1
|
Cavada BS, Silva MTL, Osterne VJS, Pinto-Junior VR, Lossio CF, Madeira JC, Pereira MG, Leal RB, Ferreira WP, Nascimento KS, Assreuy AMS. Exploring the carbohydrate-binding ability of Canavalia bonariensis lectin in inflammation models. J Mol Recognit 2020; 33:e2870. [PMID: 32648306 DOI: 10.1002/jmr.2870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
Lectins are a group of proteins of non-immune origin recognized for their ability to bind reversibly to carbohydrates. Researchers have been intrigued by oligosaccharides and glycoconjugates for their involvement as mediators of complex cellular events and then many biotechnological applications of lectins are based on glycocode decoding and their activities. Here, we report a structural and biological study of a ConA-like mannose/glucose-specific lectin from Canavalia bonariensis seeds, CaBo. More specifically, we evaluate the binding of CaBo with α-methyl-D-mannoside (MMA) and mannose-1,3-α-D-mannose (M13) and the resultant in vivo effects on a rat model of acute inflammation. A virtual screening was also carried out to cover a larger number of possible bindings of CaBo. In silico analysis demonstrated the stability of CaBo interaction with mannose-type ligands, and the lectin was able to induce acute inflammation in rats with the participation of the carbohydrate recognition domain (CRD) and histamine release. These results confirm the ability of CaBo to interact with hybrid and high-mannose N-glycans, supporting the hypothesis that CaBo's biological activity occurs primarily through its interaction with cell surface glycosylated receptors.
Collapse
Affiliation(s)
- Benildo S Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Mayara T L Silva
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vinicius J S Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Claudia F Lossio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Juliana C Madeira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Maria G Pereira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Rodrigo B Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Kyria S Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ana M S Assreuy
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| |
Collapse
|
2
|
Cavada BS, Osterne VJS, Pinto-Junior VR, Nascimento KS. ConBr, the Lectin from Canavalia brasiliensis Mart. Seeds: Forty Years of Research. Curr Protein Pept Sci 2019; 20:600-613. [DOI: 10.2174/1389203720666190104123210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022]
Abstract
Lectins are defined as proteins or glycoproteins capable of specific and reversible binding to
carbohydrates. Inside this group of proteins, the most well-studied lectins belong to the Leguminosae
family, and inside this family, the Diocleinae subtribe includes the most characterized lectin Concanavalin
A (ConA), as well as ConBr, the lectin from Canavalia brasiliensis, the subject of this review.
Since 1979, several studies have been published in the literature regarding this lectin, from its isolation
and characterization to its several biological activities. This year, 2019, will mark 40 years since researchers
have begun to study ConBr and 100 years since the discovery of ConA, making 2019 a momentous
year for lectinology. Owing to the abundance of studies involving ConBr, this review will
focus on ConBr’s purification, physicochemical properties, functional and structural analyses, biological
activities and biotechnological applications. This will give researchers a broad glimpse into the
potential of this lectin, as well as it characteristics, as we look ahead to its expanding applications in
glycomics and biotechnology.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| | | | - Vanir Reis Pinto-Junior
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| | - Kyria Santiago Nascimento
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Ceara, Brazil
| |
Collapse
|
3
|
Teixeira CS, Assreuy AMS, da Silva Osterne VJ, Amorim RMF, Brizeno LAC, Debray H, Nagano CS, Delatorre P, Sampaio AH, Rocha BAM, Cavada BS. Mannose-specific legume lectin from the seeds of Dolichos lablab (FRIL) stimulates inflammatory and hypernociceptive processes in mice. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Purification, partial characterization and immobilization of a mannose-specific lectin from seeds of Dioclea lasiophylla mart. Molecules 2013; 18:10857-69. [PMID: 24008245 PMCID: PMC6270569 DOI: 10.3390/molecules180910857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022] Open
Abstract
Lectin from the seeds of Dioclea lasiophylla (DlyL) was purified in a single step by affinity chromatography on a Sephadex® G-50 column. DlyL strongly agglutinated rabbit erythrocytes and was inhibited by monosaccharides (D-mannose and α-methyl-d-mannoside) and glycoproteins (ovalbumin and fetuin). Similar to other Diocleinae lectins, DlyL has three chains, α, β and γ, with mass of 25,569 ± 2, 12,998 ± 1 and 12,588 ± 1 Da, respectively, and has no disulfide bonds. The hemagglutinating activity of DlyL was optimal in pH 8.0, stable at a temperature of 70 °C and decreased in EDTA solution, indicating that lectin activity is dependent on divalent metals. DlyL exhibited low toxicity on Artemia sp. nauplii, but this effect was dependent on the concentration of lectin in solution. DlyL immobilized on cyanogen bromide-activated Sepharose® 4B bound 0.917 mg of ovalbumin per cycle, showing the ability to become a tool for glycoproteomics studies.
Collapse
|
5
|
Correia JLA, do Nascimento ASF, Cajazeiras JB, Gondim ACS, Pereira RI, de Sousa BL, da Silva ALC, Garcia W, Teixeira EH, do Nascimento KS, da Rocha BAM, Nagano CS, Sampaio AH, Cavada BS. Molecular characterization and tandem mass spectrometry of the lectin extracted from the seeds of Dioclea sclerocarpa Ducke. Molecules 2011; 16:9077-89. [PMID: 22037666 PMCID: PMC6264274 DOI: 10.3390/molecules16119077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/04/2022] Open
Abstract
Lectin from the seeds of Dioclea sclerocarpa (DSL) was purified in a single step by affinity chromatography on a Sephadex G-50 column. The primary sequence, as determined by tandem mass spectrometry, revealed a protein with 237 amino acids and 81% of identity with ConA. DSL has a molecular mass of 25,606 Da. The β and γ chains weigh 12,873 Da and 12,752 Da, respectively. DSL hemagglutinated rabbit erythrocytes (both native and treated with proteolytic enzymes), showing stability even after one hour of exposure to a specific pH range. The hemagglutinating activity of DSL was optimal between pH 6.0 and 8.0, but was inhibited after incubation with D-galactose and D-glucose. The pure protein possesses a molecular mass of 25 kDa by SDS-PAGE and 25,606 Da by mass spectrometry. The secondary structure content was estimated using the software SELCON3. The results indicate that b-sheet secondary structures are predominant in DSL (approximately 42.3% antiparallel b-sheet and 6.7% parallel b-sheet). In addition to the b-sheet, the predicted secondary structure of DSL features 4.1% a-helices, 15.8% turns and 31.3% other contributions. Upon thermal denaturation, evaluated by measuring changes in ellipticity at 218 nm induced by a temperature increase from 20 °C to 98 °C, DSL displayed cooperative sigmoidal behavior with transition midpoint at 84 °C and permitted the observation of two-state model (native and denatured).
Collapse
Affiliation(s)
- Jorge Luis Almeida Correia
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Antônia Sâmia Fernandes do Nascimento
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - João Batista Cajazeiras
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Ana Cláudia Silva Gondim
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Ronniery Ilario Pereira
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Bruno Lopes de Sousa
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - André Luiz Coelho da Silva
- Laboratório de Biotecnologia Molecular (LabBMol), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1090, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre-SP, 09210-170, Brazil
| | - Edson Holanda Teixeira
- Laboratório de Imunologia e Bioquímica de Sobral (LIBS), Faculdade de Medicina, Universidade Federal do Ceará, Sobral-CE, 62042-280, Brazil
| | - Kyria Santiago do Nascimento
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Bruno Anderson Matias da Rocha
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Espectrometria de Massa Aplicado a Proteínas (LEMAP/Biomol-Lab), Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 825, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Espectrometria de Massa Aplicado a Proteínas (LEMAP/Biomol-Lab), Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 825, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
| | - Benildo Sousa Cavada
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE, 60440-970, Brazil
- Author to whom correspondence should be addressed; ; Tel./Fax: +55-85-3366-9818
| |
Collapse
|
6
|
ConBr, a Lectin from Canavalia brasiliensis Seeds, Protects Against Quinolinic Acid-Induced Seizures in Mice. Neurochem Res 2011; 37:288-97. [DOI: 10.1007/s11064-011-0608-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
7
|
Crystal structure of a pro-inflammatory lectin from the seeds of Dioclea wilsonii Standl. Biochimie 2011; 94:525-32. [PMID: 21924319 DOI: 10.1016/j.biochi.2011.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/01/2011] [Indexed: 01/06/2023]
Abstract
The crystal structure and pro-inflammatory property of a lectin from the seeds of Dioclea wilsonii (DwL) were analyzed to gain a better understanding of structure/function relationships of Diocleinae lectins. Following crystallization and structural determination by standard molecular replacement techniques, DwL was found to be a tetramer based on PISA analysis, and composed by two metal-binding sites per monomer and loops which are involved in molecular oligomerization. DwL presents 96% and 99% identity with two other previously described lectins of Dioclea rostrata (DRL) and Dioclea grandiflora (DGL). DwL differs structurally from DVL and DRL with regard to the conformation of the carbohydrate recognition domain and related biological activities. The structural analysis of DwL in comparison to other Diocleinae lectins can be related to the differences in the dose-dependent pro-inflammatory effect elicited in Wistar rats, probably via specific interactions with mast cells complex carbohydrate, resulting in significant paw edema. DwL appears to be involved in positive modulation of mast cell degranulation via recognition of surface carbohydrates. Since this recognition is dependent on site volume and CRD configuration, edematogenesis mediated by resident cells varies in potency and efficacy among different Diocleinae lectins.
Collapse
|
8
|
de Oliveira DMC, Luchini AC, Seito LN, Gomes JC, Crespo-López ME, Di Stasi LC. Cordia verbenacea and secretion of mast cells in different animal species. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:463-468. [PMID: 21453767 DOI: 10.1016/j.jep.2011.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Different plant species from Cordia genera are used in folk medicine as anti-inflammatory medication throughout the tropical and subtropical regions of the world. In Brazil, Cordia verbenacea is a medicinal plant known as "erva-baleeira". The alcoholic extracts, decoctions and infusions with leaves of C. verbenacea are used in Brazilian traditional medicine for treatment of cough, pneumonia, parasitic diseases and, especially, the inflammatory processes. Anti-inflammatory activity was already demonstrated; however, molecular mechanisms of action are not completely understood. Considering the importance of histamine in early events of inflammation and in allergic diseases, we evaluated the effect of ethanol extract of leaves of C. verbenacea on histamine release (in vitro and in vivo studies) from different types of mast cells induced by chemical agents using several species of rodents. MATERIALS AND METHODS The extraction and quantification of histamine were performed by using an automatic fluorometric continuous flow system. RESULTS The extract of C. verbenacea (30 μg/ml) reduced the in vitro secretion of histamine from rat mast cells induced by ionophore A23187, concanavalin A and compound 48/80, respectively, to 22.1 ± 2.2%, 24.3 ± 2.5% and 21.4 ± 2.1%. At the same concentration, the extract also inhibited the secretion of histamine from mast cells of guinea pig induced by ionophore A23187 to 33.3 ± 2.2%, and mast cells of hamster induced by ionophore A23187 and concanavalin A to 15.8 ± 2.5% and 10.8 ± 2.6%, respectively. The oral treatment with the extract (300 mg/kg) also inhibited the secretion of histamine induced by A23187 about to 36.3 ± 3.2% in rats. CONCLUSIONS C. verbenacea inhibits the in vitro secretion of histamine from mast cells of different animal species, as well as the secretion of mast cells from animals treated with the extract, which gives not only the proven anti-inflammatory effect of the plant, but also anti-allergic effect, opening new possibilities for future anti-allergic herbal medicine.
Collapse
Affiliation(s)
- Déborah Mara Costa de Oliveira
- Laboratório de Secreção de Mastócitos, Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
9
|
Bezerra GA, Oliveira TM, Moreno FBMB, de Souza EP, da Rocha BAM, Benevides RG, Delatorre P, de Azevedo WF, Cavada BS. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: New insights into the understanding of the structure–biological activity relationship in legume lectins. J Struct Biol 2007; 160:168-76. [PMID: 17881248 DOI: 10.1016/j.jsb.2007.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/21/2007] [Accepted: 07/30/2007] [Indexed: 11/15/2022]
Abstract
Plant lectins, especially those purified from species of the Leguminosae family, represent the best studied group of carbohydrate-binding proteins. The legume lectins from Diocleinae subtribe are highly similar proteins that present significant differences in the potency/efficacy of their biological activities. The structural studies of the interactions between lectins and sugars may clarify the origin of the distinct biological activities observed in this high similar class of proteins. In this way, this work presents a crystallographic study of the ConM and CGL (agglutinins from Canavalia maritima and Canavalia gladiata, respectively) in the following complexes: ConM/CGL:Man(alpha1-2)Man(alpha1-O)Me, ConM/CGL:Man(alpha1-3)Man(alpha1-O)Me and ConM/CGL:Man(alpha1-4)Man(alpha1-O)Me, which crystallized in different conditions and space group from the native proteins. The structures were solved by molecular replacement, presenting satisfactory values for R(factor) and R(free). Comparisons between ConM, CGL and ConA (Canavalia ensiformis lectin) binding mode with the dimannosides in subject, presented different interactions patterns, which may account for a structural explanation of the distincts biological properties observed in the lectins of Diocleinae subtribe.
Collapse
Affiliation(s)
- Gustavo Arruda Bezerra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Biomol-LAB, Campus do Pici S/N, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Watzl B, Neudecker C, Hänsch GM, Rechkemmer G, Pool-Zobel BL. Dietary wheat germ agglutinin modulates ovalbumin-induced immune responses in Brown Norway rats. Br J Nutr 2007; 85:483-90. [PMID: 11348563 DOI: 10.1017/s0007114501000721] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The trend towards an increased consumption of minimally processed plant food results in a higher intake of non-nutritive compounds such as lectins. Lectins are typically globular proteins that are resistant to digestion in the gastrointestinal tract. They affect the integrity of the intestinal epithelium and the absorption of dietary antigens, and induce the release of allergic mediators from mast cellsin vitro. Based on this information we have studied whether dietary wheat germ agglutinin (WGA) could be involved in triggering food allergies. Brown Norway rats were immunized intraperitoneally using ovalbumin (OVA; 10 μg/rat) and 10 d later treated for five consecutive days with WGA (10 mg/rat per d) administered intragastrically. Rats were then orally challenged with OVA (100 μg/rat) 1 h after the last WGA application, and blood was collected 4 h later. Immunological responses (anti-OVA immunoglobulins E and G, rat mast cell protease II, interferon-γ and lymphocyte proliferation) were measured and lymphocyte subpopulations were determined. In immunized rats WGA treatment resulted in increased serum rat mast cell protease II concentrations (pre-challenge 0.26 (SE 0.08) ΜG/ML, POST-CHALLENGE 0.49 (se 0.09) μg/ml; P<0.01) 4 h after the OVA challenge. After 5 d serum concentrations of anti-OVA immunoglobulin E were significantly increased only in the immunized controls (absorbance at 405 nm on days 14 and 19 was 0.09 (se 0.008) and 0.24 (se 0.046) respectively; P=0.02), while in WGA-treated rats no significant increase was seen (0.08 (se 0.004) and 0.15 (se 0.037 respectively; P=0.14). CD4+: CD8+T lymphocytes in the spleen was significantly increased at this time (OVA 1.1 (sd 0.2), OVA+WGA 1.4 (sd 0.1), P<0.05). The treatment did not impair the proliferation and interferon-γ production of mesenteric lymphocytes. In conclusion, these data suggest that high dietary intake of lectins such as WGA may affect the allergic response towards oral antigens in the gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- B Watzl
- Institute of Nutritional Physiology, Institute of Hygiene and Toxicology, Federal Research Centre for Nutrition, Haid-und-Neu-Str, 9, 76131 Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
11
|
Delatorre P, Rocha BAM, Gadelha CAA, Santi-Gadelha T, Cajazeiras JB, Souza EP, Nascimento KS, Freire VN, Sampaio AH, Azevedo WF, Cavada BS. Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. J Struct Biol 2006; 154:280-6. [PMID: 16677825 DOI: 10.1016/j.jsb.2006.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 03/04/2006] [Accepted: 03/23/2006] [Indexed: 11/26/2022]
Abstract
The crystal structure of Canavalia maritima lectin (ConM) complexed with trehalose and maltose revealed relevant point mutations in ConA-like lectins. ConM with the disaccharides and other ConA-like lectins complexed with carbohydrates demonstrated significant differences in the position of H-bonds. The main difference in the ConM structure is the replacement of Pro202 by Ser202, a residue that promotes the approximation of Tyr12 to the carbohydrate-binding site. The O-6' of the second glucose ring in maltose interacts with Tyr12, while in trehalose the interaction is established by the O-2' and Tyr12, explaining the higher affinity of ConM for disaccharides compared to monosaccharides.
Collapse
Affiliation(s)
- Plínio Delatorre
- Departamento de Bioquímica e Biologia Molecular--Universidade Federal do Ceará, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LAG, Nascimento KS, Sampaio AH, Moreno FBMB, Rustiguel JKR, Canduri F, de Azevedo WF, Debray H. Purification, partial characterization and preliminary X-ray diffraction analysis of a mannose-specific lectin from Cymbosema roseum seeds. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:235-7. [PMID: 16511310 PMCID: PMC2197170 DOI: 10.1107/s174430910600371x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/30/2006] [Indexed: 11/11/2022]
Abstract
A lectin from Cymbosema roseum seeds (CRL) was purified, characterized and crystallized. The best crystals grew in a month and were obtained by the vapour-diffusion method using a precipitant solution consisting of 0.1 M Tris-HCl pH 7.8, 8%(w/v) PEG 3350 and 0.2 M proline at a constant temperature of 293 K. A data set was collected to 1.77 A resolution at a synchrotron-radiation source. CRL crystals are orthorhombic, belonging to space group P2(1)2(1)2(1). Crystallographic refinement and full amino-acid sequence determination are in progress.
Collapse
Affiliation(s)
- Benildo S. Cavada
- BioMol-Lab – Department of Biochemistry, Federal University of Ceará, Brazil
| | - Emmanuel S. Marinho
- BioMol-Lab – Department of Biochemistry, Federal University of Ceará, Brazil
| | - Emmanuel P. Souza
- BioMol-Lab – Department of Biochemistry, Federal University of Ceará, Brazil
| | - Raquel G. Benevides
- BioMol-Lab – Department of Biochemistry, Federal University of Ceará, Brazil
| | - Plínio Delatorre
- BioMol-Lab – Department of Biochemistry, Federal University of Ceará, Brazil
| | | | - Kyria S. Nascimento
- BioMol-Lab – Department of Biochemistry, Federal University of Ceará, Brazil
| | | | - Frederico B. M. B. Moreno
- Programa de Pós-Graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP, Brazil
| | - Joane K. R. Rustiguel
- Programa de Pós-Graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP, Brazil
| | - Fernanda Canduri
- Departamento de Morfofisiologia – CCBS – UFMS, Campo Grande-MS, 79070-900, Brazil
| | | | - Henri Debray
- Laboratoire de Chimie Biologique et Unité Mixte de Recherche No. 8576 du CNRS, Université des Sciences et Technologies de Lille, France
| |
Collapse
|
13
|
Gadelha CADA, Moreno FBMB, Santi-Gadelha T, Cajazeiras JB, Rocha BAMD, Assreuy AMS, Lima Mota MR, Pinto NV, Passos Meireles AV, Borges JC, Freitas BT, Canduri F, Souza EP, Delatorre P, Criddle DN, de Azevedo WF, Cavada BS. Native crystal structure of a nitric oxide-releasing lectin from the seeds of Canavalia maritima. J Struct Biol 2005; 152:185-94. [PMID: 16337811 DOI: 10.1016/j.jsb.2005.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 07/26/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
Here, we report the crystallographic study of a lectin from Canavalia maritima seeds (ConM) and its relaxant activity on vascular smooth muscle, to provide new insights into the understanding of structure/function relationships of this class of proteins. ConM was crystallized and its structure determined by standard molecular replacement techniques. The amino acid residues, previously suggested incorrectly by manual sequencing, have now been determined as I17, I53, S129, S134, G144, S164, P165, S187, V190, S169, T196, and S202. Analysis of the structure indicated a dimer in the asymmetric unit, two metal binding sites per monomer, and loops involved in the molecular oligomerization. These confer 98% similarity between ConM and other previously described lectins, derived from Canavalia ensiformis and Canavalia brasiliensis. Our functional data indicate that ConM exerts a concentration-dependent relaxant action on isolated aortic rings that probably occurs via an interaction with a specific lectin-binding site on the endothelium, resulting in a release of nitric oxide.
Collapse
|
14
|
Lopes FC, Cavada BS, Pinto VPT, Sampaio AH, Gomes JC. Differential effect of plant lectins on mast cells of different origins. Braz J Med Biol Res 2005; 38:935-41. [PMID: 15933788 DOI: 10.1590/s0100-879x2005000600016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine release induced by plant lectins was studied with emphasis on the carbohydrate specificity, external calcium requirement, metal binding sites, and mast cell heterogeneity and on the importance of antibodies bound to the mast cell membrane to the lectin effect. Peritoneal mast cells were obtained by direct lavage of the rat peritoneal cavity and guinea pig intestine and hamster cheek pouch mast cells were obtained by dispersion with collagenase type IA. Histamine release was induced with concanavalin A (Con A), lectins from Canavalia brasiliensis, mannose-specific Cymbosema roseum, Maackia amurensis, Parkia platycephala, Triticum vulgaris (WGA), and demetallized Con A and C. brasiliensis, using 1-300 microg/ml lectin concentrations applied to Wistar rat peritoneal mast cells, peaking on 26.9, 21.0, 29.1, 24.9, 17.2, 10.7, 19.9, and 41.5%, respectively. This effect was inhibited in the absence of extracellular calcium. The lectins were also active on hamster cheek pouch mast cells (except demetallized Con A) and on Rowett nude rat (animal free of immunoglobulins) peritoneal mast cells (except for mannose-specific C. roseum, P. platycephala and WGA). No effect was observed in guinea pig intestine mast cells. Glucose-saturated Con A and C. brasiliensis also released histamine from Wistar rat peritoneal mast cells. These results suggest that histamine release induced by lectins is influenced by the heterogeneity of mast cells and depends on extracellular calcium. The results also suggest that this histamine release might occur by alternative mechanisms, because the usual mechanism of lectins is related to their binding properties to metals from which depend the binding to sugars, which would be their sites to bind to immunoglobulins. In the present study, we show that the histamine release by lectins was also induced by demetallized lectins and by sugar-saturated lectins (which would avoid their binding to other sugars). Additionally, the lectins also released histamine from Rowett nude mast cells that are free of immunoglobulins.
Collapse
Affiliation(s)
- F C Lopes
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, 18618-000 Botucatu, SP, Brasil
| | | | | | | | | |
Collapse
|
15
|
de Almeida Gadelha CA, Moreno FBMB, Santi-Gadelha T, Cajazeiras JB, da Rocha BAM, Rustiguel JKR, Freitas BT, Canduri F, Delatorre P, de Azevedo WF, Cavada BS. Crystallization and preliminary X-ray diffraction analysis of a lectin from Canavalia maritima seeds. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:87-9. [PMID: 16508099 PMCID: PMC1952371 DOI: 10.1107/s1744309104029197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/10/2004] [Indexed: 11/10/2022]
Abstract
A lectin from Canavalia maritima seeds (ConM) was purified and submitted to crystallization experiments. The best crystals were obtained using the vapour-diffusion method at a constant temperature of 293 K and grew in 7 d. A complete structural data set was collected to 2.1 A resolution using a synchrotron-radiation source. The ConM crystal belongs to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 67.15, b = 70.90, c = 97.37 A. A molecular-replacement search found a solution with a correlation coefficient of 69.2% and an R factor of 42.5%. Crystallographic refinement is under way.
Collapse
Affiliation(s)
- Carlos Alberto de Almeida Gadelha
- BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970, Brazil
| | | | - Tatiane Santi-Gadelha
- BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970, Brazil
| | - João Batista Cajazeiras
- BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970, Brazil
| | - Bruno Anderson M. da Rocha
- BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970, Brazil
| | | | - Beatriz Tupinamba Freitas
- BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970, Brazil
- Grupo de Química Biológica, Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE 63195-000, Brazil
| | - Fernanda Canduri
- Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | - Plínio Delatorre
- BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970, Brazil
- Grupo de Química Biológica, Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE 63195-000, Brazil
| | - Walter Filgueira de Azevedo
- Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | - Benildo S. Cavada
- BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970, Brazil
| |
Collapse
|
16
|
Ramos MV, Cavada BS, Mazard AM, Rougé P. Interaction of Diocleinae lectins with glycoproteins based in surface plasmon resonance. Mem Inst Oswaldo Cruz 2002; 97:275-9. [PMID: 12016458 DOI: 10.1590/s0074-02762002000200025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of glucose/mannose-binding lectins in solution with immobilized glycoproteins was followed in real time using surface plasmon resonance technology. The lectins which share many biochemical and structural features could be clearly differentiated in terms of their specificity for complex glycoconjugates. The most prominent interaction of the lectins with PHA-E comparing with soybean agglutinin, both glycoproteins exhibiting high mannose oligosaccharides, suggests that the whole structure of the glycoproteins themselves, may interfere in affinity. These findings also support the hypothesis that minor amino acid replacements in the primary sequence of the lectins might be responsible for their divergence in fine specificity and biological activities. This is the first report using surface plasmon resonance technology that evidences differences of Diocleinae lectins in respect their fine glycan-specificity.
Collapse
Affiliation(s)
- Marcio V Ramos
- Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, CE, 60451-970, Brasil
| | | | | | | |
Collapse
|
17
|
Wah DA, Romero A, Gallego del Sol F, Cavada BS, Ramos MV, Grangeiro TB, Sampaio AH, Calvete JJ. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. J Mol Biol 2001; 310:885-94. [PMID: 11453695 DOI: 10.1006/jmbi.2001.4814] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diocleinae legume lectins are a group of oligomeric proteins whose subunits display a high degree of primary structure and tertiary fold conservation but exhibit considerable diversity in their oligomerisation modes. To elucidate the structural determinants underlaying Diocleinae lectin oligomerisation, we have determined the crystal structures of native and cadmium-substituted Dioclea guianensis (Dguia) seed lectin. These structures have been solved by molecular replacement using concanavalin (ConA) coordinates as the starting model, and refined against data to 2.0 A resolution. In the native (Mn/Ca-Dguia) crystal form (P4(3)2(1)2), the asymmetric unit contains two monomers arranged into a canonical legume lectin dimer, and the tetramer is formed with a symmetry-related dimer. In the Cd/Cd-substituted form (I4(1)22), the asymmetric unit is occupied by a monomer. In both crystal forms, the tetrameric association is achieved by the corresponding symmetry operators. Like other legume lectins, native D. guianensis lectin contains manganese and calcium ions bound in the vicinity of the saccharide-combining site. The architecture of these metal-binding sites (S1 and S2) changed only slightly in the cadmium/cadmium-substituted form. A highly ordered calcium (native lectin) or cadmium (Cd/Cd-substituted lectin) ion is coordinated at the interface between dimers that are not tetrameric partners in a similar manner as the previously identified Cd(2+) in site S3 of a Cd/Ca-ConA. An additional Mn(2+) coordination site (called S5), whose presence has not been reported in crystal structures of any other homologous lectin, is present in both, the Mn/Ca and the Cd/Cd-substituted D. guianensis lectin forms. On the other hand, comparison of the primary and quaternary crystal structures of seed lectins from D. guianensis and Dioclea grandiflora (1DGL) indicates that the loop comprising residues 117-123 is ordered to make interdimer contacts in the D. grandiflora lectin structure, while this loop is disordered in the D. guianensis lectin structure. A single amino acid difference at position 131 (histidine in D. grandiflora and asparagine in D. guianensis) drastically reduces interdimer contacts, accounting for the disordered loop. Further, this amino acid change yields a conformation that may explain why a pH-dependent dimer-tetramer equilibrium exists for the D. guianensis lectin but not for the D. grandiflora lectin.
Collapse
Affiliation(s)
- D A Wah
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Campos BG, Ferreira RR, Gomes JC. The potentiation of the histamine release induced by adenosine in mast cells from guinea pig lung and heart: sharp dependence on the time of preincubation. Pharmacol Res 2000; 41:291-7. [PMID: 10675280 DOI: 10.1006/phrs.1999.0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied here the effect of a wide range of adenosine concentration and time of preincubation, on the histamine release induced in the guinea pig mast cells by different stimulus. Adenosine (10(-5)-10(-3)m) potentiated the histamine release induced by antigen in the guinea pig heart (isolated and dispersed tissue) and lung mast cells but not induced by ionophore A23197. The potentiation caused by adenosine (10(-4)m) was maximum after 1-3 min of preincubation and is probably an extracellular effect since it was not avoided by dipyridamol (3x10(-7)-10(-6)m) that inhibit the uptake of adenosine. Similar potentiation was also produced by the adenosine mimetic 2-chloroadenosine (10(-5)m) and both effects were inhibited by 8-phenyltheophylline indicating an effect on the type A receptors. It is suggested that the adenosine potentiation may not be related to changes on the cyclic AMP levels. 2000 Academic Press@p$hr
Collapse
Affiliation(s)
- B G Campos
- Departamento de Farmacologia, Instituto de Biociencias, Campus da Unesp, Botucatu, Sao Paulo, 18618-000, Brazil
| | | | | |
Collapse
|
19
|
Smart JD, Nicholls TJ, Green KL, Rogers DJ, Cook JD. Lectins in drug delivery: a study of the acute local irritancy of the lectins from Solanum tuberosum and Helix pomatia. Eur J Pharm Sci 1999; 9:93-8. [PMID: 10494002 DOI: 10.1016/s0928-0987(99)00050-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lectins are proteins or glycoproteins of non-immune origin capable of binding to one or more specific sugar residues. The potential for using lectins as a means of 'anchoring' a drug delivery system to the mucosal surfaces of the eye has been investigated in previous work, with the lectins from Solanum tuberosum and Helix pomatia showing particular promise. In this study the acute local dermal irritancy of these lectins, in terms of their potential to cause inflammation and tissue necrosis, was investigated. After an initial study in terminally anaesthetised animals (to ensure no gross toxicity was evident), five male New Zealand white rabbits from the same litter were briefly anaesthetised and Evans blue injected intravenously as a marker of inflammation. Sterile lectin solutions in normal saline at a range of concentrations from 50 to 500 microg ml(-1) were prepared and 50-microl volumes injected intradermally at 18 sites across a shaved area of each rabbit's back. The rabbits were then allowed to regain consciousness. There was no evidence of tissue necrosis, oedema or Evans blue infiltration with any of the lectin solutions administered. The rabbits did not display any signs of discomfort such as scratching or continued grooming throughout the experiment. Histological examination of the injection sites revealed little sign of any inflammation, such as heterophil migration, oedema or tissue damage. It was concluded that these lectins demonstrate minimal acute irritancy, and will, therefore, be taken forward for formulation and in vivo studies.
Collapse
Affiliation(s)
- J D Smart
- Biomaterials and Drug Delivery Research Group, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| | | | | | | | | |
Collapse
|
20
|
Calvete JJ, Thole HH, Raida M, Urbanke C, Romero A, Grangeiro TB, Ramos MV, Almeida da Rocha IM, Guimarães FN, Cavada BS. Molecular characterization and crystallization of Diocleinae lectins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:367-75. [PMID: 10082964 DOI: 10.1016/s0167-4838(99)00020-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular characterization of seven Diocleinae lectins was assessed by sequence analysis, determination of molecular masses by mass spectrometry, and analytical ultracentrifugation equilibrium sedimentation. The lectins show distinct pH-dependent dimer-tetramer equilibria, which we hypothesize are due to small primary structure differences at key positions. Lectins from Dioclea guianensis, Dioclea virgata, and Cratylia floribunda seeds have been crystallized and preliminary X-ray diffraction analyses are reported.
Collapse
Affiliation(s)
- J J Calvete
- Instituto de Biomedicina, C.S.I.C., Jaume Roig 11, 46010, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|