1
|
Chen Z, Lin Z, Obaid SN, Rytkin E, George SA, Bach C, Madrid M, Liu M, LaPiano J, Fehr A, Shi X, Quirion N, Russo B, Knight H, Aduwari A, Efimov IR, Lu L. Soft, bioresorbable, transparent microelectrode arrays for multimodal spatiotemporal mapping and modulation of cardiac physiology. SCIENCE ADVANCES 2023; 9:eadi0757. [PMID: 37406128 DOI: 10.1126/sciadv.adi0757] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Transparent microelectrode arrays (MEAs) that allow multimodal investigation of the spatiotemporal cardiac characteristics are important in studying and treating heart disease. Existing implantable devices, however, are designed to support chronic operational lifetimes and require surgical extraction when they malfunction or are no longer needed. Meanwhile, bioresorbable systems that can self-eliminate after performing temporary functions are increasingly attractive because they avoid the costs/risks of surgical extraction. We report the design, fabrication, characterization, and validation of a soft, fully bioresorbable, and transparent MEA platform for bidirectional cardiac interfacing over a clinically relevant period. The MEA provides multiparametric electrical/optical mapping of cardiac dynamics and on-demand site-specific pacing to investigate and treat cardiac dysfunctions in rat and human heart models. The bioresorption dynamics and biocompatibility are investigated. The device designs serve as the basis for bioresorbable cardiac technologies for potential postsurgical monitoring and treating temporary patient pathological conditions in certain clinical scenarios, such as myocardial infarction, ischemia, and transcatheter aortic valve replacement.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Zexu Lin
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Sofian N Obaid
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Eric Rytkin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharon A George
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Christopher Bach
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Micah Madrid
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Miya Liu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jessica LaPiano
- MedStar Georgetown University Hospital, Washington, DC 20037, USA
| | - Amy Fehr
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xinyu Shi
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Nathaniel Quirion
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Benjamin Russo
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Helen Knight
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Anthony Aduwari
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Luyao Lu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
2
|
Chen Z, Nguyen K, Kowalik G, Shi X, Tian J, Doshi M, Alber BR, Guan X, Liu X, Ning X, Kay MW, Lu L. Transparent and Stretchable Au─Ag Nanowire Recording Microelectrode Arrays. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201716. [PMID: 38644939 PMCID: PMC11031257 DOI: 10.1002/admt.202201716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 04/23/2024]
Abstract
Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk-free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high-fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold-coated silver nanowires (Au─Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au─Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2-7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Khanh Nguyen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xinyu Shi
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jinbi Tian
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Mitansh Doshi
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xun Guan
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xin Ning
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Luyao Lu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Ramirez E, Saiz J, Romero L, Ferrero JM, Trenor B. In silico ischaemia-induced reentry at the Purkinje-ventricle interface. Europace 2014; 16:444-51. [PMID: 24569899 DOI: 10.1093/europace/eut386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS This computational modelling work illustrates the influence of hyperkalaemia and electrical uncoupling induced by defined ischaemia on action potential (AP) propagation and the incidence of reentry at the Purkinje-ventricle interface in mammalian hearts. METHODS AND RESULTS Unidimensional and bidimensional models of the Purkinje-ventricle subsystem, including ischaemic conditions (defined as phase 1B) in the ventricle and an ischaemic border zone, were developed by altering several important electrophysiological parameters of the Luo-Rudy AP model of the ventricular myocyte. Purkinje electrical activity was modelled using the equations of DiFrancesco and Noble. Our study suggests that an extracellular potassium concentration [K(+)]o >14 mM and a slight decrease in intercellular coupling induced by ischaemia in ventricle can cause conduction block from Purkinje to ventricle. Under these conditions, propagation from ventricle to Purkinje is possible. Thus, unidirectional block (UDB) and reentry can result. When conditions of UDB are met, retrograde propagation with a long delay (320 ms) may re-excite Purkinje cells, and give rise to a reentrant pathway. This induced reentry may be the origin of arrhythmias observed in phase 1B ischaemia. CONCLUSION In a defined setting of ischaemia (phase 1B), a small amount of uncoupling between ventricular cells, as well as between Purkinje and ventricular tissue, may induce UDBs and reentry. Hyperkalaemia is also confirmed to be an important factor in the genesis of reentrant rhythms, since it regulates the range of coupling in which UDBs may be induced.
Collapse
Affiliation(s)
- Esteban Ramirez
- Laboratorio de Bioingenieria, Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Cuautla, Cuautla, Morelos 62745, Mexico
| | | | | | | | | |
Collapse
|
4
|
Ranjan R, Kato R, Zviman MM, Dickfeld TM, Roguin A, Berger RD, Tomaselli GF, Halperin HR. Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circ Arrhythm Electrophysiol 2011; 4:279-86. [PMID: 21493875 DOI: 10.1161/circep.110.960567] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ablation has become an important tool in treating atrial fibrillation and ventricular tachycardia, yet the recurrence rates remain high. It is well established that ablation lines can be discontinuous and that conduction through the gaps in ablation lines can be affected by tissue heating. In this study, we looked at the effect of tissue conductivity and propagation of electric wave fronts across ablation lines with gaps, using both simulations and an animal model. METHODS AND RESULTS For the simulations, we implemented a 2-dimensional bidomain model of the cardiac syncytium, simulating ablation lines with gaps of varying lengths, conductivity, and orientation. For the animal model, transmural ablation lines with a gap were created in 7 mongrel dogs. The gap length was progressively decreased until there was conduction block. The ablation line with a gap was then imaged using MRI and was correlated with histology. With normal conductivity in the gap and the ablation line oriented parallel to the fiber direction, the simulation predicted that the maximum gap length that exhibited conduction block was 1.4 mm. As the conductivity was decreased, the maximum gap length with conduction block increased substantially, that is, with a conductivity of 67% of normal, the maximum gap length with conduction block increased to 4 mm. In the canine studies, the maximum gap length that displayed conduction block acutely as measured by gross pathology correlated well (R(2) of 0.81) with that measured by MRI. CONCLUSIONS Conduction block can occur across discontinuous ablation lines. Moreover, with recovery of conductivity over time, ablation lines with large gaps exhibiting acute conduction block may recover propagation in the gap over time, allowing recurrences of arrhythmias. The ability to see gaps acutely using MRI will allow for targeting these sites for ablation.
Collapse
Affiliation(s)
- Ravi Ranjan
- Departments of Medicine/Cardiology, University of Utah, Salt Lake City, 84132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Boyle PM, Deo M, Plank G, Vigmond EJ. Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks. Ann Biomed Eng 2009; 38:456-68. [PMID: 19876737 DOI: 10.1007/s10439-009-9829-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
In normal cardiac function, orderly activation of the heart is facilitated by the Purkinje system (PS), a specialized network of fast-conducting fibers that lines the ventricles. Its role during ventricular defibrillation remains unelucidated. Physical characteristics of the PS make it a poor candidate for direct electrical observation using contemporary experimental techniques. This study uses a computer modeling approach to assess contributions by the PS to the response to electrical stimulation. Normal sinus rhythm was simulated and epicardial breakthrough sites were distributed in a manner consistent with experimental results. Defibrillation shocks of several strengths and orientations were applied to quiescent ventricles, with and without PS, and electrical activation was analyzed. All shocks induced local polarizations in PS branches parallel to the field, which led to the rapid spread of excitation through the network. This produced early activations at myocardial sites where tissue was unexcited by the shock and coupled to the PS. Shocks along the apico-basal axis of the heart resulted in a significant abbreviation of activation time when the PS was present; these shocks are of particular interest because the fields generated by internal cardioverter defibrillators tend to have a strong component in the same direction. The extent of PS-induced changes, both temporal and spatial, was constrained by the amount of shock-activated myocardium. Increasing field strength decreased the transmission delay between PS and ventricular tissue at Purkinje-myocardial junctions (PMJs), but this did not have a major effect on the organ-level response. Weaker shocks directly affect a smaller volume of myocardial tissue but easily excite the PS, which makes the PS contribution to far field excitation more substantial than for stronger shocks.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Electrical & Computer Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada.
| | | | | | | |
Collapse
|
6
|
Johnson CR, Barr RC. Interactions Between Extracellular Stimuli and Excitation Waves in an Atrial Reentrant Loop. J Cardiovasc Electrophysiol 2003; 14:1064-74. [PMID: 14521659 DOI: 10.1046/j.1540-8167.2003.02443.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Extracellular Stimuli in an Atrial Reentrant Loop. INTRODUCTION The interactions between extracellular stimuli and excitation waves propagating in a reentrant loop are a complex function of stimulus parameters, structural properties, membrane state, and timing. Here the goal was a comprehensive understanding of the mechanisms and frequencies of the major interactions between the advancing excitation wave and a single extracellular stimulus, separated from issues of anatomic or geometric complexity. METHODS AND RESULTS A modernized computer model of a thin ring of uniform tissue that included a pair of extracellular stimulus electrodes (anode/cathode) was used to model one-dimensional cardiac reentry. Questions and results included the following: (1) What are the major interactions between a stimulus and the reentrant propagation wave, and are they induced near the cathode or near the anode; and, for each interaction, what are the initiating amplitude range and timing interval? At the cathode, the well-known mechanism of retrograde excitation terminated reentry; changes in timing or amplitude produced double-wave reentry or phase reset. At the anode, termination occurred at different cells depending on stimulus amplitude. (2) Relatively how often did termination occur at the anode? For most stimulus amplitudes, termination occurred more often at the anode than at the cathode, although not always at the same cell. (3) With random timing, what is the probability of terminating reentry? Stimulation for 5 msec terminated reentry with a probability from 0% to approximately 10%, as a function of increasing stimulus amplitude. CONCLUSION A single extracellular stimulus can initiate major changes in reentrant excitation via multiple mechanisms, even in a simple geometry. Termination of reentry, phase shifts, or double-wave reentry each occurs over well-defined ranges of stimulus amplitude and timing.
Collapse
Affiliation(s)
- Chad R Johnson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
7
|
Thakor NV, Ferrero JM, Saiz J, Gramatikov BI, Ferrero JM. Electrophysiologic models of heart cells and cell networks. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 1998; 17:73-83. [PMID: 9770609 DOI: 10.1109/51.715490] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- N V Thakor
- Biomedical Engineering Department, Johns Hopkins University, USA.
| | | | | | | | | |
Collapse
|
8
|
Shaw RM, Rudy Y. The vulnerable window for unidirectional block in cardiac tissue: characterization and dependence on membrane excitability and intercellular coupling. J Cardiovasc Electrophysiol 1995; 6:115-31. [PMID: 7780627 DOI: 10.1111/j.1540-8167.1995.tb00763.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Unidirectional block is a requisite event in the initiation of reentry in cardiac tissue, but its initiation and behavior in the presence of tissue pathologies remain poorly understood. Previous experimental and theoretical reports on vulnerability to unidirectional block under conditions of reduced cellular coupling and reduced membrane excitability have varied due to differences in experimental and simulation protocols. METHODS AND RESULTS We have addressed the issue of vulnerability to unidirectional block using the recent Luo-Rudy membrane model and computer simulations of propagation in a one-dimensional cardiac fiber. The vulnerable window (VW) of unidirectional block from premature stimulation is expressed in units of time, VWtime, and as a range of membrane potentials at the stimulus site, VWpot. VWpot and VWtime were quantified over a range of membrane excitability and gap junction resistances (intercellular coupling). With normal membrane excitability and intercellular coupling, VWpot and VWtime were small (VWpot = 0.44 mV, VWtime = 0.39 msec). A uniform reduction (0.25x) in the degree of intercellular coupling increased VWtime and VWpot by factors of 3.6 and 4.7, respectively, whereas a uniform decrease (0.25x) in membrane excitability (same resulting velocity) increased VWtime by only a factor of 0.4 and decreased VWpot to negligible levels. When inhomogeneities in fiber properties were introduced (intercellular coupling and membrane excitability), VWtime increased more due to inhomogeneity in membrane excitability (VWtime = 4.5 msec) than to inhomogeneity in intercellular coupling (VWtime = 1.5 msec). The simulations also clarify the dependence of the VW on the dimensions of the stimulating electrode. The length of the stimulating electrode added a factor, equal to the propagation time across the electrode length, to the intrinsic VW of the fiber. CONCLUSIONS VWpot and VWtime are both important parameters for quantifying vulnerability to unidirectional block. In an environment with uniform distribution of fiber and membrane properties, reduced intercellular coupling has a greater effect on the VW than reduced membrane excitability. Inhomogeneous reduction of membrane excitability can significantly enhance vulnerability to unidirectional block, much more so than inhomogeneous reduction of intercellular coupling. Theoretically, stimulation at a point should be used to define the VW. Finite electrode dimensions introduce a geometrical factor that affects the measurement of the VW.
Collapse
Affiliation(s)
- R M Shaw
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207, USA
| | | |
Collapse
|