavioral effects caused by ethanol, and point to a calcium-dependent pathway as a possible cellular mechanism of action for ethanol.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Area de Psicobiologia, Universitat Jaume I, 12071 Castellón, Spain
| | | | | |
Collapse
|
4
|
Baliño P, Pastor R, Aragon CMG. Participation of L-type calcium channels in ethanol-induced behavioral stimulation and motor incoordination: effects of diltiazem and verapamil. Behav Brain Res 2010; 209:196-204. [PMID: 20122967 DOI: 10.1016/j.bbr.2010.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/19/2010] [Accepted: 01/24/2010] [Indexed: 10/19/2022]
Abstract
Calcium flux through voltage gate calcium channels (VGCC) is involved in many neuronal processes such as membrane depolarization, gene expression, hormone secretion, and neurotransmitter release. Several studies have shown that either acute or chronic exposure to ethanol modifies calcium influx through high voltage activated channels. Of special relevance is the L-type VGCC. Pharmacological manipulation of L-type calcium channels affects ethanol intake, ethanol discrimination and manifestations of withdrawal syndrome. The present study investigates the role of L-type channels on the psychomotor effects (stimulation and sedation/ataxia) of ethanol by testing the effects of different L-type calcium channel blockers (CCB) on such behaviors. Mice were pretreated intraperitoneally with the CCB, diltiazem (0-40 mg/kg) or verapamil (0-30 mg/kg) 30 min before ethanol (0-3.5 g/kg). Locomotion was measured in an open field chamber for 20 min immediately after ethanol. The two CCB tested prevented locomotor stimulation, but not locomotor suppression produced by ethanol. Doses of the two CCB which reduced ethanol stimulation, did not alter spontaneous locomotion. The ataxic effects of ethanol (1.25 g/kg), measured with an accelerating rotarod task, were not affected by diltiazem (20mg/kg) or verapamil (15 mg/kg). In addition, our results indicated that ethanol is more sensitive to the antagonism of L-type calcium channels than other drugs with stimulant properties; doses of the two CCB that reduced ethanol stimulation did not reduce the psychomotor effects of amphetamine, caffeine or cocaine. In conclusion, these data provide further evidence of the important involvement of L-type calcium channels in the behavioral effects produced by ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Area de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | | | | |
Collapse
|
5
|
Verleye M, Heulard I, Gillardin JM. The anxiolytic etifoxine protects against convulsant and anxiogenic aspects of the alcohol withdrawal syndrome in mice. Alcohol 2009; 43:197-206. [PMID: 19393860 DOI: 10.1016/j.alcohol.2009.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 10/20/2022]
Abstract
Change in the function of gamma-aminobutyric acid(A) (GABA(A)) receptors attributable to alterations in receptor subunit composition is one of main molecular mechanisms with those affecting the glutamatergic system which accompany prolonged alcohol (ethanol) intake. These changes explain in part the central nervous system hyperexcitability consequently to ethanol administration cessation. Hyperexcitability associated with ethanol withdrawal is expressed by physical signs, such as tremors, convulsions, and heightened anxiety in animal models as well as in humans. The present work investigated the effects of anxiolytic compound etifoxine on ethanol-withdrawal paradigms in a mouse model. The benzodiazepine diazepam was chosen as reference compound. Ethanol was given to NMRI mice by a liquid diet at 3% for 8 days, then at 4% for 7 days. Under these conditions, ethanol blood level ranged between 0.5 and 2 g/L for a daily ethanol intake varying from 24 to 30 g/kg. These parameters permitted the emergence of ethanol-withdrawal symptoms once ethanol administration was terminated. Etifoxine (12.5-25 mg/kg) and diazepam (1-4 mg/kg) injected intraperitoneally 3h 30 min after ethanol removal, decreased the severity in handling-induced tremors and convulsions in the period of 4-6h after withdrawal from chronic ethanol treatment. In addition when administered at 30 and 15 min, respectively, before the light and dark box test, etifoxine (50mg/kg) and diazepam (1mg/kg) inhibited enhanced aversive response 8h after ethanol withdrawal. Etifoxine at 25 and 50 mg/kg doses was without effects on spontaneous locomotor activity and did not exhibit ataxic effects on the rota rod in animals not treated with ethanol. These findings demonstrate that the GABAergic compound etifoxine selectively reduces the physical signs and anxiety-like behavior associated with ethanol withdrawal in a mouse model and may hold promise in the treatment of ethanol-withdrawal syndrome in humans.
Collapse
|
6
|
Katsura M, Shibasaki M, Hayashida S, Torigoe F, Tsujimura A, Ohkuma S. Increase in Expression of α1 and α2/δ1 Subunits of L-Type High Voltage-Gated Calcium Channels After Sustained Ethanol Exposure in Cerebral Cortical Neurons. J Pharmacol Sci 2006; 102:221-30. [PMID: 17031067 DOI: 10.1254/jphs.fp0060781] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previous reports revealed up-regulation of L-type high voltage-gated calcium channels (HVCCs) in mouse brains with ethanol physical dependence. We investigated mechanisms of enhancement of L-type HVCC function using mouse cerebrocortical neurons exposed to 50 mM ethanol for 3 days and the brains of mouse physically dependent on ethanol. Ethanol facilitated 30 mM KCl-stimulated (45)Ca(2+) influx in dose- and duration-dependent manners, which was abolished by nifedipine, an inhibitor specific to L-type HVCCs, but not by inhibitors for other types of HVCCs. Increase in [(3)H]PN200-110 binding to the particulate fractions from the ethanol-treated neurons was due to increased B(max) value with no changes in K(d) value. Western blot analysis showed the increased expression of alpha1C, alpha1D, and alpha2/delta1 subunits with decreased beta4 subunit expression and no changes in expressions of alpha1A, alpha1B, alpha1F, and alpha2 subunits. A similar pattern of the changes in the expression of these subunits of L-type HVCCs were observed in the cerebral cortex from mouse with ethanol physical dependence. These results indicate that sustained ethanol exposure to the neurons induces up-regulation of L-type HVCCs, which is due to increased expressions of alpha1C, alpha1D, and alpha2/delta1 subunits, and produces no alterations in P/Q- and N-type HVCC functions.
Collapse
Affiliation(s)
- Masashi Katsura
- Department of Pharmacology, Kawasaki Medical University, Japan
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Watson WP, Little HJ. Selectivity of the protective effects of dihydropyridine calcium channel antagonists against the ethanol withdrawal syndrome. Brain Res 2002; 930:111-22. [PMID: 11879801 DOI: 10.1016/s0006-8993(02)02236-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four dihydropyridine calcium channel antagonists were compared for their ability to protect against the hyperexcitability produced in mice by withdrawal from chronic ethanol treatment and to protect against seizures due to bicuculline or pentylenetetrazol. Comparison was also made of their effects on locomotor activity, body temperature and motor co-ordination, and with the corresponding effects of the benzodiazepine, diazepam. Nitrendipine, nimodipine, nicardipine (at 50 and 10 mg/kg) and isradipine (at 10 and 4 mg/kg) decreased the withdrawal hyperexcitability, but showed no anticonvulsant action against either bicuculline or pentylenetetrazol. Diazepam (1.5 and 4 mg/kg) both protected against the withdrawal signs and decreased seizure incidence after bicuculline and pentylenetetrazol, although the latter effects were of shorter duration than those on the withdrawal signs. The four dihydropyridines decreased spontaneous locomotor activity, an effect which lasted up to 6 h. Only isradipine and diazepam had any ataxic actions at the doses tested. All the dihydropyridines had hypothermic actions, considerably shorter in duration than effects on withdrawal hyperexcitability, with little evidence of dose dependence, except for nicardipine, which had a larger, dose-related, hypothermic action. Of the four compounds, isradipine was more potent in terms of dose, but not any more selective for effectiveness against the withdrawal signs, than the other three dihydropyridines, and nicardipine was slightly less effective in protecting against the withdrawal signs. The results indicate that the anticonvulsant effects of the dihydropyridines were selective for ethanol withdrawal hyperexcitability, whereas diazepam showed no such selectivity.
Collapse
Affiliation(s)
- W P Watson
- Drug Dependence Unit, Psychology Department, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK
| | | |
Collapse
|
9
|
Gatch MB, Wallis CJ, Lal H. Effects of calcium channel blockers on pentylenetetrazol drug discrimination in rats. Alcohol 2001; 23:141-7. [PMID: 11435024 DOI: 10.1016/s0741-8329(01)00123-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of the dihydropyridine L-type calcium channel blockers nitrendipine and nimodipine on the pentylenetetrazol (PTZ) drug discrimination, an operant model of anxiety, were investigated. Male Long-Evans rats were trained to discriminate PTZ (16 mg/kg, i.p.) from saline. Both nitrendipine (5.0-25 mg/kg, i.p.) and nimodipine (5.0-25 mg/kg, i.p.) partially substituted for the PTZ discriminative stimulus. However, pretreatment with nitrendipine (25 mg/kg, i.p.) or nimodipine (25 mg/kg, i.p.) produced no change in the PTZ dose-effect function. Rats were given a nutritionally balanced liquid diet containing 6.5% ethanol for 10 days. Rats selected the PTZ drug lever during withdrawal. Subchronic coadministration of nitrendipine (1.25-5.0 mg/kg, i.p., b.i.d.) with ethanol failed to dose-dependently reduce PTZ-lever responding, but it did reverse withdrawal signs. Acute administration of nitrendipine (5, 10, and 20 mg/kg, i.p.) produced marked suppression of lever responding, but it failed to significantly reduce levels of PTZ-lever responding. Although calcium channel blockers reduce signs of ethanol withdrawal, they also markedly reduce rates of behavior and produce no clear effects on anxiety-like behaviors induced by ethanol withdrawal.
Collapse
Affiliation(s)
- M B Gatch
- Department of Pharmacology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
10
|
Abstract
1. Pharmacological treatments are effective as part of a treatment plan that includes substantial education, psychological therapy and social support. This paper reviews recent literature on animal models of and treatment for alcohol abuse under seven categories: agents to block craving or reduce alcohol intake, agents to induce aversion to alcohol, agents to treat acute alcohol withdrawal, agents to treat protracted alcohol withdrawal, agents to diminish drinking by treating associated psychiatric pathology, agents to decrease drinking by treating associated drug abuse, and agents to induce sobriety in intoxicated individuals. 2. The benzodiazepines provide safe and effective treatment for detoxification, although current research focuses on finding drugs with a smaller likelihood of dependence. As yet, there are no drugs that effectively reverse the intoxicating effects of alcohol. 3. Currently, only two major groups of drugs that are relatively safe have shown any effect at reducing alcohol consumption: aversives such as disulfiram, and opioid antagonists such as naltrexone. 4. Finally, it is important to customize therapy for each patient rather than putting everyone through a standard treatment plan, especially in regards to the use of antidepressant or antipsychotic medications. Tailoring the program to the patient's needs dramatically improves the outcome of therapy and reduces the risk of adverse effects.
Collapse
Affiliation(s)
- M B Gatch
- Department of Pharmacology, University of North Texas Health Science Center, Fort Worth, USA
| | | |
Collapse
|
11
|
Watson WP, Robinson E, Little HJ. The novel anticonvulsant, gabapentin, protects against both convulsant and anxiogenic aspects of the ethanol withdrawal syndrome. Neuropharmacology 1997; 36:1369-75. [PMID: 9423924 DOI: 10.1016/s0028-3908(97)00118-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of the anticonvulsant, gabapentin, were investigated, in mice, on the withdrawal convulsive behaviour and anxiety-related behaviour that are produced by cessation of prolonged intake of ethanol. When given at 50 or 100 mg/kg, this compound decreased the rise in handling-induced hyperexcitability which occurs during the withdrawal period; the effects were most pronounced for the first 4 hr after administration. Gabapentin also decreased the convulsive response to an audiogenic stimulus during the withdrawal period. The elevated plus-maze, with both traditional and ethological indices of activity was used as a test of anxiety-related behaviour after cessation of chronic ethanol treatment. Gabapentin, at 50 and 100 mg/kg, was found to decrease some, although not all, of the signs of withdrawal-induced anxiety. At doses up to and including 200 mg/kg, gabapentin had no effect on motor co-ordination or spontaneous locomotor activity in control animals. The results demonstrated that gabapentin has a selective action in decreasing both convulsive and anxiety-related aspects of withdrawal behaviour after chronic ethanol treatment. It is possible that further studies with this compound may shed further light on the mechanisms involved in the withdrawal syndrome.
Collapse
Affiliation(s)
- W P Watson
- Psychology Department, Science Laboratories, Durham, UK
| | | | | |
Collapse
|
12
|
Tokuyama S, Ho IK. Effects of diltiazem, a Ca2+ channel blocker, on naloxone-precipitated changes in dopamine and its metabolites in the brains of opioid-dependent rats. Psychopharmacology (Berl) 1996; 125:135-40. [PMID: 8783387 DOI: 10.1007/bf02249412] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of diltiazem, an L-type Ca2+ channel blocker, on naloxone (an opioid receptor antagonist)-precipitated withdrawal signs and changes in extracellular levels of dopamine (DA) and its metabolites in various brain regions of morphine (a mu-opioid receptor agonist) or butorphanol (a mu/delta/kappa mixed opioid receptor agonist) dependent rats were investigated using high performance liquid chromatography fitted with an electrochemical detector (HPLC-ED). Rats were rendered opioid-dependent by continuous intracerebroventricular (i.c.v.) infusion with morphine (26 nmol/microliters per h) or butorphanol (26 nmol/microliters per h) for 3 days. The expression of physical dependence produced by these opioids, as evaluated by naloxone (5 mg/kg. i.p.)-precipitated withdrawal signs, was reduced by concomitant infusion of diltiazem (10 and 100 nmol/microliters per h). Under the same condition, naloxone decreased the levels of: DA in the cortex, striatum, and midbrain; 3,4-dihydroxyphenylacetic acid (DOPAC) in the cortex, striatum, limbic areas, and midbrain: and homovanilic acid (HVA) in the striatum, limbic areas, and midbrain regions. In animals rendered dependent on butorphanol, the results obtained were similar to those of morphine-dependent rats except for the changes in DOPAC levels. Furthermore, concomitant infusion of diltiazem and opioids blocked the decreases in levels of DA, DOPAC, and HVA in a dose-dependent manner. These results suggest that the augmentation of intracellular Ca2+ mediated through L-type Ca2+ channels during continuous opioid infusion results in a decrease in extracellular levels of DA and its metabolites in some specific regions, which are intimately involved in the expression of withdrawal syndrome precipitated by naloxone.
Collapse
Affiliation(s)
- S Tokuyama
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | |
Collapse
|
13
|
Tokuyama S, Feng Y, Wakabayashi H, Ho IK. Ca2+ channel blocker, diltiazem, prevents physical dependence and the enhancement of protein kinase C activity by opioid infusion in rats. Eur J Pharmacol 1995; 279:93-8. [PMID: 7556388 DOI: 10.1016/0014-2999(95)00140-g] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of an L-type Ca2+ channel blocker, diltiazem [(2S-cis)-3-(acetyloxy)-5-[2-(dimethylamino)-ethyl]-2,3-dihydro-2- (4- methoxyphenyl)-1,5-benzothiazepin-4(5H)-one], on the behavioral signs of naloxone (opioid receptor antagonist)-precipitated withdrawal syndrome and the enhancement of protein kinase C activity in the pons/medulla regions of rats rendered dependent on morphine (mu-opioid receptor agonist) or butorphanol (mu/delta/kappa mixed opioid receptor agonist) was investigated. The expression of physical dependence produced by continuous intracerebroventricular (i.c.v.) infusion of morphine (26 nmol/microliters per h) or butorphanol (26 nmol/microliters per h) for 3 days, as evaluated by naloxone (5 mg/kg, i.p.)-precipitated withdrawal signs, was dose dependently attenuated by concomitant infusion of diltiazem (10 and 100 nmol/microliters per h). Furthermore, diltiazem (100 nmol/microliters per h) completely inhibited the enhancement of cytosolic protein kinase C activity in the pons/medulla regions in rats rendered dependent by continuous infusion with morphine or butorphanol. These results suggest that the augmentation of intracellular Ca2+ concentration mediated through L-type Ca2+ channels during continuous opioid infusion leads to the enhancement of cytosolic protein kinase C activity in the pons/medulla region which is intimately involved in the development and/or expression of physical dependence on opioids.
Collapse
Affiliation(s)
- S Tokuyama
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | |
Collapse
|