1
|
Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol 2013; 4:231. [PMID: 23966989 PMCID: PMC3744011 DOI: 10.3389/fmicb.2013.00231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro.
Collapse
Affiliation(s)
- Margret Shirinian
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | |
Collapse
|
2
|
Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology 2008; 5:76. [PMID: 18702816 PMCID: PMC2533353 DOI: 10.1186/1742-4690-5-76] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 12/22/2022] Open
Abstract
The Tax1 oncoprotein encoded by Human T-lymphotropic virus type I is a major determinant of viral persistence and pathogenesis. Tax1 affects a wide variety of cellular signalling pathways leading to transcriptional activation, proliferation and ultimately transformation. To carry out these functions, Tax1 interacts with and modulates activity of a number of cellular proteins. In this review, we summarize the present knowledge of the Tax1 interactome and propose a rationale for the broad range of cellular proteins identified so far.
Collapse
Affiliation(s)
- Mathieu Boxus
- University Academia Wallonie-Europe, Molecular and Cellular Biology at FUSAGx, Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
3
|
Van Duyne R, Kehn-Hall K, Klase Z, Easley R, Heydarian M, Saifuddin M, Wu W, Kashanchi F. Retroviral proteomics and interactomes: intricate balances of cell survival and viral replication. Expert Rev Proteomics 2008; 5:507-28. [PMID: 18532916 DOI: 10.1586/14789450.5.3.507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology, & Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) infection is associated with the clonal expansion and transformation of mature T lymphocytes. While the mechanisms involved are incompletely understood the viral regulatory protein Tax plays a central role in these processes. Recent studies employing genomic and proteomic approaches have demonstrated the marked complexity of gene deregulation associated with Tax expression and confirmed the remarkable pleiotropism of this protein as evidenced by the numerous Tax-cellular protein interactions in infected cells. In this review, we summarize the role of Tax in the deregulation of selected cellular-signaling pathways. Specifically, this has focused on the influence and interaction of Tax with the AP-1 and NF-AT transcription factors, PDZ domain-containing proteins, Rho-GTPases, and the Janus kinase/signal transducer and activator of transcription and transforming growth factor-beta-signaling pathways. In addition to identifying the deregulation of events within these pathways, attempts have been made to highlight differences between HTLV-1 and -2, which may relate to differences in their pathogenic properties.
Collapse
Affiliation(s)
- William W Hall
- Department of Medical Microbiology, Centre for Research in Infectious Diseases, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
5
|
Hirata A, Higuchi M, Niinuma A, Ohashi M, Fukushi M, Oie M, Akiyama T, Tanaka Y, Gejyo F, Fujii M. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line. Virology 2004; 318:327-36. [PMID: 14972558 DOI: 10.1016/j.virol.2003.10.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 10/09/2003] [Accepted: 10/13/2003] [Indexed: 11/17/2022]
Abstract
While human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL), HTLV-2 has not been reported to be associated with such malignant leukemias. HTLV-1 Tax1 oncoprotein transforms a rat fibroblast cell line (Rat-1) to form multiple large colonies in soft agar, and this activity is much greater than that of HTLV-2 Tax2. We have demonstrated here that the increased number of transformed colonies induced by Tax1 relative to Tax2 was mediated by a PDZ domain-binding motif (PBM) in Tax1, which is absent in Tax2. Tax1 PBM mediated the interaction of Tax1 with the discs large (Dlg) tumor suppressor containing PDZ domains, and the interaction correlated well with the transforming activities of Tax1 and the mutants. Through this interaction, Tax1 altered the subcellular localization of Dlg from the detergent-soluble to the detergent-insoluble fraction in a fibroblast cell line as well as in HTLV-1-infected T-cell lines. These results suggest that the interaction of Tax1 with PDZ domain protein(s) is critically involved in the transforming activity of Tax1, the activity of which may be a crucial factor in malignant transformation of HTLV-1-infected cells in vivo.
Collapse
Affiliation(s)
- Akira Hirata
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Takahashi T, Higuchi M, Fukushi M, Oie M, Ito M, Fujii M. Homotypic cell-cell adhesion induced by human T cell leukemia virus type 1 tax protein in T cell lines. Virology 2002; 302:132-43. [PMID: 12429522 DOI: 10.1006/viro.2002.1629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-cell adhesion is involved in the processes of cell growth, activation and migration, and inflammation. T cells infected with human T cell leukemia virus type 1 (HTLV-1) exhibit a high degree of homotypic cell-cell adhesion in vitro. In this study, we investigated the involvement of the viral protein Tax in such process. Expression of Tax in an interleukin (IL)-2-dependent mouse T cell line (CTLL-2) increased homotypic cell-cell adhesion; however, less cell adhesion was induced by Tax than that observed in HTLV-1-infected T cell lines. Moreover, Tax induced cell-cell adhesion in a human T cell line, in which the expression of Tax is inducible. Microscopic examination also revealed Tax-induced morphologic changes, including rounding of CTLL-2 cells, increased cell volume, and increased nucleus size. Taken together, our results suggest that Tax induces cell-cell adhesion and morphologic changes in HTLV-1-infected cells. Tax may thus play a role in persistent HTLV-1 infection and the pathogenesis of associated disease.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Mahana W, Samaan A, Zhao TM, Kindt TJ, Simpson RM. Evidence for humoral and cellular reactivity against keratin and thyroglobulin in HTLV-I infected rabbits. Autoimmunity 2001; 32:57-65. [PMID: 10958176 DOI: 10.3109/08916930008995988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human T cell leukemia virus type I (HTLV-I) infection was initially associated with T cell leukemia and a progressive neurologic disease but has since been linked to an increasing number of autoimmune disorders, including Sjogren's syndrome, uveitis, and polyarthritis. A survey of serum samples from a rabbit model of HTLV-I infection revealed that all had antibodies against keratin and thyroglobulin. Sera from several infected rabbits also reacted with collagen, while antibody reactions with other autoantigens tested, including DNA, were rare and sporadic. In addition to antibodies, cellular reactivity to keratin, but not thyroglobulin, was demonstrated by cellular proliferation in presence of IL-2 and keratin. Expanded cell cultures were positive for T cell activation markers and CD8. Association of the auto-reactivity with HTLV-I infection rather than random anti-cellular responses was supported by the fact that no antikeratin or antithyroglobulin was seen in uninfected controls, including that inoculated with uninfected lymphocytes. Finding autoantibodies in rabbits infected using naked HTLV-I DNA clones provided further assurance that infection induced the autoimmune reactions detected.
Collapse
Affiliation(s)
- W Mahana
- Loboratory, of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH--Twinbrook Facility, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
8
|
Chun AC, Zhou Y, Wong CM, Kung HF, Jeang KT, Jin DY. Coiled-coil motif as a structural basis for the interaction of HTLV type 1 Tax with cellular cofactors. AIDS Res Hum Retroviruses 2000; 16:1689-94. [PMID: 11080811 DOI: 10.1089/08892220050193155] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) Tax is a multifunctional protein centrally involved in transcriptional regulation, cell cycle control, and viral transformation. The regulatory functions of Tax are thought to be mediated through protein-protein interaction with cellular cofactors. Previously we have identified several novel binding partners for Tax, including human mitotic checkpoint protein MAD1 (TXBP181), G-protein pathway suppressor GPS2 (TXBP31), and IkappaB kinase regulatory subunit IKK-gamma. Here we described two additional Tax partners, TXBP151 and TXBP121. A closer examination of the sequences of eight independent cellular Tax-binding proteins identified by us and others revealed that all of them share a single characteristic, a highly structured coiled-coil domain. We also noted that Tax and the Tax-binding coiled-coil proteins can homodimerize. Additionally, the same domain in Tax is responsible for interaction with different coiled-coil proteins. Taken together, our findings point to a particular coiled-coil structure as one of the Tax-recognition motifs. The interaction of Tax with a particular subgroup of cellular coiled-coil proteins represents one mechanism by which Tax dysregulates cell growth and proliferation.
Collapse
Affiliation(s)
- A C Chun
- Institute of Molecular Biology, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent for adult T-cell leukemia (ATL) and various human myopathies/neuropathies. HTLV-I encodes a 40 kDa phosphoprotein, Tax, which has been implicated in cellular transformation. In similarity with several other oncoproteins such as Myc, Jun, and Fos, Tax is a transcriptional activator. How Tax mechanistically dysregulates the cell cycle remains unclear. Recent findings from us and others have shown that Tax targets key regulators of G1/S and M progression such as p16INK4a, cyclin D1, cyclin D3-cdk, and the mitotic spindle checkpoint apparatus. Thus, Tax influences the progression of cells in various phases of the cell cycle. In this regard, we will discuss three distinct mechanisms through which Tax affects cell-cycling: a) through direct association Tax can abrogate the inhibitory function of p16INK4a on the G1-cdks, b) Tax can also directly influence cyclin D-cdk activities by a protein-protein interaction, and c) Tax targets the HsMAD1 mitotic spindle-assembly checkpoint protein. Through these varied routes, the HTLV-I oncoprotein dysregulates cellular growth controls and engenders a proclivity of cells toward a loss of DNA-damage surveillance.
Collapse
Affiliation(s)
- C Neuveut
- Laboratoire de Recombinaison et Expression Genetique, Institut Pasteur, Paris, France
| | | |
Collapse
|
10
|
Nagao N, Etoh T, Yamaoka S, Okamoto T, Miwa N. Enhanced invasion of Tax-expressing fibroblasts into the basement membrane is repressed by phosphorylated ascorbate with simultaneous decreases in intracellular oxidative stress and NF-kappa B activation. Antioxid Redox Signal 2000; 2:727-38. [PMID: 11213478 DOI: 10.1089/ars.2000.2.4-727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Invasion of rat fibroblastic cells Rat-1 through Matrigel was shown to be promoted by transfection with tax gene of human T-cell leukemia virus type 1. We found that an oxidation-resistant type of vitamin C (Asc), Asc-2-O-phosphate (Asc2P), inhibited the invasion of the tax-transfected Rat-1 cells (W4 cells). Intracellular Asc (Ascin), after enzymatic dephosphorylation of administered Asc2P, was more abundant in W4 cells than in Rat-1 cells, and the ratio of dehydroascorbic acid versus Asc was increased in W4 cells but scarcely in Rat-1 cells, according to the enhanced level of intracellular reactive oxygen species (ROSin) in W4 cells. Asc2P notably repressed the increases in both ROSin and secretion of matrix metalloproteases (MMPs), but did not affect Tax protein expression in tax-transfectants. NF-kappa B activation, as evidenced by its translocation to the nucleus in W4 cells, was also repressed by Asc2P. Thus, the tax-promoted invasion together with the enhanced production of MMPs occurred with NF-kappa B activation and the increase in ROSin, both of which were effectively reduced by Asc2P. These findings indicate the therapeutic efficacy of Ascin-enriching agents for the prevention against tumor invasion in which ROSin plays a major role.
Collapse
Affiliation(s)
- N Nagao
- Department of Cell Biochemistry, Hiroshima Prefectural University School of BioSciences, Hiroshima 727-0023, Japan
| | | | | | | | | |
Collapse
|
11
|
Jin DY, Jeang KT. Isolation of full-length cDNA and chromosomal localization of human NF-kappaB modulator NEMO to Xq28. J Biomed Sci 1999; 6:115-20. [PMID: 10087442 DOI: 10.1007/bf02256442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
NEMO is an essential component of the IkappaB kinase complex. Others have shown that expression of mouse NEMO can complement the lack of responsiveness to NF-kappaB stimuli in two NEMO-deficient cell lines. Here we report the isolation of a full-length human NEMO cDNA. Virtual translation of human NEMO cDNA predicts a 48-kD coiled-coil protein which shares 87.9% identity and 90.5% similarity with the mouse homolog. By sequence alignment, we mapped the human NEMO gene to chromosome Xq28. We note that the NEMO and the G6PD (glucose-6-phosphate dehydrogenase) loci are arranged in a head-to-head orientation separated by no more than 800 bp. This map location is further supported by the sequence of an alternatively spliced variant of human NEMO mRNA. Thus, human NEMO is an X-linked gene closely adjacent to the G6PD locus.
Collapse
Affiliation(s)
- D Y Jin
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md., USA
| | | |
Collapse
|
12
|
Neuveut C, Low KG, Maldarelli F, Schmitt I, Majone F, Grassmann R, Jeang KT. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb. Mol Cell Biol 1998; 18:3620-32. [PMID: 9584203 PMCID: PMC108944 DOI: 10.1128/mcb.18.6.3620] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human T-cell leukemia virus type 1 is etiologically linked to the development of adult T-cell leukemia and various human neuropathies. The Tax protein of human T-cell leukemia virus type I has been implicated in cellular transformation. Like other oncoproteins, such as Myc, Jun, and Fos, Tax is a transcriptional activator. How it mechanistically dysregulates the cell cycle is unclear. Previously, it was suggested that Tax affects cell-phase transition by forming a direct protein-protein complex with p16(INK4a), thereby inactivating an inhibitor of G1-to-S-phase progression. Here we show that, in T cells deleted for p16(INK4a), Tax can compel an egress of cells from G0/G1 into S despite the absence of serum. We also show that in undifferentiated myocytes, expression of Tax represses cellular differentiation. In both settings, Tax expression was found to increase cyclin D-cdk activity and to enhance pRb phosphorylation. In T cells, a Tax-associated increase in steady-state E2F2 protein was also documented. In searching for a molecular explanation for these observations, we found that Tax forms a protein-protein complex with cyclin D3, whereas a point-mutated and transcriptionally inert Tax mutant failed to form such a complex. Interestingly, expression of wild-type Tax protein in cells was also correlated with the induction of a novel hyperphosphorylated cyclin D3 protein. Taken together, these findings suggest that Tax might directly influence cyclin D-cdk activity and function, perhaps by a route independent of cdk inhibitors such as p16(INK4a).
Collapse
Affiliation(s)
- C Neuveut
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | |
Collapse
|