1
|
Zhang Y, Zhang C, Yi X, Wang Q, Zhang T, Li Y. Gabapentinoids for the treatment of stroke. Neural Regen Res 2024; 19:1509-1516. [PMID: 38051893 PMCID: PMC10883501 DOI: 10.4103/1673-5374.387968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Gabapentinoid drugs (pregabalin and gabapentin) have been successfully used in the treatment of neuropathic pain and in focal seizure prevention. Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue, oxidative stress, and inflammation, which matches the mechanism of action via voltage-gated calcium channels. In this review, we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids. We systematically summarize the preclinical and clinical research on gabapentinoids in stroke, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, seizures after stroke, cortical spreading depolarization after stroke, pain after stroke, and nerve regeneration after stroke. This review also discusses the potential targets of gabapentinoids in stroke; however, the existing results are still uncertain regarding the effect of gabapentinoids on stroke and related diseases. Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke. Therefore, gabapentinoids have both opportunities and challenges in the treatment of stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Blanco-Gandía MC, Rodríguez-Arias M. Pharmacological treatments for opiate and alcohol addiction: A historical perspective of the last 50 years. Eur J Pharmacol 2018; 836:89-101. [DOI: 10.1016/j.ejphar.2018.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022]
|
3
|
Antiepileptic drugs as analgesics/adjuvants in inflammatory pain: current preclinical evidence. Pharmacol Ther 2018; 192:42-64. [PMID: 29909236 DOI: 10.1016/j.pharmthera.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory pain is the most common type of pain that is treated clinically. The use of currently available treatments (classic analgesics - NSAIDs, paracetamol and opioids) is limited by insufficient efficacy and/or side effects/tolerance development. Antiepileptic drugs (AEDs) are widely used in neuropathic pain treatment, but there is substantial preclinical evidence on their efficacy against inflammatory pain, too. In this review we focus on gabapentinoids (gabapentin and pregabalin) and dibenzazepine AEDs (carbamazepine, oxcarbazepine, and recently introduced eslicarbazepine acetate) and their potential for relieving inflammatory pain. In models of somatic, visceral and trigeminal inflammatory pain, that have a translational value for inflammatory conditions in locomotor system, viscera and head/face, AEDs have demonstrated analgesic activity. This activity was mostly consistent, dependent on the dose and largely independent on the site of inflammation and method of its induction, nociceptive stimuli, species, specific drug used, its route of administration and dosing schedule. AEDs exerted comparable efficacy with classic analgesics. Effective doses of AEDs are lower than toxic doses in animals and, when expressed as equivalent human doses, they are largely overlapping with AEDs doses already used in humans for treating epilepsy/neuropathic pain. The main mechanism of antinociceptive/antihyperalgesic action of gabapentinoids in inflammatory pain models seems to be α2δ-dependent suppression of voltage-gated calcium channels in primary sensory neurons that leads to reduced release of neurotransmitters in the spinal/medullar dorsal horn. The suppression of NMDA receptors via co-agonist binding site primarily at spinal sites, activation of various types of K+ channels at spinal and peripheral sites, and activation of noradrenergic and serotonergic descending pain modulatory pathways may also contribute. Inhibition of voltage-gated sodium channels along the pain pathway is probably the main mechanism of antinociceptive/antihyperalgesic effects of dibenzazepines. The recruitment of peripheral adrenergic and purinergic mechanisms and central GABAergic mechanisms may also contribute. When co-administered with classic/other alternative analgesics, AEDs exerted synergistic/additive interactions. Reviewed data could serve as a basis for clinical studies on the efficacy/safety of AEDs as analgesics/adjuvants in patients with inflammatory pain, and contribute to the improvement of the treatment of various inflammatory pain states.
Collapse
|
4
|
TERUNUMA M. Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:390-411. [PMID: 30541966 PMCID: PMC6374141 DOI: 10.2183/pjab.94.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.
Collapse
Affiliation(s)
- Miho TERUNUMA
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
5
|
Berlin RK, Butler PM, Perloff MD. Gabapentin Therapy in Psychiatric Disorders: A Systematic Review. Prim Care Companion CNS Disord 2015; 17:15r01821. [PMID: 26835178 DOI: 10.4088/pcc.15r01821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/12/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Gabapentin is commonly used off-label in the treatment of psychiatric disorders with success, failure, and controversy. A systematic review of the literature was performed to elucidate the evidence for clinical benefit of gabapentin in psychiatric disorders. DATA SOURCES Bibliographic reference searches for gabapentin use in psychiatric disorders were performed in PubMed and Ovid MEDLINE search engines with no language restrictions from January 1, 1983, to October 1, 2014, excluding nonhuman studies. For psychiatric references, the keywords bipolar, depression, anxiety, mood, posttraumatic stress disorder (posttraumatic stress disorder and PTSD), obsessive-compulsive disorder (obsessive-compulsive disorder and OCD), alcohol (abuse, dependence, withdraw), drug (abuse, dependence, withdraw), opioid (abuse, dependence, withdraw), cocaine (abuse, dependence, withdraw), and amphetamine (abuse, dependence, withdraw) were crossed with gabapentin OR neurontin. STUDY SELECTION AND DATA EXTRACTION The resulting 988 abstracts were read by 2 reviewers; references were excluded if gabapentin was not a study compound or psychiatric symptoms were not studied. The resulting references were subsequently read, reviewed, and analyzed; 219 pertinent to gabapentin use in psychiatric disorders were retained. Only 34 clinical trials investigating psychiatric disorders contained quality of evidence level II-2 or higher. RESULTS Gabapentin may have benefit for some anxiety disorders, although there are no studies for generalized anxiety disorder. Gabapentin has less likely benefit adjunctively for bipolar disorder. Gabapentin has clearer efficacy for alcohol craving and withdrawal symptoms and may have a role in adjunctive treatment of opioid dependence. There is no clear evidence for gabapentin therapy in depression, PTSD prevention, OCD, or other types of substance abuse. Limitations of available data include variation in dosing between studies, gabapentin as monotherapy or adjunctive treatment, and differing primary outcomes between trials. CONCLUSIONS Further research is required to better clarify the benefit of gabapentin in psychiatric disorders.
Collapse
Affiliation(s)
- Rachel K Berlin
- Department of Psychiatry, Cambridge Health Alliance, Cambridge, Massachusetts
| | - Paul M Butler
- Department of Neurology, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Michael D Perloff
- Department of Neurology, Boston University School of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
6
|
Perloff MD, Berlin RK, Gillette M, Petersile MJ, Kurowski D. Gabapentin in Headache Disorders: What Is the Evidence? PAIN MEDICINE 2015; 17:162-71. [PMID: 26398728 DOI: 10.1111/pme.12931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Gabapentin (GBP), originally an antiepileptic drug, is more commonly used in the treatment of pain, including headache disorders. Off-label GBP is used in headache disorders with some success, some failure, and much debate. Due to this ambiguity, a clinical evidence literature review was performed investigating GBP's efficacy in headache disorders. METHODS Bibliographic reference searches for GBP use in headache disorders were performed in PUBMED and OVID Medline search engines from January 1, 1983 to August 31, 2014. Based on abstracts read by two reviewers, references were excluded if: GBP was not a study compound or headache symptoms were not studied. The resulting references were then read, reviewed, and analyzed. RESULTS Fifty-six articles pertinent to GBP use in headache disorders were retained. Eight headache clinical trials were quality of evidence Class 2 or higher based on American Academy of Neurology criteria. Seven of the eight clinical trials showed statistically significant clinical benefit from GBP in various headache syndromes (though modest affects at times). One study, Mathew et al., had concerns about intention-treat analysis breaches and primary outcomes. CONCLUSION Despite the conflicting evidence surrounding select studies, a significant amount of evidence shows that GBP has benefit for a majority of primary headache syndromes, including chronic daily headaches. GBP has some efficacy in migraine headache, but not sufficient evidence to suggest primary therapy. When primary headache treatments fail, a GBP trial may be considered in the individual patient.
Collapse
|
7
|
McCarson KE, Enna SJ. GABA pharmacology: the search for analgesics. Neurochem Res 2014; 39:1948-63. [PMID: 24532294 DOI: 10.1007/s11064-014-1254-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1018, Kansas City, KS, 66160, USA
| | | |
Collapse
|
8
|
Thorpe AJ, Clair A, Hochman S, Clemens S. Possible Sites of Therapeutic Action in Restless Legs Syndrome: Focus on Dopamine and α 2δ Ligands. Eur Neurol 2011; 66:18-29. [DOI: 10.1159/000328431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/11/2011] [Indexed: 01/01/2023]
|
9
|
The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. J Neurosci 2010; 30:12856-67. [PMID: 20861389 DOI: 10.1523/jneurosci.2700-10.2010] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The α2δ subunits of voltage-gated calcium channels are important modulatory subunits that enhance calcium currents and may also have other roles in synaptogenesis. The antiepileptic and antiallodynic drug gabapentin (GBP) binds to the α2δ-1 and α2δ-2 isoforms of this protein, and its binding may disrupt the binding of an endogenous ligand, required for their correct function. We have shown previously that GBP produces a chronic inhibitory effect on calcium currents by causing a reduction in the total number of α2δ and α1 subunits at the cell surface. This action of GBP is likely to be attributable to a disruption of the trafficking of α2δ subunits, either to or from the plasma membrane. We studied the effect of GBP on the internalization of, and insertion into the plasma membrane of α2δ-2 using an α-bungarotoxin binding site-tagged α2δ-2 subunit, and a fluorescent derivative of α-bungarotoxin. We found that GBP specifically disrupts the insertion of α2δ-2 from post-Golgi compartments to the plasma membrane, and this effect was prevented by a mutation of α2δ-2 that abolishes its binding to GBP. The coexpression of the GDP-bound Rab11 S25N mutant prevented the GBP-induced decrease in α2δ-2 cell surface levels, both in cell lines and in primary neurons, and the GBP-induced reduction in calcium channel currents. In contrast, the internalization of α2δ-2 was unaffected by GBP. We conclude that GBP acts by preventing the recycling of α2δ-2 from Rab11-positive recycling endosomes to the plasma membrane.
Collapse
|
10
|
Abstract
No single analgesic drug provides the perfect therapeutic/adverse effect profile for every pain condition. In addition to convenience and possibly improved compliance, a combination of analgesic drugs offers the potential, requiring verification, of providing greater pain relief and/or reduced adverse effects than the constituent drugs when used individually. We review here analgesic combinations containing oxycodone. We found surprisingly little preclinical information about the analgesic or adverse effect profiles of the combinations (with acetaminophen, paracetamol, nonsteroidal anti-inflammatory drugs, morphine, gabapentin or pregabalin). Clinical experience and studies suggest that the combinations are safe and effective and may offer certain advantages. As with all combinations, the profile of adverse effects must also be determined in order to provide the clinician with the overall benefit/risk assessment.
Collapse
Affiliation(s)
- R B Raffa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
11
|
Froestl W. Chemistry and Pharmacology of GABAB Receptor Ligands. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:19-62. [DOI: 10.1016/s1054-3589(10)58002-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
GABAB receptor agonism as a novel therapeutic modality in the treatment of gastroesophageal reflux disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 58:287-313. [PMID: 20655487 DOI: 10.1016/s1054-3589(10)58012-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Defined pharmacologically by its insensitivity to the GABA(A) antagonist bicuculline and sensitivity to the GABA analogue baclofen, the G protein-linked gamma-aminobutyric acid type B (GABA(B)) receptor couples to adenylyl cyclase, voltage-gated calcium channels, and inwardly-rectifying potassium channels. On the basis of a wealth of preclinical data in conjunction with early clinical observations that baclofen improves symptoms of gastroesophageal reflux disease (GERD), the GABA(B) receptor has been proposed as a therapeutic target for a number of diseases including GERD. Subsequently, there has been a significant effort to develop a peripherally-restricted GABA(B) agonist that is devoid of the central nervous system side effects that are observed with baclofen. In this article we review the in vitro and in vivo pharmacology of the peripherally-restricted GABA(B) receptor agonists and the preclinical and clinical development of lesogaberan (AZD3355, (R)-(3-amino-2-fluoropropyl) phosphinic acid), a potent and predominately peripherally-restricted GABA(B) receptor agonist with a preclinical therapeutic window superior to baclofen.
Collapse
|
13
|
Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels. Neuropsychopharmacology 2009; 34:106-25. [PMID: 18800070 DOI: 10.1038/npp.2008.149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.
Collapse
|
14
|
|
15
|
Deer T, Krames ES, Hassenbusch SJ, Burton A, Caraway D, Dupen S, Eisenach J, Erdek M, Grigsby E, Kim P, Levy R, McDowell G, Mekhail N, Panchal S, Prager J, Rauck R, Saulino M, Sitzman T, Staats P, Stanton-Hicks M, Stearns L, Willis KD, Witt W, Follett K, Huntoon M, Liem L, Rathmell J, Wallace M, Buchser E, Cousins M, Ver Donck A. Polyanalgesic Consensus Conference 2007: Recommendations for the Management of Pain by Intrathecal (Intraspinal) Drug Delivery: Report of an Interdisciplinary Expert Panel. Neuromodulation 2007; 10:300-28. [DOI: 10.1111/j.1525-1403.2007.00128.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Barbaresi P. Cellular and subcellular localization of the GABAB receptor 1a/b subunit in the rat periaqueductal gray matter. J Comp Neurol 2007; 505:478-92. [DOI: 10.1002/cne.21509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 2006; 73:137-50. [PMID: 17126531 DOI: 10.1016/j.eplepsyres.2006.09.008] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 09/08/2006] [Accepted: 09/27/2006] [Indexed: 01/05/2023]
Abstract
Pregabalin (Lyrica) is a new antiepileptic drug that is active in animal seizure models. Pregabalin is approved in US and Europe for adjunctive therapy of partial seizures in adults, and also has been approved for the treatment of pain from diabetic neuropathy or post-herpetic neuralgia in adults. Recently, it has been approved for treatment of anxiety disorders in Europe. Pregabalin is structurally related to the antiepileptic drug gabapentin and the site of action of both drugs is similar, the alpha2-delta (alpha2-delta) protein, an auxiliary subunit of voltage-gated calcium channels. Pregabalin subtly reduces the synaptic release of several neurotransmitters, apparently by binding to alpha2-delta subunits, and possibly accounting for its actions in vivo to reduce neuronal excitability and seizures. Several studies indicate that the pharmacology of pregabalin requires binding to alpha2-delta subunits, including structure-activity analyses of compounds binding to alpha2-delta subunits and pharmacology in mice deficient in binding at the alpha2-delta Type 1 protein. The preclinical findings to date are consistent with a mechanism that may entail reduction of abnormal neuronal excitability through reduced neurotransmitter release. This review addresses the preclinical pharmacology of pregabalin, and also the biology of the high affinity binding site, and presumed site of action.
Collapse
Affiliation(s)
- Charles P Taylor
- Department of CNS Biology, Pfizer Global Research & Development, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
18
|
Maneuf YP, Luo ZD, Lee K. α2δ and the mechanism of action of gabapentin in the treatment of pain. Semin Cell Dev Biol 2006; 17:565-70. [PMID: 17067834 DOI: 10.1016/j.semcdb.2006.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gabapentin is a drug that has been widely used in the treatment of chronic pain states. Despite its widespread usage, it is only recently that light has been shed on the mechanism of action of this agent. In the current review, the authors document the pharmacological, biochemical and molecular information that has led to the identification of the alpha2delta1 auxilliary subunit of voltage gated calcium channels as the target for this drug's actions.
Collapse
Affiliation(s)
- Y P Maneuf
- Cambridge Biotechnology Ltd., Biovitrum AB, Babraham Research Campus, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|
19
|
Abstract
Gabapentin, a gamma-aminobutyric acid (GABA) analogue anticonvulsant, is also an effective analgesic agent in neuropathic and inflammatory, but not acute, pain systemically and intrathecally. Other clinical indications such as anxiety, bipolar disorder, and hot flashes have also been proposed. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin.
Collapse
Affiliation(s)
- Jen-Kun Cheng
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | |
Collapse
|
20
|
Cheng JK, Chen CC, Yang JR, Chiou LC. The antiallodynic action target of intrathecal gabapentin: Ca2+ channels, KATP channels or N-methyl-d-aspartic acid receptors? Anesth Analg 2006; 102:182-7. [PMID: 16368827 DOI: 10.1213/01.ane.0000189550.97536.83] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-methyl-d-aspartic acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.
Collapse
Affiliation(s)
- Jen-Kun Cheng
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Abstract
A great deal of effort has been expended in attempting to define the role of GABA in mediating the transmission and perception of pain. Pursuit of this question has been stimulated by the fact that GABAergic neurons are widely distributed throughout the central nervous system, including regions of the spinal cord dorsal horn known to be important for transmitting pain impulses to the brain. In addition, GABA neurons and receptors are found in supraspinal sites known to coordinate the perception and response to painful stimuli and this neurotransmitter system has been shown to regulate control of sensory information processing in the spinal cord. The discovery that GABA receptor agonists display antinociceptive properties in a variety of animal models of pain has provided an impetus for developing such agents for this purpose. It has been shown that GABA receptor agonists, as well as inhibitors of GABA uptake or metabolism, are clinically effective in treating this symptom. However, even with an enhanced understanding of the relationship between GABAergic transmission and pain, it has proven difficult to exploit these findings in designing novel analgesics that can be employed for the routine management of pain. Work in this area has revealed a host of reasons why GABAergic drugs have, to date, been of limited utility in the management of pain. Chief among these are the side effects associated with such agents, in particular sedation. These limitations are likely due to the simultaneous activation of GABA receptors throughout the neuraxis, most of which are not involved in the transmission or perception of pain. This makes it difficult to fully exploit the antinociceptive properties of GABAergic drugs before untoward effects intervene. The discovery of molecularly and pharmacologically distinct GABAA receptors may open the way to developing subtype selective agents that target those receptors most intimately involved in the transmission and perception of pain. The more limited repertoire of GABAB receptor subunits makes it more difficult to develop subtype selective agents for this site. Nonetheless, a GABAB agonist, CGP 35024, has been identified that induces antinociceptive responses at doses well below those that cause sedation (Patel et al., 2001). It has also been reported that, unlike baclofen, tolerance to antinociceptive responses is not observed with CGP 44532, a more potent GABAB receptor agonist (Enna et al., 1998). While the reasons for these differences in responses to members of the same class remain unknown, these findings suggest it may be possible to design a GABAB agonist with a superior clinical profile than existing agents. Besides the challenges associated with identifying subtype selective GABAA and GABAB receptor agonists, the development of GABA analgesics has been hindered by the fact that the responsiveness of these receptor systems appear to vary with the type and duration of pain being treated and the mode of drug administration. Further studies are necessary to more precisely define the types of pain most amenable to treatment with GABAergic drugs. Inasmuch as the antinociceptive responses to these agents in laboratory animals are mediated, at least in part, through activation or inhibition of other neurotransmitter and neuromodulator systems, it is conceivable that GABA agonists will be most efficacious as analgesics when administered in combination with other agents. The results of anatomical, biochemical, molecular, and pharmacological studies support the notion that generalized activation of GABA receptor systems dampens the response to painful stimuli. The data leave little doubt that, under certain circumstances, stimulation of neuroanatomically discreet GABA receptor sites could be of benefit in the management of pain. Continued research in this area is warranted given the limited choices, and clinical difficulties, associated with conventional analgesics.
Collapse
Affiliation(s)
- S J Enna
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
22
|
Biomedical vignette. J Biomed Sci 2004. [DOI: 10.1007/bf02254431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|