• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4609580)   Today's Articles (1687)   Subscriber (49378)
For: Shukla JB, Parihar RS, Rao BR. Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull Math Biol 1980;42:283-94. [PMID: 7378609 DOI: 10.1007/bf02460787] [Citation(s) in RCA: 85] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Number Cited by Other Article(s)
1
Wajihah SA, Sankar DS. A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. ARCHIVE OF APPLIED MECHANICS = INGENIEUR-ARCHIV 2023;93:1771-1796. [PMID: 36743075 PMCID: PMC9886544 DOI: 10.1007/s00419-023-02368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
2
Nartsissov YR. Application of a multicomponent model of convectional reaction-diffusion to description of glucose gradients in a neurovascular unit. Front Physiol 2022;13:843473. [PMID: 36072843 PMCID: PMC9444140 DOI: 10.3389/fphys.2022.843473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/18/2022] [Indexed: 11/16/2022]  Open
3
Dhange M, Sankad G, Safdar R, Jamshed W, Eid MR, Bhujakkanavar U, Gouadria S, Chouikh R. A mathematical model of blood flow in a stenosed artery with post-stenotic dilatation and a forced field. PLoS One 2022;17:e0266727. [PMID: 35776713 PMCID: PMC9249183 DOI: 10.1371/journal.pone.0266727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022]  Open
4
Ali A, Bukhari Z, Umar M, Ismail MA, Abbas Z. Cu and Cu-SWCNT Nanoparticles' Suspension in Pulsatile Casson Fluid Flow via Darcy-Forchheimer Porous Channel with Compliant Walls: A Prospective Model for Blood Flow in Stenosed Arteries. Int J Mol Sci 2021;22:ijms22126494. [PMID: 34204328 PMCID: PMC8234443 DOI: 10.3390/ijms22126494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022]  Open
5
Effect of Varying Viscosity on Two-Layer Model of Pulsatile Flow through Blood Vessels with Porous Region near Walls. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01302-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
6
Gayathri K, Shailendhra K. MRI and Blood Flow in Human Arteries: Are There Any Adverse Effects? Cardiovasc Eng Technol 2019;10:242-256. [DOI: 10.1007/s13239-019-00400-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
7
Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study. Cardiovasc Eng Technol 2018;10:155-172. [DOI: 10.1007/s13239-018-00379-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
8
Mukhopadhyay S, Mandal MS, Mukhopadhyay S. Numerical simulation of physiologically relevant pulsatile flow of blood with shear-rate-dependent viscosity in a stenosed blood vessel. INT J BIOMATH 2018. [DOI: 10.1142/s1793524518500821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
9
Neeraja G, Dinesh P, Vidya K, Raju C. Peripheral layer viscosity on the stenotic blood vessels for Herschel-Bulkley fluid model. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]  Open
10
Abdollahzadeh Jamalabadi MY, Akbari Bidokhti AA, Khak Rah H, Vaezi S, Hooshmand P. Numerical Investigation of Oxygenated and Deoxygenated Blood Flow through a Tapered Stenosed Arteries in Magnetic Field. PLoS One 2016;11:e0167393. [PMID: 27941986 PMCID: PMC5152821 DOI: 10.1371/journal.pone.0167393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]  Open
11
Saleem N, Munawar S. A mathematical analysis of MHD blood flow of Eyring–Powell fluid through a constricted artery. INT J BIOMATH 2016. [DOI: 10.1142/s1793524516500273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
12
Akbar NS. Metallic nanoparticles analysis for the blood flow in tapered stenosed arteries: Application in nanomedicines. INT J BIOMATH 2015. [DOI: 10.1142/s1793524516500029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
13
Vajravelu K, Awgichew G, Radhakrishnamacharya G. The effects of slip condition and multiple stenoses on micropolar fluid flow through a channel of non-uniform cross-section. INT J BIOMATH 2015. [DOI: 10.1142/s1793524515500552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
14
Prakash O, Makinde OD, Singh SP, Jain N, Kumar D. Effects of stenoses on non-Newtonian flow of blood in blood vessels. INT J BIOMATH 2015. [DOI: 10.1142/s1793524515500102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
15
SRINIVASACHARYA D, SRIKANTH D. FLOW OF MICROPOLAR FLUID THROUGH CATHETERIZED ARTERY — A MATHEMATICAL MODEL. INT J BIOMATH 2012. [DOI: 10.1142/s1793524511001611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
16
MISRA JC, SHIT GC. ROLE OF SLIP VELOCITY IN BLOOD FLOW THROUGH STENOSED ARTERIES: A NON-NEWTONIAN MODEL. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519407002303] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
17
Liu M, Yang J. Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels. Microvasc Res 2009;78:14-9. [DOI: 10.1016/j.mvr.2009.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
18
Wong K, Mazumdar J, Pincombe B, Worthley SG, Sanders P, Abbott D. Theoretical modeling of micro-scale biological phenomena in human coronary arteries. Med Biol Eng Comput 2006;44:971-82. [PMID: 17048027 DOI: 10.1007/s11517-006-0113-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 09/14/2006] [Indexed: 12/18/2022]
19
Pralhad RN, Schultz DH. Modeling of arterial stenosis and its applications to blood diseases. Math Biosci 2004;190:203-20. [PMID: 15234617 DOI: 10.1016/j.mbs.2004.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Revised: 11/11/2002] [Accepted: 01/09/2004] [Indexed: 11/24/2022]
20
Pincombe B, Mazumdar J, Hamilton-Craig I. Effects of multiple stenoses and post-stenotic dilatation on non-Newtonian blood flow in small arteries. Med Biol Eng Comput 1999;37:595-9. [PMID: 10723896 DOI: 10.1007/bf02513353] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
21
Srivastava VP. Two-phase model of blood flow through stenosed tubes in the presence of a peripheral layer: applications. J Biomech 1996;29:1377-82. [PMID: 8884485 DOI: 10.1016/0021-9290(96)00037-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
22
Tu C, Deville M. Pulsatile flow of non-Newtonian fluids through arterial stenoses. J Biomech 1996;29:899-908. [PMID: 8809620 DOI: 10.1016/0021-9290(95)00151-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
23
Tandon PN, Rana UV. A new model for blood flow through an artery with axisymmetric stenosis. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING 1995;38:257-67. [PMID: 7774985 DOI: 10.1016/s0020-7101(05)80008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
24
Srivastava VP. Particle-fluid suspension model of blood flow through stenotic vessels with applications. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING 1995;38:141-54. [PMID: 7729930 DOI: 10.1016/0020-7101(94)01046-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
25
Srivastava VP, Saxena M. Two-layered model of Casson fluid flow through stenotic blood vessels: applications to the cardiovascular system. J Biomech 1994;27:921-8. [PMID: 8063842 DOI: 10.1016/0021-9290(94)90264-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
26
Chakravarty S, Mandal P. Mathematical modelling of blood flow through an overlapping arterial stenosis. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0895-7177(94)90116-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
27
Lou Z, Yang WJ. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation. J Biomech 1993;26:37-49. [PMID: 8423167 DOI: 10.1016/0021-9290(93)90611-h] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
28
Chakravarty S, Datta A. Dynamic response of stenotic blood flow in vivo. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0895-7177(92)90002-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
29
Chakravarty S, Datta A. Dynamic response of arterial blood flow in the presence of multi-stenoses. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0895-7177(90)90062-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
30
Hogan HA, Henriksen M. An evaluation of a micropolar model for blood flow through an idealized stenosis. J Biomech 1989;22:211-8. [PMID: 2722892 DOI: 10.1016/0021-9290(89)90089-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
31
Effects of stenosis on arterial rheology through a mathematical model. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0895-7177(89)90336-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
32
Computer models and automata theory in biology and medicine. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0270-0255(86)90089-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
33
Majhi SN, Usha L. A mathematical note on the Fahraeus-Lindqvist effect in power law fluid. Bull Math Biol 1985;47:765-9. [PMID: 4092111 DOI: 10.1007/bf02469303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
34
Haldar K. Effects of the shape of stenosis on the resistance to blood flow through an artery. Bull Math Biol 1985;47:545-50. [PMID: 4084691 DOI: 10.1007/bf02460013] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
35
Srivastava LM. Flow of couple stress fluid through stenotic blood vessels. J Biomech 1985;18:479-85. [PMID: 4030804 DOI: 10.1016/0021-9290(85)90662-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
36
Devanathan R, Parvathamma S. Flow of micropolar fluid through a tube with stenosis. Med Biol Eng Comput 1983;21:438-45. [PMID: 6888011 DOI: 10.1007/bf02442631] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
37
Tandon PN, Misra JK. Microstructural and peripheral layer viscosity effects on the flow of blood through an artery with mild stenosis. Ann N Y Acad Sci 1983;404:59-62. [PMID: 6575635 DOI: 10.1111/j.1749-6632.1983.tb19424.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
38
Perkkiö J, Keskinen R. On the effect of the concentration profile of red cells on blood flow in the artery with stenosis. Bull Math Biol 1983;45:259-67. [PMID: 6882958 DOI: 10.1007/bf02462360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA