1
|
Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O. MA, Tovar-Rosero YY, Oñate AA, O'Ryan M. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health 2024; 11:1326154. [PMID: 38264254 PMCID: PMC10803505 DOI: 10.3389/fpubh.2023.1326154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two centuries, vaccines have been critical for the prevention of infectious diseases and are considered milestones in the medical and public health history. The World Health Organization estimates that vaccination currently prevents approximately 3.5-5 million deaths annually, attributed to diseases such as diphtheria, tetanus, pertussis, influenza, and measles. Vaccination has been instrumental in eradicating important pathogens, including the smallpox virus and wild poliovirus types 2 and 3. This narrative review offers a detailed journey through the history and advancements in vaccinology, tailored for healthcare workers. It traces pivotal milestones, beginning with the variolation practices in the early 17th century, the development of the first smallpox vaccine, and the continuous evolution and innovation in vaccine development up to the present day. We also briefly review immunological principles underlying vaccination, as well as the main vaccine types, with a special mention of the recently introduced mRNA vaccine technology. Additionally, we discuss the broad benefits of vaccines, including their role in reducing morbidity and mortality, and in fostering socioeconomic development in communities. Finally, we address the issue of vaccine hesitancy and discuss effective strategies to promote vaccine acceptance. Research, collaboration, and the widespread acceptance and use of vaccines are imperative for the continued success of vaccination programs in controlling and ultimately eradicating infectious diseases.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan P. Torres
- Departamento de Pediatría y Cirugía Pediátrica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel A. Benachi O.
- Área de Biotecnología, Tecnoacademia Neiva, Servicio Nacional de Aprendizaje, Regional Huila, Neiva, Colombia
| | - Yenifer-Yadira Tovar-Rosero
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Angel A. Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Miguel O'Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Takahashi D, Inaba K, Toshima K. Recent advances in boron-mediated aglycon delivery (BMAD) for the efficient synthesis of 1,2-cis glycosides. Carbohydr Res 2022; 518:108579. [DOI: 10.1016/j.carres.2022.108579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
3
|
Gaultier GN, Nix EB, Thorgrimson J, Boreham D, McCready W, Ulanova M. Naturally acquired antibodies against 7 Streptococcus pneumoniae serotypes in Indigenous and non-Indigenous adults. PLoS One 2022; 17:e0267051. [PMID: 35421173 PMCID: PMC9009640 DOI: 10.1371/journal.pone.0267051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
Despite the use of pneumococcal conjugate vaccines for pediatric immunization, North American Indigenous populations continue to experience high burden of pneumococcal infections. Naturally acquired antibodies, which can protect unvaccinated adults against pneumococcal infections, have not previously been studied in Canadian Indigenous people. We analysed concentrations of natural serum IgG, IgM and IgA antibodies specific to 7 serotype-specific capsular polysaccharides (3, 6B, 9V, 14, 19A, 19F and 23F) in 141 healthy individuals (age between 18 and 80 years), including Indigenous adults living in 2 geographical different areas of Ontario, Canada, and non-Indigenous residing in northwestern Ontario. Regardless of the geographical area, concentrations of IgG specific to serotypes 6B, 9V, and 14, IgM specific to 9V, and all serotype-specific IgA were significantly higher in Indigenous study participants as compared to non-Indigenous. The differences are likely attributed to an increased exposure of Indigenous individuals to Streptococcus pneumoniae and/or cross-reactive antigens of other microorganisms or plants present in the environment. Although in non-Indigenous adults concentrations of IgM specific to 9V, 19A, 19F, and 23F significantly decreased with age, this was not observed in Indigenous individuals suggesting that Indigenous people may experience continuous exposure to pneumococci and cross-reactive antigens over the life span. Women had generally higher concentrations of natural IgG and IgM concentrations than men, with more striking differences found in Indigenous adults, potentially associated with larger exposure of women to young children, the major reservoir of pneumococci in communities. Our data suggest that increased rates of pneumococcal infections among Indigenous people are unlikely related to deficiency of naturally acquired antibodies, at least those specific to 7 common serotypes. Determining serological correlates of protection for adults will be essential to identify the groups in need of adult pneumococcal immunizations that may prevent excessive burden of the disease among North American Indigenous people.
Collapse
Affiliation(s)
| | - Eli B. Nix
- NOSM University, Thunder Bay, ON, Canada
| | | | | | | | | |
Collapse
|
4
|
Sukhova EV, Yashunsky DV, Kurbatova EA, Akhmatova EA, Tsvetkov YE, Nifantiev NE. Synthesis and Preliminary Immunological Evaluation of a Pseudotetrasaccharide Related to a Repeating Unit of the Streptococcus pneumoniae Serotype 6A Capsular Polysaccharide. Front Mol Biosci 2021; 8:754753. [PMID: 34966778 PMCID: PMC8710661 DOI: 10.3389/fmolb.2021.754753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
2-Aminoethyl glycoside of the pseudotetrasaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol-(5-P-2)-α-d-Galp corresponding to a repeating unit of the Streptococcus pneumoniae type 6A capsular polysaccharide has been synthesized. A suitably protected pseudotrisaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol with a free 5-OH group in the ribitol moiety and a 2-OH derivative of 2-trifluoroacetamidoethyl α-d-galactopyranoside have been efficiently prepared and then connected via a phosphate bridge using the hydrogen phosphonate procedure. Preliminary immunological evaluation of this pseudotetrasaccharide and the previously synthesized pseudotetrasaccharide corresponding to a repeating unit of the capsular polysaccharide of S. pneumoniae serotype 6B has shown that they contain epitopes specifically recognized by anti-serogroup 6 antibodies and are able to model well the corresponding capsular polysaccharides. Conjugates of the synthetic pseudotetrasaccharides with bovine serum albumin were shown to be immunogenic in mice.
Collapse
Affiliation(s)
- Elena V Sukhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Jha V, Nicholson LK, Gardner EM, Rahkola JT, Pratap H, Scott J, Borgeson M, Jacobelli J, Janoff EN. Impact of HIV-1 Infection and Antigen Class on T Follicular Helper Cell Responses to Pneumococcal Polysaccharide-Protein Conjugate Vaccine-13. THE JOURNAL OF IMMUNOLOGY 2021; 206:2402-2411. [PMID: 33931485 DOI: 10.4049/jimmunol.2001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Pneumococcal infections are common and serious complications of HIV-1 disease. Prevention has been compromised by the limited magnitude and quality of Ab responses to T cell-independent type 2 pneumococcal capsular polysaccharides (PPS). The pneumococcal polysaccharide-protein conjugate vaccine-13 (PCV-13) contains PPS conjugated to the T cell-dependent protein (diphtheria toxoid [DT] [CRM197]). We investigated the differential response to PPS and DT by human Ab-secreting B cells (ASC) after immunization with PCV-13 in newly diagnosed healthy HIV+ and control adults. The numbers of PPS-specific IgG ASC increased significantly and similarly in HIV+ and controls. However, DT-specific IgG ASC increased in controls but not HIV+ subjects. To determine the cellular basis of these disparate responses to DT and PPS, we characterized the frequency and activation of T follicular helper (Tfh) cells, the predominant T cell subset providing B cell help. Expression of inducible T cell costimulator (ICOS), which sustains Tfh function and phenotype, increased significantly among controls, when compared with the HIV+ group. Increases in ICOS+ Tfh correlated with changes in T-dependent, DT-specific IgG ASC in controls but not in HIV+ In contrast, ICOS expression did not correlate with T cell-independent type 2 PPS-specific ASC in either group. Of note, upon optimized ex vivo stimulation, CD4 T cells from HIV+ subjects differentiated into Tfh cells and formed synapses with Raji B cells at frequencies similar to that of controls. In summary, PCV-13-induced increase in ICOS expression on Tfh was associated with responses to DT, which was compromised in recently diagnosed healthy HIV+ adults and can be restored ex vivo by providing effective Tfh-differentiating signals.
Collapse
Affiliation(s)
- Vibha Jha
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Jeremy T Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Harsh Pratap
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Mandy Borgeson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Jordan Jacobelli
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO .,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
6
|
Gening ML, Kurbatova EA, Nifantiev NE. Synthetic Analogs of Streptococcus pneumoniae Capsular Polysaccharides and Immunogenic Activities of Glycoconjugates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1-25. [PMID: 33776393 PMCID: PMC7980793 DOI: 10.1134/s1068162021010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium (pneumococcus) that causes severe diseases in adults and children. It was established that some capsular polysaccharides of the clinically significant serotypes of S. pneumoniae in the composition of commercial pneumococcal polysaccharide or conjugate vaccines exhibit low immunogenicity. The review considers production methods and structural features of the synthetic oligosaccharides from the problematic pneumococcal serotypes that are characterized with low immunogenicity due to destruction or detrimental modification occurring in the process of their preparation and purification. Bacterial serotypes that cause severe pneumococcal diseases as well as serotypes not included in the composition of the pneumococcal conjugate vaccines are also discussed. It is demonstrated that the synthetic oligosaccharides corresponding to protective glycotopes of the capsular polysaccharides of various pneumococcal serotypes are capable of inducing formation of the protective opsonizing antibodies and immunological memory. Optimal constructs of oligosaccharides from the epidemiologically significant pneumococcal serotypes are presented that can be used for designing synthetic pneumococcal vaccines, as well as test systems for diagnosis of S. pneumoniae infections and monitoring of vaccination efficiency .
Collapse
Affiliation(s)
- M. L. Gening
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E A. Kurbatova
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia
| | - N. E. Nifantiev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Zhang ZJ, Wang YC, Yang X, Hang HC. Chemical Reporters for Exploring Microbiology and Microbiota Mechanisms. Chembiochem 2019; 21:19-32. [PMID: 31730246 DOI: 10.1002/cbic.201900535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Indexed: 12/11/2022]
Abstract
The advances made in bioorthogonal chemistry and the development of chemical reporters have afforded new strategies to explore the targets and functions of specific metabolites in biology. These metabolite chemical reporters have been applied to diverse classes of bacteria including Gram-negative, Gram-positive, mycobacteria, and more complex microbiota communities. Herein we summarize the development and application of metabolite chemical reporters to study fundamental pathways in bacteria as well as microbiota mechanisms in health and disease.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Xinglin Yang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
8
|
Nishi N, Sueoka K, Iijima K, Sawa R, Takahashi D, Toshima K. Stereospecific β‐
l
‐Rhamnopyranosylation through an S
N
i‐Type Mechanism by Using Organoboron Reagents. Angew Chem Int Ed Engl 2018; 57:13858-13862. [DOI: 10.1002/anie.201808045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Nobuya Nishi
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazuhiro Sueoka
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kiyoko Iijima
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Ryuichi Sawa
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Daisuke Takahashi
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazunobu Toshima
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
9
|
Nishi N, Sueoka K, Iijima K, Sawa R, Takahashi D, Toshima K. Stereospecific β‐
l
‐Rhamnopyranosylation through an S
N
i‐Type Mechanism by Using Organoboron Reagents. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nobuya Nishi
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazuhiro Sueoka
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kiyoko Iijima
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Ryuichi Sawa
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Daisuke Takahashi
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazunobu Toshima
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
10
|
Antigenic Variation in Streptococcus pneumoniae PspC Promotes Immune Escape in the Presence of Variant-Specific Immunity. mBio 2018. [PMID: 29535198 PMCID: PMC5850329 DOI: 10.1128/mbio.00264-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genomic analysis reveals extensive sequence variation and hot spots of recombination in surface proteins of Streptococcus pneumoniae. While this phenomenon is commonly attributed to diversifying selection by host immune responses, there is little mechanistic evidence for the hypothesis that diversification of surface protein antigens produces an immune escape benefit during infection with S. pneumoniae. Here, we investigate the biological significance of sequence variation within the S. pneumoniae cell wall-associated pneumococcal surface protein C (PspC) protein antigen. Using pspC allelic diversity observed in a large pneumococcal collection, we produced variant-specific protein constructs that span the sequence variability within the pspC locus. We show that antibodies raised against these PspC constructs are variant specific and prevent association between PspC and the complement pathway mediator, human factor H. We found that PspC variants differ in their capacity to bind factor H, suggesting that sequence variation within pspC reflects differences in biological function. Finally, in an antibody-dependent opsonophagocytic assay, S. pneumoniae expressing a PspC variant matching the antibody specificity was killed efficiently. In contrast, killing efficacy was not evident against S. pneumoniae expressing mismatched PspC variants. Our data suggest that antigenic variation within the PspC antigen promotes immune evasion and could confer a fitness benefit during infection. Loci encoding surface protein antigens in Streptococcus pneumoniae are highly polymorphic. It has become a truism that these polymorphisms are the outcome of selective pressure on S. pneumoniae to escape host immunity. However, there is little mechanistic evidence to support the hypothesis that diversifying protein antigens produces a benefit for the bacteria. Using the highly diverse pspC locus, we have now characterized the functional and immune implications of sequence diversity within the PspC protein. We have characterized the spectrum of biological function among diverse PspC variants and show that pspC sequence diversity reflects functional differences. Further, we show that sequence variation in PspC confers an immune escape benefit in the presence of anti-PspC variant-specific immunity. Overall, the results of our studies provide insights into the functional implications of protein sequence diversity and the role of variant-specific immunity in its maintenance.
Collapse
|
11
|
Sukhova EV, Yashunsky DV, Kurbatova EA, Tsvetkov YE, Nifantiev NE. Synthesis of a pseudotetrasaccharide corresponding to a repeating unit of the Streptococcus pneumoniae type 6B capsular polysaccharide*. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2017.1420797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Mal. Kazennyi per. 5a, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| |
Collapse
|
12
|
Abstract
Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.
Collapse
|
13
|
Tsvetkov YE, Gening ML, Kurbatova EA, Akhmatova NK, Nifantiev NE. Oligosaccharide ligand tuning in design of third generation carbohydrate pneumococcal vaccines. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStreptococcus pneumoniae can cause many types of dangerous infectious diseases such as otitis media, pneumonia, meningitis and others that are more common in the very young and very old age. Available to date commercial vaccines based on capsular polysaccharides of S. pneumoniae of clinically important strains (first generation carbohydrate vaccines) and conjugated vaccines based on these polysaccharides (second generation carbohydrate vaccines) have certain limitations in protective efficiency. However, the efficiency of vaccines can be increased by the use of third generation vaccines based on synthetic oligosaccharide ligands representing in their structures the protective epitopes of capsular polysaccharides. The proper choice of an optimal oligosaccharide ligand is the most important step in the design of third generation carbohydrate vaccines. Herein we overview our works on the synthesis of three oligosaccharides corresponding to one, “one and a half” and two repeating units of S. pneumoniae type 14 capsular polysaccharide, immunogenic conjugates thereof and comparative immunological study of their conjugates with bovine serum albumin, which was used as a model protein carrier. The ability of obtained products to raise antibodies specific to capsular polysaccharide and homologous oligosaccharides, the induction of phagocytosis by immune antisera and active protection of immunized animals from S. pneumoniae type 14 infection were evaluated. On the basis of the results obtained tetrasaccharide comprising the repeating unit of S. pneumoniae type 14 capsular polysaccharide is an optimal carbohydrate ligand to be used as a part of the third generation carbohydrate pneumococcal vaccine.
Collapse
Affiliation(s)
- Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi Pereulok 5a, 105064 Moscow, Russia
| | - Nelly K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi Pereulok 5a, 105064 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia, e-mail:
| |
Collapse
|
14
|
Kurbatova EA, Akhmatova NK, Akhmatova EA, Egorova NB, Yastrebova NE, Sukhova EV, Yashunsky DV, Tsvetkov YE, Gening ML, Nifantiev NE. Neoglycoconjugate of Tetrasaccharide Representing One Repeating Unit of the Streptococcus pneumoniae Type 14 Capsular Polysaccharide Induces the Production of Opsonizing IgG1 Antibodies and Possesses the Highest Protective Activity As Compared to Hexa- and Octasaccharide Conjugates. Front Immunol 2017; 8:659. [PMID: 28626461 PMCID: PMC5454037 DOI: 10.3389/fimmu.2017.00659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/18/2017] [Indexed: 01/19/2023] Open
Abstract
Identifying protective synthetic oligosaccharide (OS) epitopes of Streptococcus pneumoniae capsular polysaccharides (CPs) is an indispensable step in the development of third-generation carbohydrate pneumococcal vaccines. Synthetic tetra-, hexa-, and octasaccharide structurally related to CP of S. pneumoniae type 14 were coupled to bovine serum albumin (BSA), adjuvanted with aluminum hydroxide, and tested for their immunogenicity in mice upon intraperitoneal prime-boost immunizations. Injections of the conjugates induced production of opsonizing anti-OS IgG1 antibodies (Abs). Immunization with the tetra- and octasaccharide conjugates stimulated the highest titers of the specific Abs. Further, the tetrasaccharide ligand demonstrated the highest ability to bind OS and CP Abs. Murine immune sera developed against tetra- and octasaccharide conjugates promoted pathogen opsonization to a higher degree than antisera against conjugated hexasaccharide. For the first time, the protective activities of these glycoconjugates were demonstrated in mouse model of generalized pneumococcal infections. The tetrasaccharide conjugate possessed the highest protective activities. Conversely, the octasaccharide conjugate had lower protective activities and the lowest one showed the hexasaccharide conjugate. Sera against all of the glycoconjugates passively protected naive mice from pneumococcal infections. Given that the BSA-tetrasaccharide induced the most abundant yield of specific Abs and the best protective activity, this OS may be regarded as the most promising candidate for the development of conjugated vaccines against S. pneumoniae type 14 infections.
Collapse
Affiliation(s)
- Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Nelli K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A. Akhmatova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda B. Egorova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Natalya E. Yastrebova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Abstract
Polysaccharides are abundant natural polymers found in plants, animals and microorganisms with exceptional properties and essential roles to sustain life. They are well known for their high nutritive value and the positive effects on our immune and digestive functions and detoxification system. The knowledge and recognition of the important role they play for promoting and maintaining human health and wellbeing is continuously increasing. This review describes some important polysaccharides (e.g. mucilages and gums, glycosamine glycans and chitin/chitosan) and their medical, cosmetic and pharmaceutical applications, with emphasis on the relationship between structure and function. Next, the use of polysaccharides as nutraceuticals and vaccines is discussed in more detail. An analysis of the trends and challenges in polysaccharide research concludes the paper.
Collapse
Affiliation(s)
- Jan E.G. van Dam
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Carmen G. Boeriu
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
16
|
Akhmatova NK, Kurbatova EA, Akhmatov EA, Egorova NB, Logunov DY, Gening ML, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. The Effect of a BSA Conjugate of a Synthetic Hexasaccharide Related to the Fragment of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 on the Activation of Innate and Adaptive Immune Responses. Front Immunol 2016; 7:248. [PMID: 27446078 PMCID: PMC4919334 DOI: 10.3389/fimmu.2016.00248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/11/2016] [Indexed: 11/13/2022] Open
Abstract
We report the effect of a bovine serum albumin (BSA) conjugate of a synthetic hexasaccharide (HS) related to the fragment of the capsular polysaccharide (PS) of Streptococcus pneumoniae type 14 on the stimulation of innate immune system and the subsequent development of a PS-specific antibody response. Glycoconjugate (GC) in the presence (GC + AL) or absence of aluminum hydroxide was administered to mice twice. GC increased the number of TLR2-expressing cells and induced the maturation of dendritic cells (CD11c(+), CD80(+) and, MHCII(+)), which secreted IL-1β, IL-6, and TNFα into the culture medium. The level of IL-1β, IL-10, IFNγ, and TNFα in the blood increased within 24 h after the single GC administration to mice. On day 7, the numbers of splenic CD4(+) and CD8(+) T lymphocytes and B lymphocytes increased. After the second immunization, the levels of CD4(+) and CD8(+) T lymphocytes were lower than in the control, whereas the B cell, NK cell, and MHC class II-expressing cell numbers remained enhanced. However, of the presence of anti-PS, IgG antibodies were not detected. The addition of aluminum hydroxide to GC stimulated the production of GM-CSF, IL-1β, IL-5, IL-6, IL-10, IL-17, IFNγ, and TNFα. Anti-PS IgG1 antibody titers 7 days after the second immunization were high. During that period, normal levels of splenic CD4(+) T lymphocytes were maintained, whereas reduced CD8(+) T lymphocyte numbers and increased levels of B lymphocytes, NK cells, and MHC class II-expressing cell numbers were observed. Anti-PS IgG levels diminished until day 92. A booster immunization with GC + AL stimulated the production of anti-PS IgG memory antibodies, which were determined within 97 days. The elucidation of specific features of the effect of the synthetic HS conjugate on the stimulation of innate, cell-mediated immunity, and antibody response can favor the optimization of GC vaccine design.
Collapse
Affiliation(s)
- Nelli K. Akhmatova
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Elvin A. Akhmatov
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Nadezhda B. Egorova
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Denis Yu. Logunov
- Department of Microbiology, Gamaleya Research Institute for Epidemiology and Microbiology, Russian Ministry of Health, Moscow, Russia
| | - Marina L. Gening
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Sukhova
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Yashunsky
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E. Tsvetkov
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Park YD, Williamson PR. Masking the Pathogen: Evolutionary Strategies of Fungi and Their Bacterial Counterparts. J Fungi (Basel) 2015; 1:397-421. [PMID: 29376918 PMCID: PMC5753132 DOI: 10.3390/jof1030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Pathogens reduce immune recognition of their cell surfaces using a variety of inert structural polysaccharides. For example, capsular polysaccharides play critical roles in microbial survival strategies. Capsules are widely distributed among bacterial species, but relatively rare in eukaryotic microorganisms, where they have evolved considerable complexity in structure and regulation and are exemplified by that of the HIV/AIDS-related fungus Cryptococcus neoformans. Endemic fungi that affect normal hosts such as Histoplasma capsulatum and Blastomyces dermatitidis have also evolved protective polysaccharide coverings in the form of immunologically inert α-(1,3)-glucan polysaccharides to protect their more immunogenic β-(1,3)-glucan-containing cell walls. In this review we provide a comparative update on bacterial and fungal capsular structures and immunogenic properties as well as the polysaccharide masking strategies of endemic fungal pathogens.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Ji Y, Tian Y, Ahnfelt M, Sui L. Design and optimization of a chromatographic purification process for Streptococcus pneumoniae serotype 23F capsular polysaccharide by a Design of Experiments approach. J Chromatogr A 2014; 1348:137-49. [PMID: 24845825 DOI: 10.1016/j.chroma.2014.04.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/13/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022]
Abstract
Multivalent pneumococcal vaccines were used worldwide to protect human beings from pneumococcal diseases. In order to eliminate the toxic organic solutions used in the traditional vaccine purification process, an alternative chromatographic process for Streptococcus pneumoniae serotype 23F capsular polysaccharide (CPS) was proposed in this study. The strategy of Design of Experiments (DoE) was introduced into the process development to solve the complicated design procedure. An initial process analysis was given to review the whole flowchart, identify the critical factors of chromatography through FMEA and chose the flowthrough mode due to the property of the feed. A resin screening study was then followed to select candidate resins. DoE was utilized to generate a resolution IV fractional factorial design to further compare candidates and narrow down the design space. After Capto Adhere was selected, the Box-Behnken DoE was executed to model the process and characterize all effects of factors on the responses. Finally, Monte Carlo simulation was used to optimize the process, test the chosen optimal conditions and define the control limit. The results of three scale-up runs at set points verified the DoE and simulation predictions. The final results were well in accordance with the EU pharmacopeia requirements: Protein/CPS (w/w) 1.08%; DNA/CPS (w/w) 0.61%; the phosphorus content 3.1%; the nitrogen 0.315% and the Methyl-pentose percentage 47.9%. Other tests of final pure CPS also met the pharmacopeia specifications. This alternative chromatographic purification process for pneumococcal vaccine without toxic organic solvents was successfully developed by the DoE approach and proved scalability, robustness and suitability for large scale manufacturing.
Collapse
Affiliation(s)
- Yu Ji
- GE Healthcare Fast Trak China, 1800 Cailun Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China.
| | - Yang Tian
- GE Healthcare Fast Trak China, 1800 Cailun Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| | - Mattias Ahnfelt
- GE Healthcare Bio-Sciences, Björkgatan 30, SE-75184 Uppsala, Sweden
| | - Lili Sui
- GE Healthcare Fast Trak China, 1800 Cailun Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| |
Collapse
|
19
|
Shin SG, Koh SH, Lim JH. Thein vivoandin vitroRoles of Epithelial Pattern Recognition Receptors in Pneumococcal Infections. ACTA ACUST UNITED AC 2014. [DOI: 10.4167/jbv.2014.44.2.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seul Gi Shin
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Seo Hyun Koh
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Biochemical activities of Streptococcus pneumoniae serotype 2 capsular glycosyltransferases and significance of suppressor mutations affecting the initiating glycosyltransferase Cps2E. J Bacteriol 2013; 195:5469-78. [PMID: 24097952 DOI: 10.1128/jb.00715-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsular polysaccharide (CPS) is essential for Streptococcus pneumoniae virulence. Its synthesis requires multiple enzymes, and defects that block completion of the pathway can be lethal in the absence of secondary suppressor mutations. In this study, we examined the functions of three capsular glycosyltransferases (Cps2F, Cps2G, and Cps2I) involved in serotype 2 CPS synthesis, whose deletions select for secondary mutations. We demonstrate that Cps2F is a rhamnosyltransferase that catalyzes addition of the third and fourth sugars in the capsule repeat unit, while Cps2G adds the fifth sugar (glucose). Addition of the terminal residue (glucuronic acid) could not be detected; however, activities of the other glycosyltransferases together with bioinformatic analyses suggest that this step is mediated by Cps2I. Most of the secondary suppressor mutations resulting from loss of these enzymes occur in cps2E, the gene encoding the initiating glycosyltransferase. Examination of the 69 S. pneumoniae serotypes containing Cps2E homologues yielded a consensus amino acid sequence for this protein and demonstrated that there is a highly significant association between the residues that are 100% conserved and those altered by suppressor mutations. Cps2E contains an extracytoplasmic loop whose function is unknown. Among our collection of mutants, six contained missense mutations affecting amino acids in the extracytoplasmic loop. These residues are highly conserved among S. pneumoniae Cps2E homologues, and mutations therein severely reduced CPS synthesis and Cps2E activity. The critical functions of these amino acids suggest a role for the Cps2E extracytoplasmic loop in initiation, and possibly regulation, of capsule synthesis.
Collapse
|
21
|
Deletion of arcD in Streptococcus pneumoniae D39 impairs its capsule and attenuates virulence. Infect Immun 2013; 81:3903-11. [PMID: 23918778 DOI: 10.1128/iai.00778-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The arginine deiminase system (ADS) is associated with arginine catabolism and plays a role in virulence of several pathogenic bacteria. In Streptococcus pneumoniae, the ADS genes exist as a locus consisting of arcABCDT. A recent genome-wide mutagenesis approach revealed that both arcD and arcT are potentially essential in a chinchilla otitis media (OM) model. In the present study, we generated ΔarcD, ΔarcT, and ΔarcDT mutants by homologous recombination and evaluated their infectivity. Our results showed that only arcD, and not arcT, of an OM isolate is required during chinchilla middle ear infection. Additionally, D39 ΔarcD exhibited enhanced nasopharyngeal colonization and was attenuated in both mouse pneumonia and bacteremia models. In vitro, D39 ΔarcD displayed enhanced adherence to A549 epithelial cells and increased phagocytosis by J774A.1 macrophages compared to those with the parental strain. This mutant also exhibited an impaired capsule, as detected using electron microscopy, immunofluorescence, and a capsule assay. We demonstrated that the capsule defect in the D39 ΔarcD mutant may not be associated with a deficiency in arginine but rather is likely caused by a loss of interaction between the capsule and the transmembrane protein ArcD.
Collapse
|
22
|
A Case Report; Purulent Meningitis Due to Serotype 2 of Streptococcus pneumoniae. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2013. [DOI: 10.5812/pedinfect.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Genetic and biochemical characterizations of enzymes involved in Streptococcus pneumoniae serotype 2 capsule synthesis demonstrate that Cps2T (WchF) catalyzes the committed step by addition of β1-4 rhamnose, the second sugar residue in the repeat unit. J Bacteriol 2012; 194:6479-89. [PMID: 23002227 DOI: 10.1128/jb.01135-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Five genes (cps2E, cps2T, cps2F, cps2G, and cps2I) are predicted to encode the glycosyltransferases responsible for synthesis of the Streptococcus pneumoniae serotype 2 capsule repeat unit, which is polymerized to yield a branched surface structure containing glucose-glucuronic acid linked to a glucose-rhamnose-rhamnose-rhamnose backbone. Cps2E is the initiating glycosyltransferase, but experimental evidence supporting the functions of the remaining glycosyltransferases is lacking. To biochemically characterize the glycosyltransferases, the donor substrate dTDP-rhamnose was first synthesized using recombinant S. pneumoniae enzymes Cps2L, Cps2M, Cps2N, and Cps2O. In in vitro assays with each of the glycosyltransferases, only reaction mixtures containing recombinant Cps2T, dTDP-rhamnose, and the Cps2E product (undecaprenyl pyrophosphate glucose) generated a new product, which was consistent with lipid-linked glucose-rhamnose. cps2T, cps2F, and cps2I deletion mutants produced no detectable capsule, but trace amounts of capsule were detectable in Δcps2G mutants, suggesting that Cps2G adds a nonbackbone sugar. All Δcps2F, Δcps2G, and Δcps2I mutants contained different secondary suppressor mutations in cps2E, indicating that the initial mutations were lethal in the absence of reduced repeat unit synthesis. Δcps2T mutants did not contain secondary mutations affecting capsule synthesis. The requirement for secondary mutations in mutants lacking Cps2F, Cps2G, and Cps2I indicates that these activities occur downstream of the committed step in capsule synthesis and reveal that Cps2T catalyzes this step. Therefore, Cps2T is the β1-4 rhamnosyltransferase that adds the second sugar to the repeat unit and, as the committed step in type 2 repeat unit synthesis, is predicted to be an important point of capsule regulation.
Collapse
|
24
|
Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains. PLoS One 2012; 7:e44135. [PMID: 22957048 PMCID: PMC3434200 DOI: 10.1371/journal.pone.0044135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/30/2012] [Indexed: 12/20/2022] Open
Abstract
Background Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. Methodology/Principal Findings Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. Conclusions/Significance Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.
Collapse
|
25
|
Yother J. Capsules ofStreptococcus pneumoniaeand Other Bacteria: Paradigms for Polysaccharide Biosynthesis and Regulation. Annu Rev Microbiol 2011; 65:563-81. [DOI: 10.1146/annurev.micro.62.081307.162944] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Janet Yother
- Department of Microbiology, University of Alabama, Birmingham, Alabama 35294-2170;
| |
Collapse
|
26
|
A new microarray system to detect Streptococcus pneumoniae serotypes. J Biomed Biotechnol 2011; 2011:352736. [PMID: 21716703 PMCID: PMC3118663 DOI: 10.1155/2011/352736] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/10/2010] [Accepted: 01/18/2011] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae, one of the most common gram-positive pathogens to colonize the human upper respiratory tract, is responsible for many severe infections, including meningitis and bacteremia. A 23-valent pneumococcal vaccine is available to protect against the 23 S. pneumoniae serotypes responsible for 90% of reported bacteremic infections. Unfortunately, current S. pneumoniae serotype testing requires a large panel of expensive antisera, assay results may be subjective, and serotype cross-reactions are common. For this study, we designed an oligonucleotide-based DNA microarray to identify glycosyltransferase gene sequences specific to each vaccine-related serotype. Out of 56 isolates representing different serotypes, only one isolate, representing serotype 23A, was not detected correctly as it could not be distinguished from serotype 23F. Our data suggest that the microarray provides a more cost-effective and reliable way of monitoring pneumococcal capsular types.
Collapse
|
27
|
Smith AM, McCullers JA, Adler FR. Mathematical model of a three-stage innate immune response to a pneumococcal lung infection. J Theor Biol 2011; 276:106-16. [PMID: 21300073 DOI: 10.1016/j.jtbi.2011.01.052] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 11/05/2010] [Accepted: 01/31/2011] [Indexed: 11/17/2022]
Abstract
Pneumococcal pneumonia is a leading cause of death and a major source of human morbidity. The initial immune response plays a central role in determining the course and outcome of pneumococcal disease. We combine bacterial titer measurements from mice infected with Streptococcus pneumoniae with mathematical modeling to investigate the coordination of immune responses and the effects of initial inoculum on outcome. To evaluate the contributions of individual components, we systematically build a mathematical model from three subsystems that describe the succession of defensive cells in the lung: resident alveolar macrophages, neutrophils and monocyte-derived macrophages. The alveolar macrophage response, which can be modeled by a single differential equation, can by itself rapidly clear small initial numbers of pneumococci. Extending the model to include the neutrophil response required additional equations for recruitment cytokines and host cell status and damage. With these dynamics, two outcomes can be predicted: bacterial clearance or sustained bacterial growth. Finally, a model including monocyte-derived macrophage recruitment by neutrophils suggests that sustained bacterial growth is possible even in their presence. Our model quantifies the contributions of cytotoxicity and immune-mediated damage in pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Amber M Smith
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
28
|
Characterization of gene use and efficacy of mouse monoclonal antibodies to Streptococcus pneumoniae serotype 8. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:59-66. [PMID: 21068211 DOI: 10.1128/cvi.00368-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia in the United States and globally. Despite the availability of pneumococcal capsular polysaccharide (PPS) and protein conjugate-based vaccines, the prevalence of antibiotic-resistant pneumococcal strains, serotype (ST) replacement in nonconjugate vaccine strains, and uncertainty as to whether the PPS vaccine that is used in adults protects against pneumonia emphasize the need for continued efforts to understand the nature of protective PPS antibody responses. In this study, we generated mouse monoclonal antibodies (MAbs) to a conjugate consisting of the PPS of serotype 8 (PPS8) S. pneumoniae and tetanus toxoid. Thirteen MAbs, including four IgMs that bound to PPS8 and phosphorylcholine (PC) and five IgMs and four IgG1s that bound to PPS8 but not PC, were produced, and their nucleotide sequences, epitope and fine specificity, and efficacy against lethal challenge with ST8 S. pneumoniae were determined. MAbs that bound to PPS8 exhibited gene use that was distinct from that exhibited by MAbs that bound to PC. Only PPS8-binding MAbs that did not bind PC were protective in mice. All 13 MAbs used germ line variable-region heavy (V(H)) and light (V(L)) chain genes, with no evidence of somatic hypermutation. Our data reveal a relationship between PPS specificity and V(H) gene use and MAb efficacy in mice. These findings provide insight into the relationship between antibody molecular structure and function and hold promise for the development of novel surrogates for pneumococcal vaccine efficacy.
Collapse
|
29
|
Comparative structural and molecular characterization of ribitol-5-phosphate-containing Streptococcus oralis coaggregation receptor polysaccharides. J Bacteriol 2009; 191:1891-900. [PMID: 19151140 DOI: 10.1128/jb.01532-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antigenically related coaggregation receptor polysaccharides (RPS) of Streptococcus oralis strains C104 and SK144 mediate recognition of these bacteria by other members of the dental plaque biofilm community. In the present study, the structure of strain SK144 RPS was established by high resolution NMR spectroscopy as [6Galfbeta1-6GalNAcbeta1-3Galalpha1-2ribitol-5-PO(4)(-)-6Galfbeta1-3Galbeta1](n), thereby indicating that this polysaccharide and the previously characterized RPS of strain C104 are identical, except for the linkage between Gal and ribitol-5-phosphate, which is alpha1-2 in strain SK144 versus alpha1-1 in strain C104. Studies to define the molecular basis of RPS structure revealed comparable genes for six putative transferases and a polymerase in the rps loci of these streptococci. Cell surface RPS production was abolished by disrupting the gene for the first transferase of strain C104 with a nonpolar erm cassette. It was restored in the resulting mutant by plasmid-based expression of either wcjG, the corresponding gene of S. pneumoniae for serotype 10A capsular polysaccharide (CPS) biosynthesis or wbaP for the transferase of Salmonella enterica that initiates O-polysaccharide biosynthesis. Thus, WcjG, like WbaP, appears to initiate polysaccharide biosynthesis by transferring galactose-1-phosphate to a lipid carrier. In further studies, the structure of strain C104 RPS was converted to that of strain SK144 by replacing the gene (wefM) for the fourth transferase in the rps locus of strain C104 with the corresponding gene (wcrC) of strain SK144 or Streptococcus pneumoniae serotype 10A. These findings identify genetic markers for the different ribitol-5-phosphate-containing types of RPS present in S. oralis and establish a close relationship between these polysaccharides and serogroup 10 CPSs of S. pneumoniae.
Collapse
|
30
|
Synthesis of the trisaccharide repeating unit related to Klebsiella 012 serotype. Carbohydr Res 2008; 343:2822-5. [DOI: 10.1016/j.carres.2008.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/05/2008] [Indexed: 11/19/2022]
|
31
|
Serotype-specific immune unresponsiveness to pneumococcal conjugate vaccine following invasive pneumococcal disease. Infect Immun 2008; 76:5305-9. [PMID: 18779338 DOI: 10.1128/iai.00796-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following the introduction of the pneumococcal 7-valent conjugate vaccine (PCV7) into the routine infant immunization schedule in England, Wales, and Northern Ireland, pneumococcal serotype-specific immunoglobulin G (IgG) antibody testing was offered as a clinical service to all children within the program with invasive pneumococcal disease (IPD) to confirm an adequate antibody response to PCV7. As of March 2008, serum samples taken within 14 to 90 days of vaccination had been submitted from 107 children who had received one or more doses in the second year of life. Sera were assayed by a multiplexed microsphere assay incorporating both cell wall polysaccharide and serotype 22F adsorption. A protective serotype-specific antibody level was defined as a concentration of > or = 0.35 microg/ml. Eight children failed to develop a response to their infecting serotype (6B [n = 4], 18C [n = 2], 4 [n = 1], and 14 [n = 1]), despite receiving at least three doses of PCV7 in the second year of life or two doses in the second and two or three in the first year of life. A further two children were nonresponsive to a serotype (6B) different than that causing disease. None of the 10 children had a clinical risk factor for IPD. Two had marginally low levels of total serum IgG but mounted adequate responses to the other six PCV serotypes. This serotype-specific unresponsiveness may reflect immune paralysis due to large pneumococcal polysaccharide antigen loads and/or a potential genetic basis for nonresponse to individual pneumococcal serotypes.
Collapse
|
32
|
Xayarath B, Yother J. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. J Bacteriol 2007; 189:3369-81. [PMID: 17322316 PMCID: PMC1855910 DOI: 10.1128/jb.01938-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched. In this study, we found that deletions of cps2K, cps2J, or cps2H, which encode a UDP-glucose dehydrogenase necessary for side chain synthesis, the putative Wzx transporter (flippase), and the putative Wzy polymerase, respectively, were obtained only in the presence of suppressor mutations. Most of the suppressor mutations were in cps2E, which encodes the initiating glycosyltransferase for capsule synthesis. The cps2K mutants containing the suppressor mutations produced low levels of high-molecular-weight polymer that was detected only in membrane fractions. cps2K-repaired mutants exhibited only modest increases in capsule production due to the effect of the secondary mutation, but capsule was detectable in both membrane and cell wall fractions. Lethality of the cps2K, cps2J, and cps2H mutations was likely due to sequestration of undecaprenyl-phosphate in the capsule pathway and either preclusion of its turnover for utilization in essential pathways or destabilization of the membrane due to an accumulation of lipid-linked intermediates. The results demonstrate that proper polymer assembly requires not only a functional transporter and polymerase but also complete repeat units. A central role for the initiating glycosyltransferase in controlling capsule synthesis is also suggested.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology, 845 19th Street South, BBRB 661/12, Birmingham, AL 35294-2170, USA
| | | |
Collapse
|
33
|
Ovodov YS. Bacterial capsular antigens. Structural patterns of capsular antigens. BIOCHEMISTRY (MOSCOW) 2006; 71:937-54. [PMID: 17009947 DOI: 10.1134/s000629790609001x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural patterns of bacterial capsular antigens including capsular polysaccharides and exoglycans are given in this review. In addition, the immunological activity of capsular antigens and their role in type specificity of bacteria are discussed.
Collapse
Affiliation(s)
- Yu S Ovodov
- Institute of Physiology, Komi Science Center, Urals Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia.
| |
Collapse
|
34
|
Hsu CT, Ganong AL, Reinap B, Mourelatos Z, Huebner J, Wang JY. Immunochemical characterization of polysaccharide antigens from six clinical strains of Enterococci. BMC Microbiol 2006; 6:62. [PMID: 16836754 PMCID: PMC1538600 DOI: 10.1186/1471-2180-6-62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 07/12/2006] [Indexed: 12/03/2022] Open
Abstract
Background Enterococci have become major nosocomial pathogens due to their intrinsic and acquired resistance to a broad spectrum of antibiotics. Their increasing drug resistance prompts us to search for prominent antigens to develop vaccines against enterococci. Given the success of polysaccharide-based vaccines against various bacterial pathogens, we isolated and characterized the immunochemical properties of polysaccharide antigens from five strains of Enterococcus faecalis and one strain of vancomycin-resistant E. faecium. Results We cultured large batches of each strain, isolated sufficient quantities of polysaccharides, analyzed their chemical structures, and compared their antigenic specificity. Three classes of polysaccharides were isolated from each strain, including a polyglucan, a teichoic acid, and a heteroglycan composed of rhamnose, glucose, galactose, mannosamine, and glucosamine. The polyglucans from all six strains are identical and appear to be dextran. Yields of the teichoic acids were generally low. The most abundant polysaccharides are the heteroglycans. The six heteroglycans are structurally different as evidenced by NMR spectroscopy. They also differ in their antigenic specificities as revealed by competitive ELISA. The heteroglycans are not immunogenic by themselves but conjugation to protein carriers significantly enhanced their ability to induce antibodies. Conclusion The six clinical strains of enterococci express abundant, strain-specific cell-surface heteroglycans. These polysaccharides may provide a molecular basis for serological typing of enterococcal strains and antigens for the development of vaccines against multi-drug resistant enterococci.
Collapse
Affiliation(s)
- Carolyn T Hsu
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA02115, USA
| | - Amanda L Ganong
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA02115, USA
| | - Barbara Reinap
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA02115, USA
| | - Zafiria Mourelatos
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA02115, USA
| | - Johannes Huebner
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA02115, USA
- Division of Infectious Diseases, Department of Medicine, University Hospital Freiburg, Germany
| | - Julia Y Wang
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA02115, USA
| |
Collapse
|
35
|
Domínguez J, Andreo F, Blanco S, Ruiz-Manzano J, Prat C, Latorre I, Galí N, Rivelo R, Matas L, Ausina V. Rapid detection of pneumococcal antigen in serum samples for diagnosing pneumococcal pneumonia. J Infect 2006; 53:21-4. [PMID: 16269180 DOI: 10.1016/j.jinf.2005.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of the study is to assess the usefulness of C polysaccharide and polysaccharide capsular antigen detection by immunochromatography (ICT) and enzyme immunoassay (EIA), respectively, in serum samples for diagnosing pneumococcal pneumonia. METHODS Adult patients included in the study were classified in the following groups: In group 1 we studied 101 serum samples from patients with pneumonia due to Streptococcus pneumoniae. In 53 cases the pneumonia was bacteremic. The second group contained 113 serum samples from patients with no pneumococcal pneumonia. Group 3 was made up of 40 serum samples from healthy subjects with no clinical or radiological signs of pneumonia. RESULTS Using ICT, antigen was detected in 50% of patients with pneumococcal pneumonia, in 64.3 and 40.9% of patients with bacteremic and non-bacteremic pneumococcal pneumonia, respectively. Using EIA, antigens were detected in 35.8% of patients with pneumococcal pneumonia, in 45 and 22.2% of patients with bacteremic and non-bacteremic pneumococcal pneumonia, respectively. CONCLUSIONS In conclusion, the sensitivity of the tests is low. However, in special situations, where obtaining large volume of urine is difficult, they could be a complementary method in the rapid diagnosis of pneumococcal pneumonia.
Collapse
Affiliation(s)
- J Domínguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Badalona, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Leung MYK, Liu C, Koon JCM, Fung KP. Polysaccharide biological response modifiers. Immunol Lett 2006; 105:101-14. [PMID: 16554097 DOI: 10.1016/j.imlet.2006.01.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/23/2006] [Accepted: 01/30/2006] [Indexed: 11/29/2022]
Abstract
Biological response modifiers (BRMs) are substances which augment immune response. BRMs can be cytokines which are produced endogenously in our body by immune cells or derivatives of bacteria, fungi, brown algae, Aloe vera and photosynthetic plants. Such exogeneous derivatives (exogeneous BRMs) can be nucleic acid (CpG), lipid (lipotechoic acid), protein or polysaccharide in nature. The receptors for these exogeneous BRMs are pattern recognition receptors. The binding of exogeneous BRMs to pattern recognition receptors triggers immune response. Exogenous BRMs have been reported to have anti-viral, anti-bacterial, anti-fungal, anti-parasitic, and anti-tumor activities. Among different exogeneous BRMs, polysaccharide BRMs have the widest occurrence in nature. Some polysaccharide BRMs have been tested for their therapeutic properties in human clinical trials. An overview of current understandings of polysaccharide BRMs is summarized in this review.
Collapse
Affiliation(s)
- M Y K Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Cartee RT, Forsee WT, Bender MH, Ambrose KD, Yother J. CpsE from type 2 Streptococcus pneumoniae catalyzes the reversible addition of glucose-1-phosphate to a polyprenyl phosphate acceptor, initiating type 2 capsule repeat unit formation. J Bacteriol 2005; 187:7425-33. [PMID: 16237026 PMCID: PMC1272991 DOI: 10.1128/jb.187.21.7425-7433.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of the 90 capsule types made by the gram-positive pathogen Streptococcus pneumoniae are assembled by a block-type mechanism similar to that utilized by the Wzy-dependent O antigens and capsules of gram-negative bacteria. In this mechanism, initiation of repeat unit formation occurs by the transfer of a sugar to a lipid acceptor. In S. pneumoniae, this step is catalyzed by CpsE, a protein conserved among the majority of capsule types. Membranes from S. pneumoniae type 2 strain D39 and Escherichia coli containing recombinant Cps2E catalyzed incorporation of [14C]Glc from UDP-[14C]Glc into a lipid fraction in a Cps2E-dependent manner. The Cps2E-dependent glycolipid product from both membranes was sensitive to mild acid hydrolysis, suggesting that Cps2E was catalyzing the formation of a polyprenyl pyrophosphate Glc. Addition of exogenous polyprenyl phosphates ranging in size from 35 to 105 carbons to D39 and E. coli membranes stimulated Cps2E activity. The stimulation was due, in part, to utilization of the exogenous polyprenyl phosphates as an acceptor. The glycolipid product synthesized in the absence of exogenous polyprenyl phosphates comigrated with a 60-carbon polyprenyl pyrophosphate Glc. When 10 or 100 microM UMP was added to reaction mixtures containing D39 membranes, Cps2E activity was inhibited 40% and 80%, respectively. UMP, which acted as a competitive inhibitor of UDP-Glc, also stimulated Cps2E to catalyze the reverse reaction, with synthesis of UDP-Glc from the polyprenyl pyrophosphate Glc. These data indicated that Cps2E was catalyzing the addition of Glc-1-P to a polyprenyl phosphate acceptor, likely undecaprenyl phosphate.
Collapse
Affiliation(s)
- Robert T Cartee
- Department of Microbiology, BBRB 661/12, 845 19th St. South, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
38
|
Koppel EA, Saeland E, de Cooker DJM, van Kooyk Y, Geijtenbeek TBH. DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14. Immunobiology 2005; 210:203-10. [PMID: 16164027 DOI: 10.1016/j.imbio.2005.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae is the leading causative pathogen in community-acquired pneumonia. The ever-increasing frequency of antibiotic-resistant S. pneumoniae strains severely hampers effective treatments. Thus, a better understanding of the mechanisms involved in the pathogenesis of pneumococcal disease is needed; in particular, of the initial interactions that take place between the host and the bacterium. Recognition of pathogens by dendritic cells is one of the most crucial steps in the induction of an immune response. For efficient pathogen recognition, dendritic cells express various kinds of receptors, including the DC-specific C-type lectin DC-SIGN. Pathogens such as Mycobacterium tuberculosis and HIV target DC-SIGN to escape immunity. Here the in vitro binding of DC-SIGN with S. pneumoniae was investigated. DC-SIGN specifically interacts with S. pneumoniae serotype 3 and 14 in contrast to other serotypes such as 19F. While the data described here suggest that DC-SIGN interacts with S. pneumoniae serotype 14 through a ligand expressed by the capsular polysaccharide, the binding to S. pneumoniae serotype 3 appears to depend on an as yet unidentified ligand. Despite the binding capacity of the capsular polysaccharide of S. pneumoniae 14 to DC-SIGN, no immunomodulatory effects on the dendritic cells were observed. The immunological consequences of the serotype-specific capacity to interact with DC-SIGN should be further explored and might result in new insights in the development of new and more potent vaccines.
Collapse
Affiliation(s)
- Estella A Koppel
- Department of Molecular Cell Biology & Immunology, VU University Medical Center Amsterdam, v.d. Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Müller E, Rohde M. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 2005; 73:4653-67. [PMID: 16040978 PMCID: PMC1201225 DOI: 10.1128/iai.73.8.4653-4667.2005] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The capsular polysaccharide of Streptococcus pneumoniae represents an important virulence factor and protects against phagocytosis. In this study the amount of capsular polysaccharide present on the bacterial surface during the infection process was illustrated by electron microscopic studies. After infection of A549 cells (type II pneumocytes) and HEp-2 epithelial cells a modified fixation method was used that allowed visualization of the state of capsule expression. This modified fixation procedure did not require the use of capsule-specific antibodies. Visualization of pneumococci in intimate contact and invading cells demonstrated that pneumococci were devoid of capsular polysaccharide. Pneumococci not in contact with the cells did not show alterations in capsular polysaccharide. After infection of the cells, invasive pneumococci of different strains and serotypes were recovered. Single colonies of these recovered pneumococci exhibited an up-to-10(5)-fold-enhanced capacity to adhere and an up-to-10(4)-fold-enhanced capacity to invade epithelial cells. Electron microscopic studies using a lysine-ruthenium red (LRR) fixation procedure or cryo-field emission scanning electron microscopy revealed a reduction in capsular material, as determined in detail for a serotype 3 pneumococcal strain. The amount of polysaccharide in the serotype 3 capsule was also determined after intranasal infection of mice. This study illustrates for the first time the phenotypic variation of the polysaccharide capsule in the initial phase of pneumococcal infections. The modified LRR fixation allowed monitoring of the state of capsule expression of pathogens during the infectious process.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Cartee RT, Forsee WT, Yother J. Initiation and synthesis of the Streptococcus pneumoniae type 3 capsule on a phosphatidylglycerol membrane anchor. J Bacteriol 2005; 187:4470-9. [PMID: 15968057 PMCID: PMC1151773 DOI: 10.1128/jb.187.13.4470-4479.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type 3 synthase from Streptococcus pneumoniae is a processive beta-glycosyltransferase that assembles the type 3 polysaccharide [3)-beta-D-GlcUA-(1-->4)-beta-D-Glc-(1-->] by a multicatalytic process. Polymer synthesis occurs via alternate additions of Glc and GlcUA onto the nonreducing end of the growing polysaccharide chain. In the presence of a single nucleotide sugar substrate, the type 3 synthase ejects its nascent polymer and also adds a single sugar onto a lipid acceptor. Following single sugar incorporation from either UDP-[(14)C]Glc or UDP-[(14)C]GlcUA, we found that phospholipase D digestion of the Glc-labeled lipid yielded a product larger than a monosaccharide, while digestion of the GlcUA-labeled lipid resulted in a product larger than a disaccharide. These data indicated that the lipid acceptor contained a headgroup and that the order of addition to the lipid acceptor was Glc followed by GlcUA. Higher-molecular-weight product synthesized in vitro was also sensitive to phospholipase D digestion, suggesting that the same lipid acceptor was being used for single sugar additions and for polymer formation. Mass spectral analysis of the anionic lipids of a type 3 S. pneumoniae strain demonstrated the presence of glycosylated phosphatidylglycerol. This lipid was also observed in Escherichia coli strains expressing the recombinant type 3 synthase. The presence of the lipid primer in S. pneumoniae membranes explained both the ability of the synthase to reinitiate polysaccharide synthesis following ejection of its nascent chain and the association of newly synthesized polymer with the membrane. Unlike most S. pneumoniae capsular polysaccharides, the type 3 capsule is not covalently linked to the cell wall. The present data indicate that phosphatidylglycerol may anchor the type 3 polysaccharide to the cell membrane.
Collapse
Affiliation(s)
- Robert T Cartee
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
41
|
Chaffin DO, Mentele LM, Rubens CE. Sialylation of group B streptococcal capsular polysaccharide is mediated by cpsK and is required for optimal capsule polymerization and expression. J Bacteriol 2005; 187:4615-26. [PMID: 15968073 PMCID: PMC1151781 DOI: 10.1128/jb.187.13.4615-4626.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens have evolved the means to escape immune detection by mimicking host cell surface carbohydrates that are crucial for self/non-self recognition. Sialic acid, a terminal residue on these carbohydrates, inhibits activation of the alternate pathway of complement by recruiting the immune modulating molecule factors H, I, and iC3b. Sialylation of capsular polysaccharide (CPS) is important for virulence of group B streptococci (GBS), a significant human pathogen. We previously reported that cpsK, a gene within the cps locus of type III GBS, could complement a sialyltransferase deficient lst mutant of Haemophilus ducreyi, implicating its role in sialylation of the GBS capsule. To explore the function of cpsK in GBS capsule production, we created a mutant in cpsK. Immunoblot analysis and enzyme-linked immunosorbent assay using anti-type III CPS antisera demonstrated that the mutant CPS did not contain sialic acid. This was confirmed by high-performance liquid chromatography after mild acid hydrolysis of the CPS. Although increased CPS chain length was seen for this strain, CPS production was <20% of the parental isolate. An episomal cpsK copy restored synthesis of sialo-CPS to wild-type levels. These data support our hypothesis that cpsK encodes the GBS CPS sialyltransferase and provide further evidence that lack of CPS oligosaccharide sialylation reduces the amount of CPS expressed on the cell surface. These observations also imply that one or more of the components involved in synthesis or transport of oligosaccharide repeating units requires a sialo-oligosaccharide for complete activity.
Collapse
Affiliation(s)
- D O Chaffin
- Department of Pediatrics, Children's Hospital and Regional Medical Center, University of Washington, Seattle, WA 98109, USA
| | | | | |
Collapse
|
42
|
Krarup A, Sørensen UBS, Matsushita M, Jensenius JC, Thiel S. Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern recognition molecules mannan-binding lectin, L-ficolin, and H-ficolin. Infect Immun 2005; 73:1052-60. [PMID: 15664949 PMCID: PMC547010 DOI: 10.1128/iai.73.2.1052-1060.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 08/17/2004] [Accepted: 09/21/2004] [Indexed: 11/20/2022] Open
Abstract
Mannan-binding lectin (MBL), L-ficolin, and H-ficolin are pattern recognition molecules of the innate immune system. We investigated their ability to bind to different serotypes and noncapsulated variants of two gram-positive bacterial species, Streptococcus pneumoniae and Staphylococcus aureus. MBL did not bind to capsulated S. aureus or capsulated S. pneumoniae but did bind to a noncapsulated S. aureus variant (Wood). L-ficolin bound to some capsulated S. aureus serotypes (serotypes 1, 8, 9, 11, and 12) and capsulated S. pneumoniae serotypes (11A, 11D, and 11F) but not to noncapsulated strains. H-ficolin did not bind to any of the S. pneumoniae and S. aureus serotypes included in this study but did bind to one strain of Aerococcus viridans. The concentrations of the three proteins in 97 plasma samples were estimated. The median concentrations were 0.8 mug per ml for MBL, 3.3 mug per ml for L-ficolin, and 18.4 mug per ml for H-ficolin.
Collapse
Affiliation(s)
- Anders Krarup
- Department of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
43
|
Abstract
Carbohydrates in the form of capsular polysaccharides and/or lipopolysaccharides are the major components on the surface of bacteria. These molecules are important virulence factors in many bacteria isolated from infected persons. Immunity against these components confers protection against the disease. However, developing vaccines based on polysaccharides is difficult and several problems have to be solved. First of all, most of the bacterial polysaccharides are T-lymphocyte independent antigens. Anti-polysaccharide immune response is characterised by lack of T-lymphocyte memory, isotype restriction and delayed ontogeny. Children below 2 years of age and elderly respond poorly to polysaccharide antigens. Secondly, the wide structural heterogeneity among the polysaccharides within and between species is also a problem. Thirdly, some bacterial polysaccharides are poor immunogens in humans due to their structural similarities with glycolipids and glycoproteins present in man. The T-lymphocyte independent nature of a polysaccharide may be overcome by conjugating the native or depolymerised polysaccharide to a protein carrier. Such neoglycoconjugates have been proven to be efficient in inducing T-lymphocyte dependent immunity and to protect both infants as well as elderly from disease. Another approach to circumvent the T-lymphocyte independent property of polysaccharides is to select peptides mimicking the immunodominant structures. Several examples of such peptides have been described.
Collapse
Affiliation(s)
- Andrej Weintraub
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Bacteriology, Huddinge University Hospital, S-141 86 Stockholm, Sweden.
| |
Collapse
|
44
|
Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci U S A 2003; 100:4215-20. [PMID: 12642661 PMCID: PMC153073 DOI: 10.1073/pnas.0637469100] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IgA, the major class of Ig in secretions, classically functions by interfering with microbial attachment to host tissues. Many mucosal pathogens, including Streptococcus pneumoniae, express an IgA1 protease that may circumvent the protective effects of this Ig subclass. Because these proteases are specific for human IgA1, we generated human mAbs to the major surface antigen of the pneumococcus, its capsular polysaccharide, and tested their effect in a colonization model of bacterial adherence to respiratory epithelial cells in culture. Rather than inhibiting adherence, type-specific IgA1 markedly enhanced bacterial attachment to host cells, but only when cleaved by IgA1 protease. Neither antibodies of protease-insensitive subclasses (IgA2 and IgG) nor those directed against heterologous capsules had such activity. The adherence-promoting properties of cleaved antibodies correlated with the cationic characteristics of their variable segments, suggesting that bound Fab fragments may neutralize the inhibitory effect of negatively charged capsules on adhesive interaction with host cells. Coating of pneumococci with anticapsular polysaccharide antibody unmasked the bacterial phosphorylcholine ligand, allowing for increased adherence mediated by binding to the platelet activating factor receptor on epithelial cells. In addition, our findings provide evidence for a novel function of bacterial IgA1 proteases. These enzymes may enable pathogens to subvert the antigen specificity of the humoral immune response to facilitate adhesive interactions and persistence on the mucosal surface.
Collapse
Affiliation(s)
- Jeffrey N Weiser
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Waite RD, Penfold DW, Struthers JK, Dowson CG. Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. MICROBIOLOGY (READING, ENGLAND) 2003; 149:497-504. [PMID: 12624211 DOI: 10.1099/mic.0.26011-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Capsule phase variants were isolated from serotype 8 and serotype 37 pneumococcal sorbarods. Sequence duplications within the essential capsule genes - cap8E (type 8) and tts (type 37) - were found to introduce frameshifts and generate acapsular phenotypes. Capsular revertants possessed wild-type cap8E and tts genes, indicating the precise excision of these duplications. Reversion frequencies (OFF-ON) fit a linear relationship between log(frequency of reversion) and log(length of duplication), previously found for serotype three pneumococci [Waite, R. D., Struthers, J. K. & Dowson, C. G. (2001). Mol Microbiol 42, 1223-1232]. This study provides evidence that capsule phase variation can occur in pneumococcal serotypes with either simple (one to three genes) or complex capsule-encoding loci (12 genes). Given the key role of CapE (the first monosaccharide transferase) in other clinically important pneumococci, such as serotypes 14 and 19F with complex capsular loci, the observed duplication within cap8E suggests that capsule phase variation could be controlled by tandem sequence duplication in capE homologues in other pneumococcal serotypes that construct their capsules through polymerization of lipid-linked intermediates.
Collapse
Affiliation(s)
- Richard D Waite
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David W Penfold
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - J Keith Struthers
- Public Health Laboratory, Coventry and Warwick Hospital, Coventry CV1 4FH, UK
| | | |
Collapse
|
46
|
Cartee RT, Forsee WT, Jensen JW, Yother J. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli. Assembly of type 3 polysaccharide on a lipid primer. J Biol Chem 2001; 276:48831-9. [PMID: 11684683 DOI: 10.1074/jbc.m106481200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of the type 3 capsular polysaccharide of Streptococcus pneumoniae is catalyzed by the membrane-localized type 3 synthase, which utilizes UDP-Glc and UDP-GlcUA to form high molecular mass [3-beta-d-GlcUA-(1-->4)-beta-d-Glc-(1-->](n). Expression of the synthase in Escherichia coli resulted in synthesis of a 40-kDa protein that was reactive with antibody directed against the C terminus of the synthase and was the same size as the native enzyme. Membranes isolated from E. coli contained active synthase, as demonstrated by the ability to incorporate Glc and GlcUA into a high molecular mass polymer that could be degraded by type 3 polysaccharide-specific depolymerase. As in S. pneumoniae, the membrane-bound synthase from E. coli catalyzed a rapid release of enzyme-bound polysaccharide when incubated with either UDP-Glc or UDP-GlcUA alone. The recombinant enzyme expressed in E. coli was capable of releasing all of the polysaccharide from the enzyme, although the chains remained associated with the membrane. The recombinant enzyme was also able to reinitiate polysaccharide synthesis following polymer release by utilizing a lipid primer present in the membranes. At low concentrations of UDP-Glc and UDP-GlcUA (1 microm in the presence of Mg(2+) and 0.2 microm in Mn(2+)), novel glycolipids composed of repeating disaccharides with linkages consistent with type 3 polysaccharide were synthesized. As the concentration of the UDP-sugars was increased, there was a marked transition from glycolipid to polymer formation. At UDP-sugar concentrations of either 5 microm (with Mg(2+)) or 1.5 microm (with Mn(2+)), 80% of the incorporated sugar was in polymer form, and the size of the polymer increased dramatically as the concentration of UDP-sugars was increased. These results suggest a cooperative interaction between the UDP-precursor-binding site(s) and the nascent polysaccharide-binding site, resulting in a non-processive addition of sugars at the lower UDP-sugar concentrations and a processive reaction as the substrate concentrations increase.
Collapse
Affiliation(s)
- R T Cartee
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | | | |
Collapse
|
47
|
Bachrach G, Zlotkin A, Hurvitz A, Evans DL, Eldar A. Recovery of Streptococcus iniae from diseased fish previously vaccinated with a streptococcus vaccine. Appl Environ Microbiol 2001; 67:3756-8. [PMID: 11472962 PMCID: PMC93086 DOI: 10.1128/aem.67.8.3756-3758.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus iniae was recovered from diseased rainbow trout (Oncorhynchus mykiss, Walbaum) previously vaccinated against streptococcosis. PCR and serological methods indicate the presence of a new serotype in the diseased fish.
Collapse
Affiliation(s)
- G Bachrach
- Department of Oral Biology, Faculty of Dental Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
48
|
Rodríguez ME, Van der Pol WL, Van de Winkel JG. Flow cytometry-based phagocytosis assay for sensitive detection of opsonic activity of pneumococcal capsular polysaccharide antibodies in human sera. J Immunol Methods 2001; 252:33-44. [PMID: 11334963 DOI: 10.1016/s0022-1759(01)00329-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of efficient vaccines against Streptococcus pneumoniae is of major importance for public health. The efficacy of pneumococcal vaccination and induced protection are thought to be reflected by the opsonic antibody titers in sera from vaccines. We describe a novel two-color flow cytometry technique for quantification of antibody-mediated pneumococcal phagocytosis. Serum-opsonised fluorescein-isothiocyanate (FITC)-labelled S. pneumoniae were allowed to attach to neutrophils, split into two aliquots and further incubated either at 4 degrees C (to avoid phagocytosis) or 37 degrees C (to allow phagocytosis). Cell-surface residual opsonic IgG was detected by phycoerythrin (PE)-conjugated anti-human IgG in both samples. The fraction of FITC-labelled bacteria phagocytosed via antibody (F(i)) could be estimated from FITC and PE labels, and reflected the opsonic activity of sera. The technique displayed high sensitivity for the detection of opsonic antibodies, as shown by experiments using pre- and post-immune sera, which documented significantly increased phagocytosis after vaccination, and the observed increase in phagocytosis rates at higher antibody levels. The intrinsic variation of the assay was low, and could be further reduced by the use of effector cells from donors with similar IgG receptor (FcgammaR) allotypes. The method described in this study should be generally applicable to test vaccine efficacy, to evaluate the interaction of bacteria and phagocytes, and to discriminate between antibody-mediated and antibody-independent interactions between bacteria and phagocytes.
Collapse
Affiliation(s)
- M E Rodríguez
- Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | |
Collapse
|
49
|
Wu ZQ, Khan AQ, Shen Y, Schartman J, Peach R, Lees A, Mond JJ, Gause WC, Snapper CM. B7 requirements for primary and secondary protein- and polysaccharide-specific Ig isotype responses to Streptococcus pneumoniae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6840-8. [PMID: 11120807 DOI: 10.4049/jimmunol.165.12.6840] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The requirements for B7 costimulation during an in vivo humoral response to an intact extracellular bacteria have not been reported. In this study we immunized mice with Streptococcus pneumoniae (R36A) to determine the B7 requirements for induction of Ig, specific for two determinants on R36A, the phosphorylcholine (PC) determinant of C-polysaccharide and pneumococcal surface protein A (PspA). We show that the primary anti-PspA response, the development of PspA-specific memory, and the induction of the secondary anti-PspA response in primed mice were completely dependent upon B7 costimulation. Of note, costimulation was required only briefly after the secondary immunization compared with after the primary immunization for optimal induction of Ig. Blockade of B7 costimulation at the time of secondary immunization also completely abrogated the established state of memory, but did not induce tolerance. In contrast to the anti-PspA response, the primary anti-PC response involved only a very short period of B7 costimulation. Whereas B7-2 alone was required for induction of the primary anti-PspA and anti-PC responses, a redundant role for B7-1 and B7-2 was noted for the PspA-specific secondary response. CTLA4Ig blocked both the anti-PC and anti-PspA responses equally well over a wide range of bacterial doses. These studies demonstrate a critical, but variable, role for B7-dependent costimulation during an Ig response to an extracellular bacteria.
Collapse
MESH Headings
- Abatacept
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/administration & dosage
- B7-1 Antigen/immunology
- B7-1 Antigen/metabolism
- B7-1 Antigen/physiology
- B7-2 Antigen
- Bacterial Proteins/immunology
- CD28 Antigens/genetics
- CD28 Antigens/physiology
- CTLA-4 Antigen
- Dose-Response Relationship, Immunologic
- Epitopes/immunology
- Immunization, Secondary
- Immunoconjugates
- Immunoglobulin Fc Fragments/administration & dosage
- Immunoglobulin G/biosynthesis
- Immunoglobulin Isotypes/biosynthesis
- Immunoglobulin Isotypes/blood
- Immunologic Memory
- Immunosuppressive Agents/administration & dosage
- Injections, Intraperitoneal
- Kinetics
- Ligands
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylcholine/immunology
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
- Streptococcus pneumoniae/immunology
Collapse
Affiliation(s)
- Z Q Wu
- Departments of. Pathology and Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vollmer W, Tomasz A. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem 2000; 275:20496-501. [PMID: 10781617 DOI: 10.1074/jbc.m910189199] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analytical work on the fractionation of the glycan strands of Streptococcus pneumoniae cell wall has led to the observation that an unusually high proportion of hexosamine units (over 80% of the glucosamine and 10% of the muramic acid residues) was not N-acetylated, explaining the resistance of the peptidoglycan to the hydrolytic action of lysozyme, a muramidase that cleaves in the glycan backbone. A gene, pgdA, was identified as encoding for the peptidoglycan N-acetylglucosamine deacetylase A with amino acid sequence similarity to fungal chitin deacetylases and rhizobial NodB chitooligosaccharide deacetylases. Pneumococci in which pgdA was inactivated by insertion duplication mutagenesis produced fully N-acetylated glycan and became hypersensitive to exogenous lysozyme in the stationary phase of growth. The pgdA gene may contribute to pneumococcal virulence by providing protection against host lysozyme, which is known to accumulate in high concentrations at infection sites.
Collapse
Affiliation(s)
- W Vollmer
- Rockefeller University, Laboratory of Microbiology, New York, New York 10021, USA
| | | |
Collapse
|