1
|
Rüttler F, Ormos R, Cannas J, Hammerschick T, Schlag S, Vetter W. Sample preparation of free sterols from vegetable oils by countercurrent chromatography in co-current mode. Anal Bioanal Chem 2023:10.1007/s00216-023-04766-9. [PMID: 37285025 DOI: 10.1007/s00216-023-04766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Countercurrent chromatography (CCC) is a preparative instrumental method where both the mobile and stationary phases are liquids and which are predominantly used for the isolation of natural products. In this study, we widened the scope of CCC by using it as an instrumental method for the direct enrichment of the free sterol fraction from plant oils to which they contribute with ~ 1%. For the enrichment of sterols in a narrow band, we employed the so-called co-current CCC (ccCCC) mode in which both liquid phases of the solvent system (here: n-hexane/ethanol/methanol/water (34:11:12:2, v/v/v/v)) are moved at different flow rates in the same direction. Different from previous applications of ccCCC, the lower and predominant "stationary" phase (LPs) was pumped twice as fast as the mobile upper phase (UPm). This novel reversed ccCCC mode improved the performance but also required a higher demand of LPs compared to UPm. Therefore, the exact phase composition of UPm and LPs was determined by gas chromatography and Karl Fischer titration. This step enabled the direct preparation of LPs which considerably reduced the waste of solvents. Internal standards (phenyl-substituted fatty acid alkyl esters) were synthesised and utilised to frame the free sterol fraction. This approach allowed a fractionation of free sterols based on the UV signal and compensated run-to-run variations. The reversed ccCCC method was then applied to the sample preparation of five vegetable oils. In addition to free sterols, free tocochromanols (tocopherols, vitamin E) were also eluted in the same fraction as free sterols.
Collapse
Affiliation(s)
- Felix Rüttler
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany
| | - Rosalie Ormos
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany
| | - Jil Cannas
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany
| | - Tim Hammerschick
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany
| | - Sarah Schlag
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany
| | - Walter Vetter
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, D-70599, Stuttgart, Germany.
| |
Collapse
|
2
|
Rosado MJ, Marques G, Rencoret J, Gutiérrez A, Bausch F, Rosenau T, Potthast A, del Río JC. Chemical composition of the lipophilic compounds from the rind and pith of papyrus ( Cyperus papyrus L.) stems. FRONTIERS IN PLANT SCIENCE 2022; 13:1097866. [PMID: 36618622 PMCID: PMC9813494 DOI: 10.3389/fpls.2022.1097866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Papyrus (Cyperus papyrus L.) is a sedge plant with a high rate of biomass productivity that represents an interesting raw material to produce chemicals, materials and fuels, which are currently still obtained from fossil resources, in the context of a lignocellulosic biorefinery. In this work, the content and chemical composition of the lipids present in papyrus stems were thoroughly studied. For this, the papyrus stems were separated into the rind and the pith. The lipid content accounted for 4.1% in the rind and 4.9% in the pith (based on dry matter). The main compounds identified in both parts of the papyrus stem were hydrocarbons, n-fatty acids, 2-hydroxyfatty acids, alcohols, alkylamides, mono- and diglycerides, steroids (sterols, ketones, hydrocarbons, esters and glycosides), tocopherols, tocopherol esters, phytol, phytol esters, alkyl ferulates, ω-carboxyalkyl ferulates (and their monoglycerides), and acylglycerol glycosides. The rind presented a predominance of n-fatty acids (6790 mg/kg; that represented 28.6% of all identified compounds), steroid compounds (6255 mg/kg; 26.3%), phytol and phytol esters (4985 mg/kg; 21.0%), and isoprenoid hydrocarbons, namely phytadiene and squalene (2660 mg/kg; 11.2%), while the most abundant lipids in the pith were steroids (8600 mg/kg; 44.4% of all identified compounds) and fatty acids (6245 mg/kg; 32.2%). Due to the great diversity and significant abundance of the compounds identified in papyrus, it can be considered as a potential raw material for biorefineries to obtain valuable phytochemicals of interest to various industrial sectors.
Collapse
Affiliation(s)
- Mario J. Rosado
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Florian Bausch
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Antje Potthast
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| |
Collapse
|
3
|
Structure, metabolism and biological functions of steryl glycosides in mammals. Biochem J 2021; 477:4243-4261. [PMID: 33186452 PMCID: PMC7666875 DOI: 10.1042/bcj20200532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
Steryl glycosides (SGs) are sterols glycosylated at their 3β-hydroxy group. They are widely distributed in plants, algae, and fungi, but are relatively rare in bacteria and animals. Glycosylation of sterols, resulting in important components of the cell membrane SGs, alters their biophysical properties and confers resistance against stress by freezing or heat shock to cells. Besides, many biological functions in animals have been suggested from the observations of SG administration. Recently, cholesteryl glucosides synthesized via the transglycosidation by glucocerebrosidases (GBAs) were found in the central nervous system of animals. Identification of patients with congenital mutations in GBA genes or availability of respective animal models will enable investigation of the function of such endogenously synthesized cholesteryl glycosides by genetic approaches. In addition, mechanisms of the host immune responses against pathogenic bacterial SGs have partially been resolved. This review is focused on the biological functions of SGs in mammals taking into consideration their therapeutic applications in the future.
Collapse
|
4
|
Murai T, Jin S, Itoh M, Horie Y, Higashi T, Ikegawa S. Analysis of steryl glucosides in rice bran-based fermented food by LC/ESI-MS/MS. Steroids 2020; 158:108605. [PMID: 32084504 DOI: 10.1016/j.steroids.2020.108605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/25/2019] [Accepted: 02/14/2020] [Indexed: 01/08/2023]
Abstract
Steryl glucosides (SGs) and acylated steryl glucosides (ASGs) are phytochemicals found in plant-based foods and are known as bioactive compounds with potential health benefits. These include anti-inflammatory properties, anti-diabetic effects, and modulation of immunoregulatory functions as well as having cholesterol lowering effects. In this study, three major SGs, i.e., glucosides of β-sitosterol, stigmasterol, and campesterol, were synthesized and used as standards for measurement of their contents in rice bran (RB)-based fermented food (FBRA) utilizing Aspergillus oryzae and raw material (RM). The compounds were quantified using liquid chromatography/electrospray ionization-tandem mass spectrometry. It was found that β-sitosteryl glucoside was most abundant among the analyzed glucosides in both samples, and the contents of each SG in FBRA decreased about 35% from those of RM. In contrast to SGs, the contents of ASGs in FBRA increased 1.5-fold during the fermentation process as evidenced by an alkaline hydrolysis. The present results suggest that the FBRA might have greater beneficial effects than the RM, since ASGs have shown to have more potent cholesterol lowering effects and stronger anti-diabetic properties than SGs.
Collapse
Affiliation(s)
- Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Kanazawa, Tobetsu, Hokkaido 061-0293, Japan
| | - Shigeki Jin
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Mari Itoh
- Koken Co. Ltd., 329, Nakagoya, Tobetsu, Hokkaido 061-0211, Japan
| | - Yukiko Horie
- Koken Co. Ltd., 329, Nakagoya, Tobetsu, Hokkaido 061-0211, Japan; Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shigeo Ikegawa
- Genmaikoso Co. Ltd., Kita 12, Nishi 1, Kita-ku, Sapporo, Hokkaido 001-0012, Japan.
| |
Collapse
|
5
|
Chou FP, Hsu WC, Huang SC, Chang CY, Chiou YS, Tsai CT, Lyu JW, Chen WT, Wu TK. Pregnenolonyl-α-glucoside exhibits marked anti-cancer and CYP17A1 enzymatic inhibitory activities. Chem Commun (Camb) 2020; 56:1733-1736. [PMID: 31938799 DOI: 10.1039/c9cc09415f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here that pregnenolonyl-α-glucoside (2), a steryl glycoside synthesized directly from pregnenolone and glucose via a consecutive multienzyme-catalyzed process, exhibits marked dose-dependent cytotoxic activity against HT29, AGS, and ES-2 cells with IC50 values of 23.5 to 50.9 μM. An in vitro CYP17A1 binding pattern assay and protein-ligand docking model support that 2, like abiraterone, binds in the active site heme iron pocket of CYP17A1.
Collapse
Affiliation(s)
- Feng-Pai Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stonik VA, Stonik IV. Sterol and Sphingoid Glycoconjugates from Microalgae. Mar Drugs 2018; 16:E514. [PMID: 30563009 PMCID: PMC6315552 DOI: 10.3390/md16120514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Microalgae are well known as primary producers in the hydrosphere. As sources of natural products, microalgae are attracting major attention due to the potential of their practical applications as valuable food constituents, raw material for biofuels, drug candidates, and components of drug delivery systems. This paper presents a short review of a low-molecular-weight steroid and sphingolipid glycoconjugates, with an analysis of the literature on their structures, functions, and bioactivities. The discussed data on sterols and the corresponding glycoconjugates not only demonstrate their structural diversity and properties, but also allow for a better understanding of steroid biogenesis in some echinoderms, mollusks, and other invertebrates which receive these substances from food and possibly from their microalgal symbionts. In another part of this review, the structures and biological functions of sphingolipid glycoconjugates are discussed. Their role in limiting microalgal blooms as a result of viral infections is emphasized.
Collapse
Affiliation(s)
- Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia.
| | - Inna V Stonik
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str, 17, 690041 Vladivostok, Russia.
| |
Collapse
|
7
|
Heinz P, Glomb MA. Characterization and Quantitation of Steryl Glycosides in Solanum melongena. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11398-11406. [PMID: 30336036 DOI: 10.1021/acs.jafc.8b04045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycosylated plant sterols or steryl glycosides (SGs) are a small group of glycolipids occurring ubiquitously in plants. In contrast to free sterols, they are insufficiently characterized concerning structural variety, quantity, and biological function. In particular, the type of sugar usually attached to the C-3 hydroxy function of the respective sterol is poorly studied. Eggplants ( Solanum melongena) are rich in phytochemicals including SGs. In the present work, the unique glycosylation pattern was investigated by a highly selective LC-MS/MS method that allowed quantitation of the glucosides and galactosides of the most common sterols: cholesterol, β-sitosterol, campesterol, and stigmasterol. The quantitatively most important structure was β-sitosteryl β-d-glucopyranoside, with 54.5 mg/kg fresh weight of total fruit (365.3 mg/kg dry weight) followed by stigmasteryl β-d-glucopyranoside and campesteryl β-d-glucopyranoside. Analyses were performed in different tissues of eggplants (i.e., exocarp and outer mesocarp vs the remaining inner part). Steryl galactosides were determined in eggplants for the first time at significantly lower concentrations by a factor of 100. Furthermore, the rare SG β-sitosteryl β-d-cellobioside (3-β-sitosteryl β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside) was detected in eggplants for the first time. Finally, UV irradiation induced the formation of the vitamin D glucosides 7-dehydrocholesteryl β-d-glucopyranoside and cholecalciferyl β-d-glucopyranoside at very low levels.
Collapse
Affiliation(s)
- Philipp Heinz
- Institute of Chemistry, Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2 , 06120 Halle/Saale , Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2 , 06120 Halle/Saale , Germany
| |
Collapse
|
8
|
Ito A, Wu J, Ozawa N, Choi JH, Hirai H, Kawagishi H. Plant growth regulators from the edible mushroom Leccinum extremiorientale. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ferrer A, Altabella T, Arró M, Boronat A. Emerging roles for conjugated sterols in plants. Prog Lipid Res 2017; 67:27-37. [DOI: 10.1016/j.plipres.2017.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
10
|
Wimmerová M, Siglerová V, Šaman D, Šlouf M, Kaletová E, Wimmer Z. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of β-sitosterol. Steroids 2017; 117:38-43. [PMID: 27648857 DOI: 10.1016/j.steroids.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/17/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022]
Abstract
Naturally occurring acylated β-sitosteryl glucosides have been investigated for their novel properties. The synthetic protocol based on the literature data was improved and optimized. The main improvement consists in employing systems of ionic liquids combined with organic solvents in lipase-mediated esterification of (3β)-stigmast-5-en-3-yl β-d-glucopyranoside to get (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides. Maximum yields of these products were achieved with Candida antarctica lipase B immobilized on Immobead 150, recombinant from yeast, in absolute THF and in the presence of either ionic liquid [1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM]BF4) or 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM]PF6)] employed. Pharmacological activity of (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides was studied in tests on MCF7 tumor cell lines; the compounds displayed moderate activity which was higher than the activity of β-sitosterol. Supramolecular characteristics were discovered at (3β)-stigmast-5-en-3-yl 6-O-dodecanoyl-β-d-glucopyranoside that formed supramolecular polymer through multiple H-bonds in a methanol/water system (60/40). Its formation was confirmed by the independent UV-vis measurements during certain time period, by variable temperature DOSY-NMR measurement in deuteriochloroform, and visualized by transmission electron microscopy (TEM) and atomic force microscopy (AFM) showing chiral helical structures and complex superassembly systems based on fibrous supramolecular polymer. In contrary, no such properties have been observed for the other two (3β)-stigmast-5-en-3-yl 6-O-acyl-β-d-glucopyranosides under the given experimental conditions.
Collapse
Affiliation(s)
- Martina Wimmerová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Isotope Laboratory, Vídeňská 1083, 14220 Prague 4, Czech Republic; University of Chemistry and Technology, Department of Chemistry of Natural Compounds, Technická 5, Czech Republic
| | - Věra Siglerová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Isotope Laboratory, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eva Kaletová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Isotope Laboratory, Vídeňská 1083, 14220 Prague 4, Czech Republic; University of Chemistry and Technology, Department of Chemistry of Natural Compounds, Technická 5, Czech Republic.
| |
Collapse
|
11
|
|
12
|
Grosjean K, Mongrand S, Beney L, Simon-Plas F, Gerbeau-Pissot P. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. J Biol Chem 2015; 290:5810-25. [PMID: 25575593 DOI: 10.1074/jbc.m114.598805] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.
Collapse
Affiliation(s)
- Kevin Grosjean
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Sébastien Mongrand
- the Laboratoire de Biogenèse Membranaire (LBM), CNRS, UMR 5200, F-33000 Villenave d'Ornon, France, the Laboratoire de Biogenèse Membranaire (LBM), Université de Bordeaux, UMR 5200, F-33000 Villenave d'Ornon, France
| | - Laurent Beney
- the Laboratoire Procédés Alimentaires et Microbiologiques, AgroSup Dijon, F-21000 Dijon, France, and
| | - Françoise Simon-Plas
- ERL 6300 CNRS, INRA, UMR1347 Agroécologie, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Patricia Gerbeau-Pissot
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France,
| |
Collapse
|
13
|
Stucky DF, Arpin JC, Schrick K. Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:189-201. [PMID: 25316063 PMCID: PMC4265157 DOI: 10.1093/jxb/eru410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Steryl glucosides (SG) are abundant steroid conjugates in plant membranes. Beyond structural roles in lipid bilayers, functions in sugar transport, storage, and/or signalling are predicted. UDP-glucose:sterol glucosyltransferase 80A2 (UGT80A2) and UGT80B1, which share similarity to fungal counterparts, are implicated in SG synthesis in Arabidopsis thaliana. A third related enzyme, which seems specific to the plant lineage, is encoded by UGT713B1/At5g24750. Genetic and biochemical approaches were employed to determine the role of each UGT gene in the production of specific SGs and acyl SGs (ASGs). Using direct infusion electrospray ionization tandem mass spectrometry (ESI-MS/MS), SG and acyl SG (ASG) contents of ugt80 and ugt713 mutants, and triple and double mutants were profiled in seeds. In vitro enzyme assays were performed to assay substrate preferences. Both UGT80A2 and UGT80B1, but not UGT713B1 were shown to be coordinately down-regulated during seed imbibition when SG levels decline, consistent with similar functions as UGT80 enzymes. UGT80A2 was found to be required for normal levels of major SGs in seeds, whereas UGT80B1 is involved in accumulation of minor SG and ASG compounds. Although the results demonstrate specific activities for UGT80A2 and UGT80B1, a role for UGT713B1 in SG synthesis was not supported. The data show that UGT80A2, the more highly conserved enzyme, is responsible for the bulk production of SGs in seeds, whereas UGT80B1 plays a critical accessory role. This study extends our knowledge of UGT80 enzymes and provides evidence for specialized functions for distinct classes of SG and ASG molecules in plants.
Collapse
Affiliation(s)
- Daniel F Stucky
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - James C Arpin
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS 66506-4901, USA Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506-4901, USA
| |
Collapse
|
14
|
Oppliger SR, Münger LH, Nyström L. Rapid and highly accurate detection of steryl glycosides by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9410-9419. [PMID: 25175549 DOI: 10.1021/jf501509m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study describes the development and validation of a fast, accurate, and precise UPLC-Q-TOF-MS method for the analysis of steryl glycosides (SGs). The best combination of separation and sensitivity was obtained with a methanol/water gradient and formic acid as additive, using electrospray ionization (ESI). SGs were detected almost exclusively as sodiated adducts, allowing identification of the intact molecule, including the sugar moiety. The TOF-MS system offered high mass accuracy (1.3 ppm), providing a valuable tool for SG identification. The method was used to quantify single SG species in oat bran and whole wheat, and it was demonstrated that reliable quantification requires accounting for the matrix effect, which may reduce the SG signal by up to 50% in some samples. The level of matrix effect also depends on food matrices with various SG contents, indicating that it should be individually considered for each sample.
Collapse
Affiliation(s)
- Selina R Oppliger
- ETH Zurich Institute of Food, Nutrition and Health , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Molecular cloning and biochemical characterization of a recombinant sterol 3-O-glucosyltransferase from Gymnema sylvestre R.Br. catalyzing biosynthesis of steryl glucosides. BIOMED RESEARCH INTERNATIONAL 2014; 2014:934351. [PMID: 25250339 PMCID: PMC4163426 DOI: 10.1155/2014/934351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/09/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022]
Abstract
Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants.
Collapse
|
16
|
Li X, Xia T, Huang J, Guo K, Liu X, Chen T, Xu W, Wang X, Feng S, Peng L. Distinct biochemical activities and heat shock responses of two UDP-glucose sterol glucosyltransferases in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:1-8. [PMID: 24576758 DOI: 10.1016/j.plantsci.2013.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 05/06/2023]
Abstract
UDP-glucose sterol glucosyltransferase (SGT) are enzymes typically involved in the production of sterol glycosides (SG) in various organisms. However, the biological functions of SGTs in plants remain largely unknown. In the present study, we identified two full-length GhSGT genes in cotton and examined their distinct biochemical properties. Using UDP-[U-(14)C]-glucose and β-sitosterol or total crude membrane sterols as substrates, GhSGT1 and GhSGT2 recombinant proteins were detected with different enzymatic activities for SG production. The addition of Triton (X-100) strongly inhibited the activity of GhSGT1 but caused an eightfold increase in the activity of GhSGT2. The two GhSGTs showed distinct enzyme activities after the addition of NaCl, MgCl2, and ZnCl2, indicating that the two GhSGTs exhibited distinct biochemical properties under various conditions. Furthermore, after heat shock treatment, GhSGT1 showed rapidly enhanced gene expression in vivo and low enzyme activity in vitro, whereas GhSGT2 maintained extremely low gene expression levels and relatively high enzyme activity. Notably, the GhSGT2 gene was highly expressed in cotton fibers, and the biochemical properties of GhSGT2 were similar to those of GhCESA in favor for MgCl2 and non-reduction reaction condition. It suggested that GhSGT2 may have important functions in cellulose biosynthesis in cotton fibers, which must be tested in the transgenic plants in the future. Hence, the obtained data provided insights into the biological functions of two different GhSGTs in cotton and in other plants.
Collapse
Affiliation(s)
- Xianliang Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Tao Xia
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiangfeng Huang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuezhe Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqiu Feng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Sakamoto S, Nakahara H, Shibata O. Miscibility Behavior of Sphingomyelin with Phytosterol Derivatives by a Langmuir Monolayer Approach. J Oleo Sci 2013; 62:809-24. [DOI: 10.5650/jos.62.809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Horník Š, Sajfrtová M, Karban J, Sýkora J, Březinová A, Wimmer Z. LC-NMR Technique in the Analysis of Phytosterols in Natural Extracts. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:526818. [PMID: 24455424 PMCID: PMC3884959 DOI: 10.1155/2013/526818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 05/19/2023]
Abstract
The ability of LC-NMR to detect simultaneously free and conjugated phytosterols in natural extracts was tested. The advantages and disadvantages of a gradient HPLC-NMR method were compared to the fast composition screening using SEC-NMR method. Fractions of free and conjugated phytosterols were isolated and analyzed by isocratic HPLC-NMR methods. The results of qualitative and quantitative analyses were in a good agreement with the literature data.
Collapse
Affiliation(s)
- Štěpán Horník
- Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojová 2/135, 16502 Prague 6, Czech Republic
| | - Marie Sajfrtová
- Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojová 2/135, 16502 Prague 6, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojová 2/135, 16502 Prague 6, Czech Republic
| | - Jan Sýkora
- Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojová 2/135, 16502 Prague 6, Czech Republic
- *Jan Sýkora:
| | - Anna Březinová
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo Náměstí 2, 16610 Prague 6, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the ASCR, v.v.i., Isotope Laboratory, Vídeňská 1083, 14220 Prague 4, Czech Republic
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Chemistry of Natural Compounds, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
19
|
Shimamura M. Immunological Functions of Steryl Glycosides. Arch Immunol Ther Exp (Warsz) 2012; 60:351-9. [DOI: 10.1007/s00005-012-0190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/08/2012] [Indexed: 12/12/2022]
|
20
|
Schrick K, Shiva S, Arpin JC, Delimont N, Isaac G, Tamura P, Welti R. Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids 2011; 47:185-93. [PMID: 21830156 DOI: 10.1007/s11745-011-3602-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 07/22/2011] [Indexed: 11/26/2022]
Abstract
Establishment of sensitive methods for the detection of cellular sterols and their derivatives is a critical step in developing comprehensive lipidomics technology. We demonstrate that electrospray ionization tandem (triple quadrupole) mass spectrometry (ESI-MS/MS) is an efficient method for monitoring steryl glucosides (SG) and acyl steryl glucosides (ASG). Comparison of analysis of SG and ASG by ESI-MS/MS with analysis by gas chromatography with flame ionization detection (GC-FID) shows that the two methods yield similar molar compositions. These data demonstrate that ESI-MS/MS response per molar amount of sterol conjugate is similar among various molecular species of SG and ASG. Application of ESI-MS/MS to seed samples from wild-type Arabidopsis and a mutant deficient in two UDP-glucose:sterol glucosyltransferases, UGT80A2 and UGT80B1, revealed new details on the composition of sitosteryl, campesteryl and stigmasteryl glucosides and ASG. SG were decreased by 86% in the ugt80A2,B1 double mutant, compared to the wild-type, while ASG were reduced 96%. The results indicate that these glucosyltransferases account for much of the accumulation of the sterol conjugates in wild-type Arabidopsis seeds.
Collapse
Affiliation(s)
- Kathrin Schrick
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Carretero AS, Carrasco-Pancorbo A, Cortacero S, Gori A, Cerretani L, Fernández-Gutiérrez A. A simplified method for HPLC-MS analysis of sterols in vegetable oil. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700237] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Paczkowski C, Musial A, Wlodkowski L, Kalinowska M, Wojciechowski ZA. Lipase-catalyzed regioselective synthesis of steryl (6′-O-acyl)glucosides. Biotechnol Lett 2007; 29:1403-8. [PMID: 17549435 DOI: 10.1007/s10529-007-9400-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
The regioselective acylation of cholesteryl beta-D-glucoside, at the C-6 of the glucose moiety, was achieved using microbial lipases in organic solvents. With palmitic acid as an acyl donor 81 or 63% conversions of cholesteryl glucoside to its 6'-O-palmitoyl derivative were obtained using Candida antarctica or Rhizomucor miehei enzymes, respectively. High yields (64-92%) were also obtained with fatty acids 6:0-22:0 and 16:1 (n-7). The synthesis of cholesteryl (6'-O-palmitoyl)glucoside was also achieved via transesterification, using mono-, di- and tri-palmitoylglycerols or methyl and ethyl palmitate as acyl sources. With R. miehei lipase transesterification between methyl palmitate (80 mM) and cholesteryl glucoside (1 mM) proceeded after 24 h with a nearly quantitative yield (97%).
Collapse
Affiliation(s)
- Cezary Paczkowski
- Faculty of Biology, Department of Biochemistry, Warsaw University, Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | | | |
Collapse
|
23
|
Breinhölder P, Mosca L, Lindner W. Concept of sequential analysis of free and conjugated phytosterols in different plant matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 777:67-82. [PMID: 12270201 DOI: 10.1016/s1570-0232(02)00093-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A unique concept and method for the determination of the total plant sterol content as sum of free sterols (FS), steryl esters (SE), steryl glycosides (SG) and acylated steryl glycosides (ASG) in different plant materials (pumpkin seeds, lecithins) and phytopharmaceuticals derived thereof, was developed. For this purpose, a multidimensional sample clean-up protocol based on efficient solid-phase extraction materials was elaborated and the SG were isolated employing a novel phenyl boronic acid modified silica gel material. Along this line also a set of steryl glucosides was synthesised and employed as internal standard and for calibration in the course of quantitative analysis. Final quantification of SG was carried out with reversed-phase HPLC in combination with evaporative light scattering detection (ELSD); the ASG were determined after conversion to SG by mild alkaline hydrolysis. In order to determine the total plant sterol profile the sum of FS and SE was additionally analysed from the unsaponifiable lipid fraction by GC-FID. The yields obtained from recovery tests for the determination of SG using soya lecithin as matrix to which 2, 20 and 40 mg/g of cholesterol-beta-D-glucoside was added were 99.10, 98.07 and 90.00%, and the RSDs were 4.11, 2.62 and 4.50%, respectively. Application related to the qualitative and quantitative analysis of total phytosterol profiles in different plant matrices and extracts demonstrate the validity of the method.
Collapse
Affiliation(s)
- Patrick Breinhölder
- Institute of Analytical Chemistry, University of Vienna, Währingerstrasse 38, A-1090, Vienna, Austria
| | | | | |
Collapse
|