1
|
Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, Guthke R, Cellerino A, Platzer M, Diekmann S, Hemmerich P. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS One 2016; 11:e0154531. [PMID: 27140416 PMCID: PMC4854426 DOI: 10.1371/journal.pone.0154531] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence correlates with changes in the transcriptome. To obtain a complete view on senescence-associated transcription networks and pathways, we assessed by deep RNA sequencing the transcriptomes of five of the most commonly used laboratory strains of human fibroblasts during their transition into senescence. In a number of cases, we verified the RNA-seq data by real-time PCR. By determining cellular protein levels we observed that the age-related expression of most but not all genes is regulated at the transcriptional level. We found that 78% of the age-affected differentially expressed genes were commonly regulated in the same direction (either up- or down-regulated) in all five fibroblast strains, indicating a strong conservation of age-associated changes in the transcriptome. KEGG pathway analyses confirmed up-regulation of the senescence-associated secretory phenotype and down-regulation of DNA synthesis/repair and most cell cycle pathways common in all five cell strains. Newly identified senescence-induced pathways include up-regulation of endocytotic/phagocytic pathways and down-regulation of the mRNA metabolism and the mRNA splicing pathways. Our results provide an unprecedented comprehensive and deep view into the individual and common transcriptome and pathway changes during the transition into of senescence of five human fibroblast cell strains.
Collapse
Affiliation(s)
- S. Marthandan
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- * E-mail:
| | - M. Baumgart
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Priebe
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - M. Groth
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - J. Schaer
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - C. Kaether
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - R. Guthke
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - A. Cellerino
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- Laboratory of NeuroBiology, Scuola Normale Superiore, Pisa, Italy
| | - M. Platzer
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Diekmann
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - P. Hemmerich
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| |
Collapse
|
2
|
Steinman RA, Robinson AR, Feghali-Bostwick CA. Antifibrotic effects of roscovitine in normal and scleroderma fibroblasts. PLoS One 2012; 7:e48560. [PMID: 23185265 PMCID: PMC3502367 DOI: 10.1371/journal.pone.0048560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022] Open
Abstract
Heightened production of collagen and other matrix proteins underlies the fibrotic phenotype of systemic sclerosis (SSc). Roscovitine is an inhibitor of cyclin-dependent kinases that promote cell cycling (CDK1, 2), neuronal development (CDK5) and control transcription (CDK7,9). In an in vivo glomerulonephritis model, roscovitine treatment decreased mesangial cell proliferation and matrix proteins [1]. We investigated whether roscovitine could regulate fibrotic protein production directly rather than through cell cycling. Our investigations revealed that roscovitine coordinately inhibited the expression of collagen, fibronectin, and connective tissue growth factor (CTGF) in normal and SSc fibroblasts. This effect occurred on a transcriptional basis and did not result from roscovitine-mediated cell cycle inhibition. Roscovitine-mediated suppression of matrix proteins could not be reversed by the exogenous profibrotic cytokines TGF-β or IL-6. To our knowledge, we are the first to report that roscovitine modulates matrix protein transcription. Roscovitine may thus be a viable treatment option for SSc and other fibrosing diseases.
Collapse
Affiliation(s)
- Richard A Steinman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
3
|
Benatti P, Dolfini D, Viganò A, Ravo M, Weisz A, Imbriano C. Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Res 2011; 39:5356-68. [PMID: 21415014 PMCID: PMC3141247 DOI: 10.1093/nar/gkr128] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulated gene expression is essential for a proper progression through the cell cycle. The transcription factor NF-Y has a fundamental function in transcriptional regulation of cell cycle genes, particularly of G2/M genes. In order to investigate common and distinct functions of NF-Y subunits in cell cycle regulation, NF-YA, NF-YB and NF-YC have been silenced by shRNAs in HCT116 cells. NF-YA loss led to a delay in S-phase progression, DNA damage and apoptosis: we showed the activation of the replication checkpoint, through the recruitment of Δp53 and of the replication proteins PCNA and Mcm7 to chromatin. Differently, NF-YB depletion impaired cells from exiting G2/M, but did not interfere with S-phase progression. Gene expression analysis of NF-YA and NF-YB inactivated cells highlighted a common set of hit genes, as well as a plethora of uncommon genes, unveiling a different effect of NF-Y subunits loss on NF-Y binding to its target genes. Chromatin extracts and ChIP analysis showed that NF-YA depletion was more effective than NF-YB in hitting NF-Y recruitment to CCAAT-promoters. Our data suggest a critical role of NF-Y expression, highlighting that the lack of the single subunits are differently perceived by the cells, which activate diverse cell cycle blocks and signaling pathways.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Biologia, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Chen YH, Lin YT, Lee GH. Novel and unexpected functions of zebrafish CCAAT box binding transcription factor (NF-Y) B subunit during cartilages development. Bone 2009; 44:777-84. [PMID: 19442608 DOI: 10.1016/j.bone.2009.01.374] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/30/2008] [Accepted: 01/18/2009] [Indexed: 11/22/2022]
Abstract
We used zebrafish as a model to study the biological functions of NF-YB during early development. Both RT-PCR and whole-mount in situ hybridization experiments revealed that nf-yb was a maternally inherited gene. Later, its expression was restricted in the future head cartilages as well as in the developing notochord. Embryos after injection with nf-yb-morpholino displayed reduced-head phenotypes, including smaller head (WT, length of head, L: 0.515+/-0.019 mm, width of head, W: 0.323+/-0.077 mm; nf-yb-morphant, L: 0.347+/-0.037 mm; W: 0.266+/-0.018 mm), sharpen Meckel's cartilage, loss of ceratobranchial, and enlarged angles of ceratohyal (WT: 72.6+/-9.4 degrees ; nf-yb-morphant: 110.0+/-32.5 degrees ). Subsequently, those abnormalities can be rescued after injection with capped nf-yb mRNA. TUNEL assay suggested that large amounts of cell apoptosis appeared in the head region of nf-yb-morphants. Staining with digoxigenin-labeled dlx2a, sox9a, runx2b and col2a1 riboprobes showed that nf-yb-morphants displayed reduced amounts of cranial neural crest cells which are required for mandibular and branchial arches formation. These observations clearly indicate that knockdown of nf-yb translation induced parts of cranial neural crest cells apoptosis, affected cartilages formation and consequently caused reduced-head phenotypes. These findings uncover a novel and unexpected role for NF-YB as a critical modulator of neural crest cell's gene expression governing embryonic cartilage growth.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Graduate Institute of Life Sciences, Tamkang University, Tamsui, Taipei County, Taiwan.
| | | | | |
Collapse
|
5
|
Jeong MH, Jin YH, Kang EY, Jo WS, Park HT, Lee JD, Yoo YJ, Jeong SJ. The modulation of radiation-induced cell death by genistein in K562 cells: activation of thymidine kinase 1. Cell Res 2005; 14:295-302. [PMID: 15353126 DOI: 10.1038/sj.cr.7290230] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation is one of the most effective tools in cancer therapy. In a previous study, we reported that protein tyrosine kinase (PTK) inhibitors modulate the radiation responses in the human chronic myelogenous leukemia (CML) cell line K562. The receptor tyrosine kinase inhibitor, genistein, delayed radiation-induced cell death, while non-recepter tyrosine kinase inhibitor, herbimycin A (HMA) enhances radiation-induced apoptosis. In this study, we focused on the modulation of radiation-induced cell death by genistein and performed PCR-select suppression subtractive hybridization (SSH) to understand its molecular mechanism. We identified human thymidine kinase 1 (TK1), which is cell cycle regulatory gene and confirmed expression of TK1 mRNA by Northern blot analysis. Expression of TK1 mRNA and TK1 enzymatic activity were parallel in their increase and decrease. TK1 is involved in G1-S phase transition of cell cycle progression. In cell cycle analysis, we showed that radiation induced G2 arrest in K562 cells but it was not able to sustain. However, the addition of genistein to irradiated cells sustained a prolonged G2 arrest up to 120 h. In addition, the expression of cell cycle-related proteins, cyclin A and cyclin B1, provided the evidences of G1/S progression and G2-arrest, and their relationship with TK1 in cells treated with radiation and genistein. These results suggest that the activation of TK1 may be critical to modulate the radiation-induced cell death and cell cycle progression in irradiated K562 cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Death/drug effects
- Cell Death/physiology
- Cell Death/radiation effects
- Cyclin A/metabolism
- Cyclin B/metabolism
- Cyclin B1
- Enzyme Activation
- G1 Phase/drug effects
- G1 Phase/genetics
- G1 Phase/radiation effects
- G2 Phase/drug effects
- G2 Phase/genetics
- G2 Phase/radiation effects
- Genes, cdc/drug effects
- Genes, cdc/physiology
- Genistein/pharmacology
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/radiotherapy
- Nucleic Acid Hybridization/methods
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- RNA, Messenger/radiation effects
- S Phase/drug effects
- S Phase/genetics
- S Phase/radiation effects
- Thymidine Kinase/drug effects
- Thymidine Kinase/genetics
- Thymidine Kinase/metabolism
- Time Factors
Collapse
Affiliation(s)
- Min Ho Jeong
- Research Supporting Center for Medical Science (BK21 program), Dong-A University College of Medicine, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang XF, Cui JZ, Nie W, Prasad SS, Matsubara JA. Differential gene expression of early and late passage retinal pigment epithelial cells. Exp Eye Res 2004; 79:209-21. [PMID: 15325568 DOI: 10.1016/j.exer.2004.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Accepted: 03/29/2004] [Indexed: 01/16/2023]
Abstract
We examined the gene expression profiles of retinal pigment epithelial (RPE) cells which were aged in vitro by repeated passage. RPE cells from human eyes were cultured to passage 3-5 (early passage) or 19-21 (late passage) and used to study gene expression profiles by cDNA microarray. Results from microarray analysis were further confirmed by real-time PCR. Microarray analysis showed gene expression changes among 588 known genes. The expression levels of 15 genes (2.6%) increased in late passage RPE cells, while 43 genes (7.3%) decreased using a two-fold criterion. These differentially expressed genes encompassed many functional classes. A small number of stress genes, such as clusterin, replication protein A and Ku80, were up-regulated. The down-regulated genes included many enzymes of energy and biomolecule metabolism as well as cell cycle proteins and cell adhesion proteins. Results from real-time PCR were generally consistent with microarray findings. The expression levels of the examined angiogenic factors were either unchanged or down-regulated. Comparing early (p=3-5) and late (p=9-12) passage RPE cells, several categories of differentially expressed genes were identified. However, there was no enhanced expression of known angiogenic factors.
Collapse
Affiliation(s)
- Xue-Feng Wang
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9, Canada
| | | | | | | | | |
Collapse
|
7
|
Matuoka K, Chen KY, Takenawa T. A positive role of phosphatidylinositol 3-kinase in aging phenotype expression in cultured human diploid fibroblasts. Arch Gerontol Geriatr 2003; 36:203-19. [PMID: 12849077 DOI: 10.1016/s0167-4943(02)00151-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to detect the role that phosphatidylinositol 3-kinase (PI3K) plays in the aging of human diploid fibroblasts, we analyzed cellular inositol phospholipids and expression of PI3Ks. In aged cells a decrease in phosphatidylinositol 3,4-bisphosphate (PI3,4P(2)) was notable, while phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) decreased slightly. On the other hand, the messages of PI3K IIalpha, Vps34, and p110delta decreased and that of PI3K IIbeta increased during aging. These changes might relate to the aging phenomena, with the PI3K subspecies functioning differentially. Consistently, a PI3K inhibitor LY294002 greatly suppressed enlargement and flattening of cell body and nucleus as well as cell proliferation, both phenotypes being typical of aged cells. An oxidative stress, pulse exposure to hydrogen peroxide (H(2)O(2)), induced these senescent cell-like phenotypes, which LY294002 was also able to abolish. Upon examining three different cell systems (HL-60, N1E-115, and PC-12 cells) we found clear parallelism in a cellular event between the dependence on a PI3K activity and the sensitivity to H(2)O(2). On the analogy of these relationships, we could hypothesize that expression of an aging phenotype such as the morphogenesis is positively promoted by some PI3K subspecies, if such a phenotype as cell cycling is negatively affected by attenuation of another PI3K function in the course of cellular aging.
Collapse
Affiliation(s)
- Koozi Matuoka
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
| | | | | |
Collapse
|
8
|
Bevilacqua MA, Faniello MC, Iovine B, Russo T, Cimino F, Costanzo F. Transcription factor NF-Y regulates differentiation of CaCo-2 cells. Arch Biochem Biophys 2002; 407:39-44. [PMID: 12392713 DOI: 10.1016/s0003-9861(02)00436-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CaCo-2 cell line is used to study the molecular mechanisms underlying differentiation of intestinal epithelial cells. These cells undergo a gradual differentiation process that is growth-related and depends on cellular density. CaCo-2 cells acquire a morphological polarity and express such markers of mature enterocytes as sucrase-isomaltase, apolipoproteins, alkaline phosphatase, and H-ferritin. Because the NF-Y transcription factor is required for H-ferritin gene expression, we investigated whether it is involved in the expression of the other CaCo-2 differentiation markers. We observed that subunit NF-YA increases during CaCo-2 differentiation and that the constitutive expression of NF-YA, obtained in stably transfected CaCo-2 cells, results in the expression of differentiation markers. In fact, sucrase-isomaltase, apolipoprotein A1, and H-ferritin were constitutively expressed in NF-YA-transfected cells and their levels did not increase during prolonged culture, while these markers were not expressed in mock-transfected CaCo-2 cells or transfected with an inactive NF-YA expression vector until the onset of differentiation.
Collapse
Affiliation(s)
- M A Bevilacqua
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Biomedical vignette. J Biomed Sci 2001. [DOI: 10.1007/bf02256406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|