1
|
Latini L, De Araujo DSM, Amato R, Canovai A, Buccarello L, De Logu F, Novelli E, Vlasiuk A, Malerba F, Arisi I, Florio R, Asari H, Capsoni S, Strettoi E, Villetti G, Imbimbo BP, Dal Monte M, Nassini R, Geppetti P, Marinelli S, Cattaneo A. A p75 neurotrophin receptor-sparing nerve growth factor protects retinal ganglion cells from neurodegeneration by targeting microglia. Br J Pharmacol 2024; 181:4890-4919. [PMID: 39252503 DOI: 10.1111/bph.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Retinal ganglion cells (RGCs) are the output stage of retinal information processing, via their axons forming the optic nerve (ON). ON damage leads to axonal degeneration and death of RGCs, and results in vision impairment. Nerve growth factor (NGF) signalling is crucial for RGC operations and visual functions. Here, we investigate a new neuroprotective mechanism of a novel therapeutic candidate, a p75-less, TrkA-biased NGF agonist (hNGFp) in rat RGC degeneration, in comparison with wild type human NGF (hNGFwt). EXPERIMENTAL APPROACH Both neonate and adult rats, whether subjected or not to ON lesion, were treated with intravitreal injections or eye drops containing either hNGFp or hNGFwt. Different doses of the drugs were administered at days 1, 4 or 7 after injury for a maximum of 10 days, when immunofluorescence, electrophysiology, cellular morphology, cytokine array and behaviour studies were carried out. Pharmacokinetic evaluation was performed on rabbits treated with hNGFp ocular drops. RESULTS hNGFp exerted a potent RGC neuroprotection by acting on microglia cells, and outperformed hNGFwt in rescuing RGC degeneration and reducing inflammatory molecules. Delayed use of hNGFp after ON lesion resulted in better outcomes compared with treatment with hNGFwt. Moreover, hNGFp-based ocular drops were less algogenic than hNGFwt. Pharmacokinetic measurements revealed that biologically relevant quantities of hNGFp were found in the rabbit retina. CONCLUSIONS AND IMPLICATIONS Our data point to microglia as a new cell target through which NGF-induced TrkA signalling exerts neuroprotection of the RGC, emphasizing hNGFp as a powerful treatment to tackle retinal degeneration.
Collapse
Affiliation(s)
- Laura Latini
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Lucia Buccarello
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Elena Novelli
- Institute of Neuroscience, Italian National Research Council-CNR, Pisa, Italy
| | - Anastasiia Vlasiuk
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Hiroki Asari
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Simona Capsoni
- BIO@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, Italian National Research Council-CNR, Pisa, Italy
| | - Gino Villetti
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome, Italy
- BIO@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
2
|
Napoli D, Orsini N, Salamone G, Calvello MA, Capsoni S, Cattaneo A, Strettoi E. Human NGF "Painless" Ocular Delivery for Retinitis Pigmentosa: An In Vivo Study. eNeuro 2024; 11:ENEURO.0096-24.2024. [PMID: 39293937 PMCID: PMC11412101 DOI: 10.1523/eneuro.0096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 09/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a family of genetically heterogeneous diseases still without a cure. Despite the causative genetic mutation typically not expressed in cone photoreceptors, these cells inevitably degenerate following the primary death of rods, causing blindness. The reasons for the "bystander" degeneration of cones are presently unknown but decrement of survival factors, oxidative stress, and inflammation all play a role. Targeting these generalized biological processes represents a strategy to develop mutation-agnostic therapies for saving vision in large populations of RP individuals. A classical method to support neuronal survival is by employing neurotrophic factors, such as NGF. This study uses painless human NGF (hNGFp), a TrkA receptor-biased variant of the native molecule with lower affinity for nociceptors and limited activity as a pain inducer; the molecule has identical neurotrophic power of the native form but a reduced affinity for the p75NTR receptors, known to trigger apoptosis. hNGFp has a recognized activity on brain microglial cells, which are induced to a phenotype switch from a highly activated to a more homeostatic configuration. hNGFp was administered to RP-like mice in vivo with the aim of decreasing retinal inflammation and also providing retinal neuroprotection. However, the ability of this treatment to counteract the bystander degeneration of cones remained limited.
Collapse
Affiliation(s)
- Debora Napoli
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | | | | | - Simona Capsoni
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Roma 00161, Italy
| | | |
Collapse
|
3
|
Yavuz Saricay L, Gonzalez Monroy JE, Fulton AB. Can Nerve Growth Factor (NGF) Be a Treatment Option for Pediatric Eye Diseases? Semin Ophthalmol 2023:1-6. [PMID: 36683264 DOI: 10.1080/08820538.2023.2168485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A critical review of mechanisms of action and pharmacokinetics of nerve growth factor (NGF), including topical administration, and the studies showing the NGF treatment for anterior and posterior segment diseases in adult and pediatric population are summarized in our paper. Nerve growth factor is commonly used for many different ocular conditions in the adult population to promote nerve regeneration or cellular rescue. Clinical trials for recombinant human NGF have also treated several challenging ocular conditions, such as neurotrophic keratopathy, glaucoma, and retinitis pigmentosa with cystoid macular edema. The safety and efficacy of NGF have been demonstrated in pediatric patients as well. This leads us to consider new applications of NGF for the treatment of pediatric eye diseases.
Collapse
Affiliation(s)
- Leyla Yavuz Saricay
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jose Efren Gonzalez Monroy
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Li B, Ning B, Yang F, Guo C. Nerve Growth Factor Promotes Retinal Neurovascular Unit Repair: A Review. Curr Eye Res 2022; 47:1095-1105. [PMID: 35499266 DOI: 10.1080/02713683.2022.2055084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: The purpose of this paper is to investigate how the imbalance of neurogenic factor (NGF) and its precursor (pro-NGF) mediates structural and functional impairment of retinal neurovascular unit (RNVU) that plays a role in retinal degenerative diseases.Methods: A literature search of electronic databases was performed.Results: The pro-apoptotic effect of pro-NGF and the pro-growth effect of NGF are essential for the pathological and physiological activities of RNVU. Studies show that NGF-based treatment of retinal degenerative diseases, including glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, has achieved remarkable efficacy.Conclusions: RNVU plays a complex and multifaceted role in retinal degenerative diseases. The exploration of the differential signaling expression of proNGF-NGF homeostasis under physiological and pathological conditions, and the corresponding pathological processes induced by its regulation, has prompted us to focus on earlier retinal neuroprotective therapeutic strategies to prevent retinal degenerative diseases.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Bobiao Ning
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Fan Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
5
|
Shalaby WS, Ahmed OM, Waisbourd M, Katz LJ. A Review of Potential Novel Glaucoma Therapeutic Options Independent of Intraocular Pressure. Surv Ophthalmol 2021; 67:1062-1080. [PMID: 34890600 DOI: 10.1016/j.survophthal.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma, a progressive optic neuropathy characterized by retinal ganglion cell degeneration and visual field loss, is the leading cause of irreversible blindness worldwide. Intraocular pressure (IOP) is presently the only modifiable risk factor demonstrated to slow or halt disease progression; however, glaucomatous damage persists in almost 50% of patients despite significant IOP reduction. Many studies have investigated the non-IOP-related risk factors that contribute to glaucoma progression as well as interventions that can prevent or delay glaucomatous neurodegeneration and preserve vision throughout life, independently of IOP. A vast number of experimental studies have reported effective neuroprotection in glaucoma, and clinical studies are ongoing attempting to provide strong evidence of effectiveness of these interventions. In this review, we look into the current understanding of the pathophysiology of glaucoma and explore the recent advances in non-IOP related strategies for neuroprotection and neuroregeneration in glaucoma.
Collapse
Key Words
- AMD, Age-related macular degeneration
- BDNF, Brain derived neurotrophic factor
- CNTF, Ciliary neurotrophic factor
- GDNF, Glial‐derived neurotrophic factor
- Glaucoma
- IOP, Intraocular pressure
- LoGTS, Low-Pressure Glaucoma Treatment Study
- MRI, Magnetic resonance imaging
- MSCs, Mesenchymal stem cells
- NGF, Nerve growth factor
- NTG, Normal tension glaucoma
- OCTA, Optical coherence tomography angiography
- PBM, hotobiomodulation
- PDGF, Platelet derived growth factor
- POAG, Primary open angle glaucoma
- RGCs, Retinal ganglion cells
- TNF-α, Tumor necrosis factor- α
- bFGF, Basic fibroblast growth factor
- gene therapy
- intracranial pressure
- intraocular pressure
- neuroprotection
- ocular blood flow
- oxidative stress
- retinal ganglion cells
- stem cell therapy
Collapse
Affiliation(s)
- Wesam Shamseldin Shalaby
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Department of Ophthalmology, Tanta Medical School, Tanta University, Tanta, Gharbia, Egypt
| | - Osama M Ahmed
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Yale University School of Medicine, New Haven, CT, USA
| | - Michael Waisbourd
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Department of Ophthalmology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - L Jay Katz
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
6
|
NGF Eye Administration Recovers the TrkB and Glutamate/GABA Marker Deficit in the Adult Visual Cortex Following Optic Nerve Crush. Int J Mol Sci 2021; 22:ijms221810014. [PMID: 34576177 PMCID: PMC8471133 DOI: 10.3390/ijms221810014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.
Collapse
|
7
|
Sahli E, Arslan U, Özmert E, İdil A. Evaluation of the effect of subtenon autologous platelet-rich plasma injections on visual functions in patients with retinitis pigmentosa. Regen Med 2021; 16:131-143. [PMID: 33754798 DOI: 10.2217/rme-2020-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The photoreceptors in retinitis pigmentosa (RP) remain in dormant status for a while with a decrease in the growth factors in their microenvironment before apoptosis. Growth factors reduce retinal degeneration and apoptosis in animal models. Materials & methods: The data of 188 eyes of 94 patients who were injected with autologous platelet-rich plasma (PRP) into the subtenon space three-times every 2 weeks were evaluated retrospectively. Results: Statistically significant improvements in visual acuity, visual field and fixation stability were detected after treatment. When the treatment response of the patients' better-seeing eye compared with the response of the other eye, there was no statistically significant difference. Conclusion: The PRP treatment has a favorable effect on visual functions in patients with RP. This approach is promising as it is safe and easy.
Collapse
Affiliation(s)
- Esra Sahli
- Department of Ophthalmology, Ankara University, School of Medicine, Ankara 06620, Turkey
| | - Umut Arslan
- Ankara University, Technopolis, Ankara 06830, Turkey.,Bioretina Eye Clinic, Ankara 06560, Turkey
| | - Emin Özmert
- Department of Ophthalmology, Ankara University, School of Medicine, Ankara 06620, Turkey
| | - Aysun İdil
- Department of Ophthalmology, Ankara University, School of Medicine, Ankara 06620, Turkey
| |
Collapse
|
8
|
Kanu LN, Ciolino JB. Nerve Growth Factor as an Ocular Therapy: Applications, Challenges, and Future Directions. Semin Ophthalmol 2021; 36:224-231. [PMID: 33641595 DOI: 10.1080/08820538.2021.1890793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nerve growth factor (NGF), the prototypical neurotrophin first discovered in the 1950s, has recently garnered increased interest as a therapeutic agent promoting neuronal health and regeneration. After gaining orphan drug status within the last decade, NGF-related research and drug development has accelerated. The purpose of this article is to review the preclinical and clinical evidence of NGF in various applications, including central and peripheral nervous system, skin, and ophthalmic disorders. We focus on the ophthalmic applications including not only the FDA-approved indication of neurotrophic keratitis but also retinal disease and glaucoma. NGF represents a promising therapy whose therapeutic profile is evolving. The challenges related to this therapy are reviewed, along with possible solutions and future directions.
Collapse
Affiliation(s)
- Levi N Kanu
- 1. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Joseph B Ciolino
- 1. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Neurotrophic Factors in Glaucoma and Innovative Delivery Systems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glaucoma is a neurodegenerative disease and a worldwide leading cause of irreversible vision loss. In the last decades, high efforts have been made to develop novel treatments effective in inducing protection and/or recovery of neural function in glaucoma, including neurotrophic factors (NTFs). These approaches have shown encouraging data in preclinical setting; however, the challenge of sustained, targeted delivery to the retina and optic nerve still prevents the clinical translation. In this paper, the authors review and discuss the most recent advances for the use of NTFs treatment in glaucoma, including intraocular delivery. Novel strategies in drug and gene delivery technology for NTFs are proving effective in promoting long-term retinal ganglion cells (RGCs) survival and related functional improvements. Results of experimental and clinical studies evaluating the efficacy and safety of biodegradable slow-release NTF-loaded microparticle devices, encapsulated NTF-secreting cells implants, mimetic ligands for NTF receptors, and viral and non-viral NTF gene vehicles are discussed. NTFs are able to prevent and even reverse apoptotic ganglion cell death. Nevertheless, neuroprotection in glaucoma remains an open issue due to the unmet need of sustained delivery to the posterior segment of the eye. The recent advances in intraocular delivery systems pave the way for possible future use of NTFs in clinical practice for the treatment of glaucoma.
Collapse
|
10
|
Kahraman NS, Oner A. Subtenon Injection of Autologous Platelet-Rich Plasma in Retinitis Pigmentosa: Is It a New Therapeutic Option? ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ojoph.2020.101010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Mesentier-Louro LA, Rosso P, Carito V, Mendez-Otero R, Santiago MF, Rama P, Lambiase A, Tirassa P. Nerve Growth Factor Role on Retinal Ganglion Cell Survival and Axon Regrowth: Effects of Ocular Administration in Experimental Model of Optic Nerve Injury. Mol Neurobiol 2019; 56:1056-1069. [PMID: 29869196 DOI: 10.1007/s12035-018-1154-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023]
Abstract
Retinal ganglion cell (RGC) degeneration occurs within 2 weeks following optic nerve crush (ONC) as a consequence of reduced retro-transport of growth factors including nerve growth factor (NGF). The hypothesis that intravitreal (ivt) and eye drop (ed) administration of recombinant human NGF (rhNGF) might counteract ONC in adult rats is explored in this study. We found that both ivt- and ed-rhNGF reduced RGC loss and stimulated axonal regrowth. Chiefly, survival and regenerative effects of rhNGF were associated with a reduction of cells co-expressing Nogo-A/p75NTR at crush site borders, which contribute to glia scar formation following nerve injury, and induce further degeneration. We also found that ocular application of rhNGF reduced p75NTR and proNGF and enhanced phosphorylation of TrkA and its intracellular signals at retina level. Nogo-R and Rock2 expression was also normalized by ed-rhNGF treatment in both ONC and contralateral retina. Our findings that ocular applied NGF reaches and exerts biological actions on posterior segment of the eye give a further insight into the neurotrophin diffusion/transport through eye structures and/or their trafficking in optic nerve. In addition, the use of a highly purified NGF form in injury condition in which proNGF/p75NTR binding is favored indicates that increased availability of mature NGF restores the balance between TrkA and p75NGF, thus resulting in RGC survival and axonal growth. In conclusion, ocular applied NGF is confirmed as a good experimental paradigm to study mechanisms of neurodegeneration and regeneration, disclose biomarkers, and time windows for efficacy treatment following cell or nerve injury.
Collapse
Affiliation(s)
- Louise A Mesentier-Louro
- Eye Repair Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pamela Rosso
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Rama
- Eye Repair Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Lambiase
- Section of Ophthalmology, Department of Sense Organs, University Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy.
| |
Collapse
|
12
|
Rocco ML, Soligo M, Manni L, Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol 2018; 16:1455-1465. [PMID: 29651949 PMCID: PMC6295934 DOI: 10.2174/1570159x16666180412092859] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/02/2022] Open
Abstract
Since its discovery, nerve growth factor (NGF) has long occupied a critical role in developmental and adult neurobiology for its many important regulatory functions on the survival, growth and differentiation of nerve cells in the peripheral and central nervous system. NGF is the first discovered member of a family of neurotrophic factors, collectively indicated as neurotrophins, (which include brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5). NGF was discovered for its action on the survival and differentiation of selected populations of peripheral neurons. Since then, an enormous number of basic and human studies were undertaken to explore the role of purified NGF to prevent the death of NGF-receptive cells. These studies revealed that NGF possesses important therapeutic properties, after topical administration, on human cutaneous pressure ulcer, corneal ulcers, glaucoma, retinal maculopathy, Retinitis Pigmentosa and in pediatric optic gliomas and brain traumas. The aim of this review is to present our previous, recent and ongoing clinical studies on the therapeutic properties of NGF.
Collapse
Affiliation(s)
| | | | | | - Luigi Aloe
- Address correspondence to this author at the Fondazione IRET ONLUS, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia (BO), Italy; Tel: +39-051-798776; Fax: +39-051-799673; E-mail:
| |
Collapse
|
13
|
Tirassa P, Rosso P, Iannitelli A. Ocular Nerve Growth Factor (NGF) and NGF Eye Drop Application as Paradigms to Investigate NGF Neuroprotective and Reparative Actions. Methods Mol Biol 2018; 1727:19-38. [PMID: 29222770 DOI: 10.1007/978-1-4939-7571-6_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The eye is a central nervous system structure that is uniquely accessible to local treatment. Through the ocular surface, it is possible to access the retina, optic nerve, and brain. Animal models of retina degeneration or optic nerve crush could thus serve as tools to investigate whether and how factors, which are anterogradely or retrogradely transported through the optic nerve, might contribute to activate neuroprotection and eventually regeneration. Among these factors, nerve growth factor (NGF) plays a crucial role during development of the visual system, as well as during the entire life span, and in pathological conditions. The ability of NGF to exert survival and trophic actions on the retina and brain cells when applied intraocularly and topically as eye drops is critically reviewed here, together with the effects of ocular neurotrophins on neuronal pathways influencing body rhythm, cognitions, and behavioral functions. The latest data from animal models and humans are presented, and the mechanism of action of ocularly administered NGF is discussed. NGF eye drops are proposed as an experimental strategy to investigate the role and cellular targets of neurotrophins in the mechanism(s) underlying neurodegeneration/regeneration and their involvement in the regulation of neurological and behavioral dysfunctions.
Collapse
Affiliation(s)
- Paola Tirassa
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.
| | - Pamela Rosso
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.,Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Angela Iannitelli
- Department of Human Sciences, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Garcia TB, Hollborn M, Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev 2017; 34:43-57. [PMID: 27964967 DOI: 10.1016/j.cytogfr.2016.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023]
Abstract
This review summarizes the present knowledge concerning the retinal localization of the nerve growth factor (NGF), its precursor proNGF, and the receptors TrkA and p75NTR in the developing and mature rodent retina. We further discuss the changes in the expression of NGF and the receptors in experimental models of retinal disorders and diseases like inherited retinitis pigmentosa, retinal detachment, glaucoma, and diabetic retinopathy. Since proNGF is now recognized as a bioactive signaling molecule which induces cell death through p75NTR activation, the role of proNGF in the induction of retinal cell loss under neurodegenerative conditions is also highlighted. In addition, we present the evidences for a potential therapeutic intervention with NGF for the treatment of retinal neurodegenerative diseases. Different strategies have been developed and experimentally tested in mice and rats in order to reduce cell loss and Müller cell gliosis, e.g., increasing the availability of endogenous NGF, administration of exogenous NGF, activation of TrkA, and inhibition of p75NTR. Here, we discuss the several lines of evidence supporting a protective effect of NGF on retinal cell loss, with specific emphasis on photoreceptor and retinal ganglion cell degeneration. A better understanding of the mechanisms underlying the effects of NGF and proNGF in the modulation of neurodegeneration and gliosis in the retina will help to develop efficient therapeutic strategies for various retinal diseases.
Collapse
Affiliation(s)
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Sacchetti M, Mantelli F, Rocco ML, Micera A, Brandolini L, Focareta L, Pisano C, Aloe L, Lambiase A. Recombinant Human Nerve Growth Factor Treatment Promotes Photoreceptor Survival in the Retinas of Rats with Retinitis Pigmentosa. Curr Eye Res 2017. [PMID: 28632034 DOI: 10.1080/02713683.2017.1279634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Increasing evidence suggests that nerve growth factor (NGF) exerts protective effects against retinal degeneration in animal models of retinitis pigmentosa (RP). This study aims at investigating the effects of intravitreal injection of recombinant human NGF (rhNGF) on retinal photoreceptors apoptosis in an animal model of RP, the Royal College of Surgeons (RCS) rats. METHODS Thirty-six RCS rats were treated with intravitreal injection of rhNGF or murine NGF (mNGF) or vehicle at 20 postnatal days (pd) and sacrificed at 40 pd. The eyes were enucleated and evaluated by histology, flow cytometric analysis for rhodopsin expression, Western blot for TrkA and activated (phosphorylated) TrkA (pTrkA) levels, and TUNEL assay for apoptosis' detection. RESULTS RCS rats showed a significant retinal degeneration associated with cell apoptosis at 40 pd when compared to wild-type animals. Histology showed that rhNGF intravitreal treatment significantly increased retinal thickness when compared to untreated eyes. Photoreceptors' number evaluated by flow cytometry was significantly increased in both intravitreal rhNGF- and mNGF-treated groups when compared to untreated eyes. This protective effect was associated with an increase in TrkA and activated pTrkA levels and an inhibition of apoptosis. Intravitreal NGF injection was well tolerated and did not show clinical and histological signs of adverse effects. CONCLUSIONS Intravitreal rhNGF injection proved safe and effective in favoring retinal cell survival in RCS rats. This is the first report showing that the novel rhNGF already proved safe in a phase I study exerts a biologic effect similar to the well-characterized mNGF-induced retinal protection. These results may trigger further studies to investigate rhNGF administration for the treatment of progressive degenerative retinal disorders such as retinitis pigmentosa.
Collapse
Affiliation(s)
- Marta Sacchetti
- a Cornea and Ocular Surface Unit , Ospedale San Raffaele , Milan , Italy.,b Department of Sense Organs , University Sapienza , Rome , Italy
| | | | - Maria Luisa Rocco
- d Institute of Cell Biology and Neurobiology , Rome , Italy.,e NGF Onlus , Rome Italy
| | | | | | | | | | - Luigi Aloe
- d Institute of Cell Biology and Neurobiology , Rome , Italy.,e NGF Onlus , Rome Italy
| | | |
Collapse
|
16
|
Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve Growth Factor: A Focus on Neuroscience and Therapy. Curr Neuropharmacol 2016; 13:294-303. [PMID: 26411962 PMCID: PMC4812798 DOI: 10.2174/1570159x13666150403231920] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, National Research Council (CNR); NGF Section, Via Fosso di Fiorano, 64/65 - 00143 Rome, Italy.
| | | | | | | |
Collapse
|
17
|
Sun J, Mandai M, Kamao H, Hashiguchi T, Shikamura M, Kawamata S, Sugita S, Takahashi M. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice. Stem Cells 2016; 33:1543-53. [PMID: 25728228 DOI: 10.1002/stem.1960] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/26/2014] [Indexed: 01/03/2023]
Abstract
Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.
Collapse
Affiliation(s)
- Jianan Sun
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology (CDB), Kobe, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Falsini B, Iarossi G, Chiaretti A, Ruggiero A, Manni L, Luigi M, Galli-Resta L, Corbo G, Abed E. NGF eye-drops topical administration in patients with retinitis pigmentosa, a pilot study. J Transl Med 2016; 14:8. [PMID: 26748988 PMCID: PMC4707001 DOI: 10.1186/s12967-015-0750-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
Background
Preclinical trials have shown beneficial effects of nerve growth factor (NGF) administration on visual function in animal models of retinitis pigmentosa (RP). The aim of this pilot study was to explore the potential efficacy of short term NGF eye drops treatment in patients affected by RP. Methods
The trial consisted in 10 days daily administration of murine NGF as eye-drops for a total dose of 1 mg NGF/pt. Eight RP patients at an advanced stage of the disease were included in the trial. To monitor safety and potential adverse effects subjects underwent standard clinical measures and were requested to report any general or topic alterations following NGF assumption. Retinal function was assessed at baseline and after treatment by best-corrected visual acuity measurement (BCVA), macular focal electroretinogram (fERG) recording and Goldmann visual field testing. Results A transient tolerable local corneal irritation was the only adverse effect reported. fERG and BCVA remained within the limits determined by test–retest analysis of a large cohort of RP patients. Three patients reported a subjective feeling of improved visual performance. This was associated to a temporary enlargement of the visual field in all three patients and to improved fERG in two of the three. Conclusions Short-term administration of NGF eye-drops caused neither significant adverse effects nor visual function losses in the tested RP patients. A minority of patients experienced an improvement of visual performance as shown by Goldmann visual field and fERG. This study supports the safety and possible efficacy of NGF eye-drops administration in RP patients. Trial registration: EudraCT n. 2008-004561-26
Collapse
Affiliation(s)
- Benedetto Falsini
- Institute of Ophthalmology, Policlinico Gemelli, Catholic University of Sacro Cuore, Rome, Italy.
| | - Giancarlo Iarossi
- Ophthalmology Department, Ospedale "Bambin Gesù", 00165, Rome, Italy.
| | - Antonio Chiaretti
- Institute of Pediatrics, Policlinico Gernelli, Catholic University, Rome, Italy.
| | - Antonio Ruggiero
- Institute of Pediatrics, Policlinico Gernelli, Catholic University, Rome, Italy.
| | - Luigi Manni
- Institute of Translational Pharmacology, CNR, Rome, Italy.
| | | | | | - Giovanni Corbo
- Institute of Ophthalmology, Policlinico Gemelli, Catholic University of Sacro Cuore, Rome, Italy.
| | - Edoardo Abed
- Institute of Ophthalmology, Policlinico Gemelli, Catholic University of Sacro Cuore, Rome, Italy.
| |
Collapse
|
19
|
Safety and pharmacokinetics of escalating doses of human recombinant nerve growth factor eye drops in a double-masked, randomized clinical trial. BioDrugs 2015; 28:275-83. [PMID: 24327173 PMCID: PMC4030100 DOI: 10.1007/s40259-013-0079-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND AND OBJECTIVES Nerve growth factor (NGF) is a neurotrophin with therapeutic possibilities that extend from the nervous system to the eye. We tested the safety, maximal tolerated dose, pharmacokinetics, and antigenicity of a novel human recombinant NGF (rhNGF) eye-drop formulation in a phase I study. METHODS This prospective, randomized, double-masked, vehicle-controlled trial, sponsored by Dompé SpA (registered as NCT01744704 at ClinicalTrials.gov), enrolled 74 healthy volunteers (24 females, 50 males, age 40.2 ± 11.8 years). Subjects were randomized in three cohorts to receive (1) a single eye-drop containing 0.0175, 0.175, or 0.7 μg rhNGF; (2) a single ascending dose of rhNGF eye drops three times a day for 1 day (total daily dose 2.1, 6.3, or 18.9 μg), or vehicle; or (3) a multiple ascending dose of rhNGF eye drops three times a day for 5 days (total dose 10.5, 31.5, or 94.5 μg), or vehicle. Outcome measures included blood chemistry, urinalyses, vital signs, electrocardiograms (ECGs), serum NGF antibodies, ocular and systemic adverse events (AEs), visual acuity, tear function, intraocular pressure, fundus oculi, and ocular symptoms. RESULTS Administration of rhNGF eye drops did not result in a significant increase of circulating NGF levels and no antidrug antibodies were detected in serum. No serious AEs were recorded, and a few mild, transient ocular AEs related to rhNGF administration were reported only at the highest concentration. CONCLUSIONS rhNGF eye drops were well tolerated, with no detectable clinical evidence of systemic AEs. These results pave the way for the development of clinical trials on rhNGF in ophthalmology.
Collapse
|
20
|
Rocco ML, Balzamino BO, Petrocchi Passeri P, Micera A, Aloe L. Effect of purified murine NGF on isolated photoreceptors of a rodent developing retinitis pigmentosa. PLoS One 2015; 10:e0124810. [PMID: 25897972 PMCID: PMC4405340 DOI: 10.1371/journal.pone.0124810] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 03/18/2015] [Indexed: 01/27/2023] Open
Abstract
A number of different studies have shown that neurotrophins, including nerve growth factor (NGF) support the survival of retinal ganglion neurons during a variety if insults. Recently, we have reported that that eye NGF administration can protect also photoreceptor degeneration in a mice and rat with inherited retinitis pigmentosa. However, the evidence that NGF acts directly on photoreceptors and that other retinal cells mediate the NGF effect could not be excluded. In the present study we have isolated retinal cells from rats with inherited retinitis pigmentosa (RP) during the post-natal stage of photoreceptor degenerative. In presence of NGF, these cells are characterized by enhanced expression of NGF-receptors and rhodopsin, the specific marker of photoreceptor and better cell survival, as well as neuritis outgrowth. Together these observations support the hypothesis that NGF that NGF acts directly on photoreceptors survival and prevents photoreceptor degeneration as previously suggested by in vivo studies.
Collapse
Affiliation(s)
| | | | - Pamela Petrocchi Passeri
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
- Dept. Medicine of Systems, University of Rome Tor Vergata, Rome, Italy
| | | | - Luigi Aloe
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
- * E-mail:
| |
Collapse
|
21
|
Chen Q, Wang H, Liao S, Gao Y, Liao R, Little PJ, Xu J, Feng ZP, Zheng Y, Zheng W. Nerve growth factor protects retinal ganglion cells against injury induced by retinal ischemia-reperfusion in rats. Growth Factors 2015; 33:149-59. [PMID: 25707536 DOI: 10.3109/08977194.2015.1010642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, we investigated the protective effect of mouse nerve growth factor (NGF) on retinal ganglion cell (RGC) injury induced by retinal ischemia-reperfusion (RIR) in rats and explored its possible mechanisms of action. RIR caused a significant injury to RGCs and an obvious impairment of the inner retina functions, which could be seen from flash electroretinogram and flash visual evoked potential recordings. RIR also increased the expression of the apoptotic protein Bax while decreasing the expression of Bcl-2 and the phosphorylation of protein kinase B (Akt) in RGCs. Preinjection (i.m.) of NGF for 22 d reversed the injury induced by RIR and ameliorated the inner retina functions. NGF also reduced the expression of Bax and reversed the reduction of Bcl-2 and the phosphorylated Akt induced by RIR. These results indicate that NGF produces a neuroprotective effect on RGCs against RIR injury and the protective effect of NGF is mainly mediated by the PI-3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mantelli F, Sacchetti M, Scuderi G, Lambiase A. A closer look at nerve growth factor: from biology to clinical trials in ophthalmology. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1006196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Abed E, Corbo G, Falsini B. Neurotrophin Family Members as Neuroprotectants in Retinal Degenerations. BioDrugs 2014; 29:1-13. [DOI: 10.1007/s40259-014-0110-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Recent advances of stem cell therapy for retinitis pigmentosa. Int J Mol Sci 2014; 15:14456-74. [PMID: 25141102 PMCID: PMC4159862 DOI: 10.3390/ijms150814456] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive loss of photoreceptors and eventually leads to retina degeneration and atrophy. Until now, the exact pathogenesis and etiology of this disease has not been clear, and many approaches for RP therapies have been carried out in animals and in clinical trials. In recent years, stem cell transplantation-based attempts made some progress, especially the transplantation of bone marrow-derived mesenchymal stem cells (BMSCs). This review will provide an overview of stem cell-based treatment of RP and its main problems, to provide evidence for the safety and feasibility for further clinical treatment.
Collapse
|
25
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
26
|
|
27
|
NGF and VEGF effects on retinal ganglion cell fate: new evidence from an animal model of diabetes. Eur J Ophthalmol 2013; 24:247-53. [PMID: 24030532 DOI: 10.5301/ejo.5000359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate if the survival effects of nerve growth factor (NGF) eyedrops on retinal ganglion cell (RGCs) are related to vascular endothelial growth factor (VEGF) in a rat model of diabetic retinopathy. METHODS Diabetes was induced in adult rats by streptozotocin injection and changes in the NGF/TrkA and VEGF retina levels were related to the progression of RGC loss. Diabetic rats were subjected to administration of NGF eyedrops or intraocular injection of anti-NGF antibody. All morphologic, immunohistochemical, and biochemical analyses were performed on whole retinas dissected after 7 or 11 weeks after diabetes induction. RESULTS Diabetes was successfully induced in rats as shown by glycemic levels >250 mg/dL. The NGF levels increased in diabetic retinas at 7 weeks and decreased at 11 weeks, while VEGF levels increased at all time points. The RGC loss in diabetic retinopathy worsened with anti-NGF administration, which did not alter retina VEGF levels significantly. Administration of NGF eyedrops restored TrkA levels in the retina, and protected RGCs from degeneration without influencing VEGF levels. CONCLUSIONS The early increase of NGF in diabetic retina might be an endogenous response for protecting RGCs from degeneration. This protective mechanism is impaired at 11 weeks following diabetes induction, and results in a marked RGC degeneration that is improved by exogenous NGF administration and worsened by anti-NGF. The observed NGF-induced neuroprotection on damaged RGCs was not associated with changes in VEGF retina levels, which were constantly high in diabetic rats and were not altered by anti-NGF administration.
Collapse
|
28
|
Falsini B, Bush RA, Sieving PA. Neuroprotection. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012. [PMID: 23190582 PMCID: PMC3543237 DOI: 10.1186/1479-5876-10-239] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The physiological role of the neurotrophin nerve growth factor (NGF) has been characterized, since its discovery in the 1950s, first in the sensory and autonomic nervous system, then in central nervous, endocrine and immune systems. NGF plays its trophic role both during development and in adulthood, ensuring the maintenance of phenotypic and functional characteristic of several populations of neurons as well as immune cells. From a translational standpoint, the action of NGF on cholinergic neurons of the basal forebrain and on sensory neurons in dorsal root ganglia first gained researcher's attention, in view of possible clinical use in Alzheimer's disease patients and in peripheral neuropathies respectively. The translational and clinical research on NGF have, since then, enlarged the spectrum of diseases that could benefit from NGF treatment, at the same time highlighting possible limitations in the use of the neurotrophin as a drug. In this review we give a comprehensive account for almost all of the clinical trials attempted until now by using NGF. A perspective on future development for translational research on NGF is also discussed, in view of recent proposals for innovative delivery strategies and/or for additional pathologies to be treated, such as ocular and skin diseases, gliomas, traumatic brain injuries, vascular and immune diseases.
Collapse
Affiliation(s)
- Luigi Aloe
- Cellular Biology and Neurobiology Institute, CNR, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | | | | |
Collapse
|
30
|
Huo SJ, Li YC, Xie J, Li Y, Raisman G, Zeng YX, He JR, Weng CH, Yin ZQ. Transplanted olfactory ensheathing cells reduce retinal degeneration in Royal College of Surgeons rats. Curr Eye Res 2012; 37:749-58. [PMID: 22691022 DOI: 10.3109/02713683.2012.697972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF THE STUDY Retinitis pigmentosa (RP) is a group of genetic disorders and a slow loss of vision that is caused by a cascade of retinal degenerative events. We examined whether these retinal degenerative events were reduced after cultured mixtures of adult olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts (ONFs) were transplanted into the subretinal space of 1-month-old RCS rat, a classic model of RP. MATERIALS AND METHODS The changes in retinal photoreceptors and Müller cells of RCS rats after cell transplantation were observed by the expression of recoverin and glial fibrillary acidic protein (GFAP), counting peanut agglutinin (PNA)-positive cone outer segments and calculating the relative apoptotic area. The retinal function was also evaluated by Flash electroretinography (ERG). To further investigate the mechanisms, by which OECs/ONFs play important roles in the transplanted retinas, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) secretion of the cultured cells were analyzed by ELISA. The ability of OECs/ONFs to ingest porcine retinal outer segments and the amount of phagocytosis were compared with retinal pigment epithelium (RPE) cells. RESULTS Our research showed that the transplantation of OECs/ONFs mixtures restored recoverin expression, protected retinal outer segments, increased PNA-positive cone outer segments, reduced caspase-positive apoptotic figures, downregulated GFAP, and maintained the b-wave of the ERG. Cultured OECs/ONFs expressed and secreted NGF, BDNF, and bFGF which made contributions to assist survival of the photoreceptors. An in vitro phagocytosis assay showed that OECs, but not ONFs, phagocytosed porcine retinal outer segments, and the phagocytic ability of OECs was even superior to that of RPE cells. CONCLUSIONS These findings demonstrate that transplantation of OECs/ONFs cleaned up the accumulated debris in subretinal space, and provided an intrinsic continuous supply of neurotrophic factors. It suggested that transplantation of OECs/ONFs might be a possible future route for protection of the retina and reducing retinal degeneration in RP.
Collapse
Affiliation(s)
- Shu Jia Huo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chong Qing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jee D, Lee WK. Inhibitory Effect of Intravitreal Injection of Bevacizumab on Nerve Growth Factor. Curr Eye Res 2011; 37:408-15. [DOI: 10.3109/02713683.2011.632108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Le Hericium erinaceus: des propriétés essentiellement dépendantes du neuronal growth factor. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s10298-010-0601-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Vasoregression linked to neuronal damage in the rat with defect of polycystin-2. PLoS One 2009; 4:e7328. [PMID: 19806208 PMCID: PMC2752170 DOI: 10.1371/journal.pone.0007328] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/28/2009] [Indexed: 11/19/2022] Open
Abstract
Background Neuronal damage is correlated with vascular dysfunction in the diseased retina, but the underlying mechanisms remain controversial because of the lack of suitable models in which vasoregression related to neuronal damage initiates in the mature retinal vasculature. The aim of this study was to assess the temporal link between neuronal damage and vascular patency in a transgenic rat (TGR) with overexpression of a mutant cilia gene polycystin-2. Methods Vasoregression, neuroglial changes and expression of neurotrophic factors were assessed in TGR and control rats in a time course. Determination of neuronal changes was performed by quantitative morphometry of paraffin-embedded vertical sections. Vascular cell composition and patency were assessed by quantitative retinal morphometry of digest preparations. Glial activation was assessed by western blot and immunofluorescence. Expression of neurotrophic factors was detected by quantitative PCR. Findings At one month, number and thickness of the outer nuclear cell layers (ONL) in TGR rats were reduced by 31% (p<0.001) and 17% (p<0.05), respectively, compared to age-matched control rats. Furthermore, the reduction progressed from 1 to 7 months in TGR rats. Apoptosis was selectively detected in the photoreceptor in the ONL, starting after one month. Nevertheless, TGR and control rats showed normal responses in electroretinogram at one month. From the second month onwards, TGR retinas had significantly increased acellular capillaries (p<0.001), and a reduction of endothelial cells (p<0.01) and pericytes (p<0.01). Upregulation of GFAP was first detected in TGR retinas after 1 month in glial cells, in parallel with an increase of FGF2 (fourfold) and CNTF (60 %), followed by upregulation of NGF (40 %) at 3 months. Interpretation Our data suggest that TGR is an appropriate animal model for vasoregression related to neuronal damage. Similarities to experimental diabetic retinopathy render this model suitable to understand general mechanisms of maturity-onset vasoregression.
Collapse
|
34
|
Sposato V, Parisi V, Manni L, Antonucci MT, Di Fausto V, Sornelli F, Aloe L. Glaucoma alters the expression of NGF and NGF receptors in visual cortex and geniculate nucleus of rats: effect of eye NGF application. Vision Res 2008; 49:54-63. [PMID: 18938194 DOI: 10.1016/j.visres.2008.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
We investigated the effect of glaucoma (GL) on nerve growth factor (NGF) presence in two brain visual areas. Rats with elevated intraocular pressure (EIOP), induced by hypertonic saline injection in the episcleral vein, were treated with eye topical application of saline or NGF. Rats were subsequently sacrificed, and brain tissues were used for immunohistochemical, biochemical, and molecular analyses. We found that GL alters the basal level of NGF and NGF receptors in brain visual centers and that NGF eye application normalized these deficits. These findings demonstrate that the reduced presence of NGF can arise due to degenerative events in retinal and brain visual areas.
Collapse
Affiliation(s)
- Valentina Sposato
- Institute of Neurobiology and Molecular Medicine, Section of Neurobiology, National Research Council (CNR), Via del Fosso di Fiorano, 64/65, I-00143 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Sun X, Xu X, Wang F, Zhang X, Yu Z, Lu H, Ho PC. Effects of nerve growth factor for retinal cell survival in experimental retinal detachment. Curr Eye Res 2007; 32:765-72. [PMID: 17882709 DOI: 10.1080/02713680701531082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the neuron protective effect of recombined nerve growth factor (rNGF) on retinal cell damage induced by experimental retinal detachment. METHODS Experimental retinal detachment models were created in Sprague-Dawley rats by subretinal injection of sodium hyaluronate. Intravitreal injection of rNGF (5 microg/eye) or phosphate-buffered saline (PBS) was separately applied every 4 days after retinal detachment. The rat eyes were then observed and sacrificed at various time points. Morphologic changes were observed by light microscopy, electron microscopy, and cell counts. Apoptosis of retinal cells was detected by TUNEL assay. RESULTS After retinal detachment, most eyes from NGF-treated groups showed better organized structure of retinal cells than those from the PBS-treated control groups. Cell counts indicated that the nuclei numbers in the outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL) of NGF-treated groups were significantly more than those from PBS-treated control group (p < 0.05) after retinal reattachment. TUNEL-positive cells were identified in ONL, INL, and GCL. They peaked at the fourth day after retinal detachment in both the NGF-treated groups and the control groups. But the cell counts of apoptosis revealed that the NGF-treated retina had less TUNEL-positive cells than the control groups (p < 0.05). CONCLUSIONS The results showed that intravitreal injection of exogenous NGF can protect retinal cells from degeneration and apoptosis in experimental retinal detachment. It may exert its neuroprotection effect by preventing the apoptosis of retinal cells after retinal detachment.
Collapse
Affiliation(s)
- Xiaodong Sun
- Eye Research Institute of Shanghai JiaoTong University, 85 Wu Jin Road, Shanghai 200080, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Ofri R, Narfström K. Light at the end of the tunnel? Advances in the understanding and treatment of glaucoma and inherited retinal degeneration. Vet J 2007; 174:10-22. [PMID: 17307370 DOI: 10.1016/j.tvjl.2006.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 06/21/2006] [Accepted: 08/03/2006] [Indexed: 12/11/2022]
Abstract
Glaucoma and inherited retinal degeneration/dystrophy are leading causes of blindness in veterinary patients. Currently, there is no treatment for the loss of vision that characterizes both groups of diseases. However, this reality may soon change as recent advances in understanding of the disease processes allow researchers to develop new therapies aimed at preventing blindness and restoring vision to blind patients. Elucidating the molecular mechanisms of retinal ganglion cell death in glaucoma patients has led to the development of neuroprotective drugs which protect retinal cells and their function from the disastrous effects of elevated pressure. Identification of the genetic mutation responsible for inherited degenerations and dystrophies of the outer retina has enabled researchers using gene therapy to restore vision to blind dogs. Other patients may benefit from retinal transplantation, stem cell therapy, neuroprotective drugs, nutritional supplementation and even retinal prostheses. It is possible that soon it will be possible to restore sight to some blind patients.
Collapse
Affiliation(s)
- Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel.
| | | |
Collapse
|
37
|
Pagani L, Manni L, Aloe L. Effects of electroacupuncture on retinal nerve growth factor and brain-derived neurotrophic factor expression in a rat model of retinitis pigmentosa. Brain Res 2006; 1092:198-206. [PMID: 16696953 DOI: 10.1016/j.brainres.2006.03.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/17/2006] [Accepted: 03/20/2006] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effect of electroacupuncture (EA) on the progression of retinal degeneration in rats affected by inherited retinitis pigmentosa (IRP) and to correlate this event with the retinal expression of neurotrophins. Thirty-day-old Royal College of Surgeons (RCS) rats were exposed to 25-min-long daily sessions of low-frequency EA for 11 consecutive days. Control-untreated and EA-treated rats were sacrificed 1 h after the last EA session, and their retina removed for biochemical, molecular, and immunohistochemical analyses. Our data revealed that daily sessions of low-frequency EA for 11 days to RCS rats during a critical developmental stage of retinal cell degeneration cause an increase of retinal nerve growth factor (NGF) and NGF high-affinity receptor (TrkA) expression; and increase of outer nuclear layer (ONL) thickness; and enhanced vascularization. These findings suggest the possible beneficial effects of EA treatment in the development of IRP-like retinal degeneration of RCS rats and that the mechanism through which EA might exerts its action on the regulation of NGF and brain-derived neurotrophic factor (BDNF) and/or their receptors in retinal cells.
Collapse
Affiliation(s)
- Lucia Pagani
- Institute of Neurobiology and Molecular Medicine, NGF Section, CNR-EBRI, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | | | | |
Collapse
|
38
|
Frigg R, Wenzel A, Grimm C, Remé CE. [Survival factors in the treatment of hereditary retinal degeneration]. Ophthalmologe 2005; 102:757-63. [PMID: 15990984 DOI: 10.1007/s00347-005-1244-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hereditary retinal degeneration is characterized by apoptotic photoreceptor loss, a process governed by intricate molecular interplay and initiated when proapoptotic signals predominate in the individual cell. Identification of molecules involved and their actions has paved the way for testing the ones with anti-apoptotic functions in models of inherited retinal degeneration. Many of these factors are able to slow the course of the degeneration. However, to date no such treatment has been able to stop or even prevent the devolution of the disorder. Moreover, preservation of morphology does not necessarily correlate with preservation of ERG function. Deepened understanding of the pro- and anti-apoptotic networks is clearly needed for survival factors to be feasible for therapy in humans. In comparison, in a dog model of Leber's congenital amaurosis gene therapy could establish retinal function, thus supplying proof of efficacy of the method.
Collapse
Affiliation(s)
- R Frigg
- Labor für Zellbiologie der Netzhaut, Departement für Ophthalmologie des Universitätsspitals, Zürich, Schweiz.
| | | | | | | |
Collapse
|
39
|
Lenzi L, Coassin M, Lambiase A, Bonini S, Amendola T, Aloe L. Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa. Vision Res 2005; 45:1491-500. [PMID: 15781068 DOI: 10.1016/j.visres.2004.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/20/2004] [Accepted: 12/28/2004] [Indexed: 01/22/2023]
Abstract
NGF is implicated in retinal damage regression. To study whether this is a direct effect or an effect mediated by NGF on other endogenous biological mediators, we investigated the effect of exogenous administration of NGF in RCS rats affected by retinitis pigmentosa. We found that NGF administration exerts a rescue effect on photoreceptors in this animal model. NGF injection enhances brain-derived neurotrophic factor, beta-fibroblast growth factor, transforming growth factor-beta, vascular endothelial factor and neuropeptide-Y. This suggests that NGF has an effect on RCS rat retina, probably also through the stimulation of other biological mediators produced and released in the retina.
Collapse
Affiliation(s)
- Laura Lenzi
- Institute of Neurobiology and Molecular Medicine, Neurobiology Section, CNR, Viale Marx 43/15, 00137 Rome, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Micera A, Lambiase A, Aloe L, Bonini S, Levi-Schaffer F, Bonini S. Nerve growth factor involvement in the visual system: implications in allergic and neurodegenerative diseases. Cytokine Growth Factor Rev 2004; 15:411-7. [PMID: 15561599 DOI: 10.1016/j.cytogfr.2004.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this review is to outline the main role of nerve growth factor (NGF) in the visual system and particularly in the ocular surface in physiological and pathological conditions. The present review of experimental and clinical studies will highlight old and recent strategies for treating ocular surface and tear disorders with NGF.
Collapse
Affiliation(s)
- Alessandra Micera
- CIR Laboratorio di Oftalmologia, Campus Bio-Medico and Fondazione GB Bietti, Rome, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Boulton M, Albon J. Stem cells in the eye. Int J Biochem Cell Biol 2004; 36:643-57. [PMID: 15010329 DOI: 10.1016/j.biocel.2003.10.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 10/24/2003] [Accepted: 10/29/2003] [Indexed: 12/21/2022]
Abstract
In the adult organism, all tissue renewal and regeneration depends ultimately on somatic stem cells, and the eye is no exception. The importance of limbal stem cells in the maintenance of the corneal epithelium has long been recognised, and such cells are now used clinically for repair of a severely damaged cornea. The slow cycling nature of lens epithelial cells and their ability to terminally differentiate into fiber cells are suggestive of a stem cell lineage. Furthermore, recent studies have identified progenitor cells in the retina and ocular vasculature which may have important implications in health and disease. Although the recent literature has become flooded with articles discussing aspects of stem cells in a variety of tissues our understanding of stem cell biology, especially in the eye, remains limited. For instance, there is no definitive marker for ocular stem cells despite a number of claims in the literature, the patterns of stem cell growth and amplification are poorly understood and the microenvironments important for stem cell regulation and differentiation pathways are only now being elucidated. A greater understanding of ocular stem cell biology is essential if the clinical potential for stem cells is to be realised. For instance; How do we treat stem cell deficiencies? How do we use stem cells to regenerate damaged retinal tissue? How do we prevent stem cell lineages contributing to retinal vascular disease? This review will briefly consider the principal stem cells in the mature eye but will focus in depth on limbal stem cells and corneal epithelium. It will further discuss their role in pathology and their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Mike Boulton
- Cell and Molecular Biology Unit, School of Optometry and Vision Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cathays Park, Cardiff CF10 3NB, Wales, UK.
| | | |
Collapse
|
42
|
Ghinelli E, Aloe L, Cortes M, Micera A, Lambiase A, Bonini S. Nerve growth factor (NGF) and lenses: effects of NGF in an in vitro rat model of cataract. Graefes Arch Clin Exp Ophthalmol 2003; 241:845-51. [PMID: 13680251 DOI: 10.1007/s00417-003-0733-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Revised: 04/30/2003] [Accepted: 06/16/2003] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The aims of this study are to investigate the presence and production of nerve growth factor (NGF) in the rat lens in basal conditions and to evaluate, in vitro, the role of NGF in a model of xylose-induced cataract. METHODS Rat lenses were dissected and the expression of NGF, NGF mRNA and high-affinity NGF-receptor (TrkA) was evaluated by immunohistochemistry, immunoenzymatic assay (ELISA) and in-situ hybridization (ISH) techniques. To investigate the role of NGF in cataract formation we used an in vitro model of sugar-induced cataract by culturing rat lenses for 48 h in Eagle's minimum essential medium (MEM) supplemented with xylose. To evaluate the potential protective effect of NGF on xylose-induced cataract formation, exogenous NGF at different concentrations or antibodies neutralizing endogenous NGF (NGF-Ab) or aspecific antibodies were added to xylose-cultured lenses, and the following cataract-related parameters were evaluated and compared to xylose-treated lenses. Cataract formation was evaluated using three different parameters: staging of the cataract by lens photography, quantification of lens transparency in terms of gray level medium (GLM) and evaluation of the hydration percentage (H%) of the lens. To investigate the role of endogenous NGF in cataract onset, NGF levels were evaluated and compared in lenses cultured in xylose supplemented medium versus lenses cultured in control culture medium. RESULTS The epithelium from fresh rat lenses expresses NGF-receptor, NGF protein and NGF-mRNA. NGF levels in fresh lens were 54.0 +/- 24.5 pg/g as quantified by ELISA. Xylose-cultured lenses develop cataract changes, including a decrease of GLM and an increase in hydration percentage, associated with a decrease in NGF levels when compared to lenses cultured in the control culture medium. The addition of NGF to xylose-cultured lenses reduces cataract formation, increasing GLM and decreasing the hydration percentage as compared to xylose-treated lenses. On the other hand, the addition of NGF-Ab induces an increase in cataract formation and lens hydration. CONCLUSIONS This study demonstrates that rat lens epithelium expresses and synthesizes NGF. Moreover, immunohistochemistry shows that lens epithelial cells also express the NGF receptor. Although the functional significance of TrkA on lens epithelium is at present not clear, the expression of NGF and its high-affinity receptor on the same cells together with our experimental results suggest that NGF is involved in supporting trophism and/or the function of the lens epithelium.
Collapse
|
43
|
Amendola T, Fiore M, Aloe L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci Lett 2003; 345:37-40. [PMID: 12809983 DOI: 10.1016/s0304-3940(03)00491-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Royal College of Surgeons (RCS) rats are a well established animal model of inherited retinitis pigmentosa (RP). Using RCS rats we examined the distribution of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in the visual cortex, geniculate nucleus and retina at three different postnatal ages. It was found that the retina of rats with RP expresses low amounts of NGF and BDNF in young and adult life. Altered levels of these factors were found in the visual cortex and in the geniculate nucleus. Our findings indicate that NGF and BDNF are differentially affected in the visual system of developing and adult RCS rats, suggesting that neurotrophins may be implicated in the pathogenesis of inherited RP.
Collapse
Affiliation(s)
- Tiziana Amendola
- Istituto di Neurobiologia e Medicina Molecolare, CNR Rome, viale Marx 15, Italy
| | | | | |
Collapse
|
44
|
Kiuchi K, Yoshizawa K, Shikata N, Matsumura M, Tsubura A. Nicotinamide prevents N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats and C57BL mice. Exp Eye Res 2002; 74:383-92. [PMID: 12014919 DOI: 10.1006/exer.2001.1127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous studies, it was found that a single systemic administration of N-methyl-N-nitrosourea (MNU) to rats and mice resulted in the retinal degeneration in all treated animals over a 7 day period. Retinal degeneration was due to photoreceptor cell apoptosis that was identical to the apoptosis seen in human retinitis pigmentosa (RP). In the present study, nicotinamide (NAM), a water-soluble B-group vitamin (vitamin B(3)), suppressed photoreceptor cell loss in a dose-dependent manner when administered immediately after MNU treatment. In rats, a dose of NAM >or=25 mg kg(-1) completely suppressed photoreceptor cell loss, and 10 mg kg(-1) partially suppressed photoreceptor cell loss. In mice, doses of 1000 and >or=100 mg kg(-1) were needed for complete and partial suppression, respectively. Thus, rats were more responsive to NAM than mice. The retinoprotective effect of 1000 mg kg(-1) NAM lasted throughout the long-term (35 days) observation period, with no apparent toxicity. Also, in rats, 1000 mg kg(-1) NAM completely suppressed photoreceptor cell loss when administered up to 4 hr after MNU treatment, and partially suppressed photoreceptor cell loss when administered 6 hr after MNU treatment. In mice, administration of NAM 2-6 hr after MNU resulted in partial suppression. NAM did not reduce levels of 7-methyldeoxyguanosine DNA adduct, but did reduce photoreceptor cell apoptosis. Although the mechanism of action underlying this retinoprotection remains to be clarified, NAM may be a potential therapeutic agent for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Katsuji Kiuchi
- Department of Pathology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | |
Collapse
|
45
|
Ogilvie JM. Photoreceptor rescue in an organotypic model of retinal degeneration. PROGRESS IN BRAIN RESEARCH 2001; 131:641-8. [PMID: 11420977 DOI: 10.1016/s0079-6123(01)31050-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J M Ogilvie
- Fay and Carl Simons Center for Biology of Hearing and Deafness, Central Institute for the Deaf, 4560 Clayton Avenue, and Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Donovan M, Carmody RJ, Cotter TG. Light-induced photoreceptor apoptosis in vivo requires neuronal nitric-oxide synthase and guanylate cyclase activity and is caspase-3-independent. J Biol Chem 2001; 276:23000-8. [PMID: 11278285 DOI: 10.1074/jbc.m005359200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is the mode of photoreceptor cell death in inherited and induced retinal degeneration. However, the molecular mechanisms of photoreceptor cell death in human cases and animal models of retinal dystrophies remain undefined. Exposure of Balb/c mice to excessive levels of white light results in photoreceptor apoptosis. This study delineates the molecular events occurring during and subsequent to the induction of retinal degeneration by exposure to white light in Balb/c mice. We demonstrate an early increase in intracellular calcium levels during photoreceptor apoptosis, an event that is accompanied by significant superoxide generation and mitochondrial membrane depolarization. Furthermore, we show that inhibition of neuronal nitric-oxide synthase (nNOS) by 7-nitroindazole is sufficient to prevent retinal degeneration implicating a key role for neuronal nitric oxide (NO) in this model. We demonstrate that inhibition of guanylate cyclase, a downstream effector of NO, also prevents photoreceptor apoptosis demonstrating that guanylate cyclase too plays an essential role in this model. Finally, our results demonstrate that caspase-3, frequently considered to be one of the key executioners of apoptosis, is not activated during retinal degeneration. In summary, the data presented here demonstrate that light-induced photoreceptor apoptosis in vivo is mediated by the activation of nNOS and guanylate cyclase and is caspase-3-independent.
Collapse
Affiliation(s)
- M Donovan
- Tumour Biology Laboratory, Department of Biochemistry, Lee Maltings, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
47
|
Harada T, Harada C, Nakayama N, Okuyama S, Yoshida K, Kohsaka S, Matsuda H, Wada K. Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 2000; 26:533-41. [PMID: 10839371 DOI: 10.1016/s0896-6273(00)81185-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prolonged or high-intensity exposure to visible light leads to photoreceptor cell death. In this study, we demonstrate a novel pathway of light-induced photoreceptor apoptosis involving the low-affinity neurotrophin receptor p75 (p75NTR). Retinal degeneration upregulated both p75NTR and the high-affinity neurotrophin receptor TrkC in different parts of Müller glial cells. Exogenous neurotrophin-3 (NT-3) increased, but nerve growth factor (NGF) decreased basic fibroblast growth factor (bFGF) production in Müller cells, which can directly rescue photoreceptor apoptosis. Blockade of p75NTR prevented bFGF reduction and resulted in both structural and functional photoreceptor survival in vivo. Furthermore, the absence of p75NTR significantly prevented light-induced photoreceptor apoptosis. These observations implicate glial cells in the determination of neural cell survival, and suggest functional glial-neuronal cell interactions as new therapeutic targets for neurodegeneration.
Collapse
Affiliation(s)
- T Harada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ogilvie JM, Speck JD, Lett JM. Growth factors in combination, but not individually, rescue rd mouse photoreceptors in organ culture. Exp Neurol 2000; 161:676-85. [PMID: 10686086 DOI: 10.1006/exnr.1999.7291] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rd mouse retina is an animal model for human retinal dystrophy in which the rod photoreceptors undergo apoptosis during the first 4 weeks in vivo or in organ culture. We have examined the effect of different families of trophic factors on the survival of rd mouse photoreceptors in organ culture. Retinas were harvested from rd mice at postnatal day 2 and grown in organ culture for 27 days in vitro (DIV) in DMEM with 10% fetal calf serum. Ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), glial cell line-derived neurotrophic factor (GDNF), neurturin, and persephon were added individually or in combination to the medium at a dose of 50 ng/ml or less. CNTF + BDNF in combination resulted in photoreceptor survival comparable to wild-type retinas after 27 DIV. CNTF + FGF2 or CNTF + GDNF produced a partial prevention of photoreceptor death. Photoreceptor degeneration was not blocked by any of the trophic factors added individually. A significant increase in photoreceptor survival was seen with forskolin added to CNTF, but not to BDNF, FGF2, or GDNF. These results demonstrate that trophic factors promote photoreceptor survival through a synergistic interaction. Increased understanding of receptor interactions and signaling pathways may lead to a potential therapeutic role for combinatorial trophic factors in treatment of photoreceptor dystrophies.
Collapse
Affiliation(s)
- J M Ogilvie
- Fay and Carl Simons Center for Biology of Hearing and Deafness, Central Institute for the Deaf, St. Louis, Missouri, 63110, USA
| | | | | |
Collapse
|
49
|
Cayouette M, Smith SB, Becerra SP, Gravel C. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 1999; 6:523-32. [PMID: 10600408 DOI: 10.1006/nbdi.1999.0263] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a member of the serine protease inhibitor superfamily produced by retinal pigment epithelial cells in the developing and adult retina. In vitro, it induces neuronal differentiation of retinoblastoma cells and promotes survival of cerebellar granule neurons. The pedf gene is closely linked to an autosomal-dominant locus for retinitis pigmentosa, suggesting that PEDF could be a survival factor for photoreceptors. We have investigated this possibility by injecting PEDF into the eyes of homozygous retinal degeneration (rd) and retinal degeneration slow (rds) mice, two mutants displaying apoptotic photoreceptor loss. This procedure resulted in a transient delay of photoreceptor loss in the rd mouse and a reduction in apoptotic photoreceptor profiles in the rds mouse. We conclude that PEDF can act as a survival-promoting factor for photoreceptors in vivo and could potentially be useful for the treatment of photoreceptor diseases.
Collapse
Affiliation(s)
- M Cayouette
- Faculté de Médecine, Centre de Recherche Université Laval Robert-Giffard, 2601, de la Canardière, Beauport, Québec, G1J 2G3, Canada
| | | | | | | |
Collapse
|
50
|
Kwan AS, Wang S, Lund RD. Photoreceptor layer reconstruction in a rodent model of retinal degeneration. Exp Neurol 1999; 159:21-33. [PMID: 10486172 DOI: 10.1006/exnr.1999.7157] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have examined the potential of retinal cell transplantation to dystrophic retinal degeneration mice as a way of replacing photoreceptors lost because of an intrinsic genetic defect. Early postnatal retinae which had been gently dissociated survived for at least 6 weeks after transplantation to the subretinal space. Over a significant area of distribution, transplanted cells formed outer segments which lay in close apposition to the host retinal pigment epithelial cell layer. The grafts integrated with the remaining host retina, sufficient at least to mediate a simple light-dark preference. A new synaptic layer was seen at the graft-host interface, which contained substantial numbers of photoreceptor synapses. This and the fact that the behavior could be elicited at low luminance levels argue for functional circuit reconstruction between grafted cells and host retina.
Collapse
MESH Headings
- 3',5'-Cyclic-GMP Phosphodiesterases/genetics
- 3',5'-Cyclic-GMP Phosphodiesterases/metabolism
- Animals
- Behavior, Animal
- Cyclic Nucleotide Phosphodiesterases, Type 6
- Darkness
- Disease Models, Animal
- Genes, Recessive
- Graft Survival
- Lighting
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Electron
- Mutation
- Phosphoric Diester Hydrolases
- Retina/surgery
- Retinal Rod Photoreceptor Cells/enzymology
- Retinal Rod Photoreceptor Cells/transplantation
- Retinal Rod Photoreceptor Cells/ultrastructure
- Retinitis Pigmentosa/genetics
- Retinitis Pigmentosa/therapy
- Vision, Ocular
Collapse
Affiliation(s)
- A S Kwan
- Neural Transplant Program Department of Pathology, Institute of Ophthalmology, University College London, Bath Street, London, EC1V 9EL, United Kingdom
| | | | | |
Collapse
|