1
|
Lee YU, Fox BW, Guo R, Curtis BJ, Yu J, Kim S, Nanda S, Baumann V, Yilmaz LS, Haynes CM, Schroeder FC, Walhout AJM. Host-microbe interactions rewire metabolism in a C. elegans model of leucine breakdown deficiency. Nat Metab 2024; 6:1584-1600. [PMID: 39117959 PMCID: PMC11670331 DOI: 10.1038/s42255-024-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
In humans, defects in leucine catabolism cause a variety of inborn errors in metabolism. Here, we use Caenorhabditis elegans to investigate the impact of mutations in mccc-1, an enzyme that functions in leucine breakdown. Through untargeted metabolomic and transcriptomic analyses we find extensive metabolic rewiring that helps to detoxify leucine breakdown intermediates via conversion into previously undescribed metabolites and to synthesize mevalonate, an essential metabolite. We also find that the leucine breakdown product 3,3-hydroxymethylbutyrate (HMB), commonly used as a human muscle-building supplement, is toxic to C. elegans and that bacteria modulate this toxicity. Unbiased genetic screens revealed interactions between the host and microbe, where components of bacterial pyrimidine biosynthesis mitigate HMB toxicity. Finally, upregulated ketone body metabolism genes in mccc-1 mutants provide an alternative route for biosynthesis of the mevalonate precursor 3-hydroxy-3-methylglutaryl-CoA. Our work demonstrates that a complex host-bacteria interplay rewires metabolism to allow host survival when leucine catabolism is perturbed.
Collapse
Affiliation(s)
- Yong-Uk Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bennett W Fox
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Rui Guo
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Science, Hangzhou, P. R. China
| | - Brian J Curtis
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victor Baumann
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - L Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Liu C, Sun D, Liu J, Chen Y, Zhou X, Ru Y, Zhu J, Liu W. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. Nat Commun 2022; 13:1493. [PMID: 35315431 PMCID: PMC8938473 DOI: 10.1038/s41467-022-29240-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level. Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. Here, the authors provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, showing that the cAMP receptor protein (CRP) can play regulatory roles at the post-translational level.
Collapse
|
3
|
Sun R, Yu P, Zuo P, Alvarez PJ. Bacterial Concentrations and Water Turbulence Influence the Importance of Conjugation Versus Phage-Mediated Antibiotic Resistance Gene Transfer in Suspended Growth Systems. ACS ENVIRONMENTAL AU 2022; 2:156-165. [PMID: 37101581 PMCID: PMC10114721 DOI: 10.1021/acsenvironau.1c00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the abundance of phage-borne antibiotic resistance genes (ARGs) in the environment, the frequency of ARG propagation via phage-mediated transduction (relative to via conjugation) is poorly understood. We investigated the influence of bacterial concentration and water turbulence level [quantified as Reynold's number (Re)] in suspended growth systems on the frequency of ARG transfer by two mechanisms: delivery by a lysogenic phage (phage λ carrying gentamycin-resistance gene, genR) and conjugation mediated by the self-transmissible plasmid RP4. Using Escherichia coli (E. coli) as the recipient, phage delivery had a comparable frequency (1.2 ± 0.9 × 10-6) to that of conjugation (1.1 ± 0.9 × 10-6) in suspensions with low cell concentration (104 CFU/mL) and moderate turbulence (Re = 5 × 104). Turbulence affected cell (or phage)-to-cell contact rates and detachment (due to shear force), and thus, it affected the relative importance of conjugation versus phage delivery. At 107 CFU/mL, no significant difference was observed between the frequencies of ARG transfer by the two mechanisms under quiescent water conditions (2.8 ± 0.3 × 10-5 for conjugation vs 2.2 ± 0.5 × 10-5 for phage delivery, p = 0.19) or when Re reached 5 × 105 (3.4 ± 1.5 × 10-5 for conjugation vs 2.9 ± 1.0 × 10-5 for phage delivery, p = 0.52). Transcriptomic analysis of genes related to conjugation and phage delivery and simulation of cell (or phage)-to-cell collisions at different Re values corroborate that the importance of phage delivery relative to conjugation increases under either quiescent or turbulent conditions. This finding challenges the prevailing view that conjugation is the dominant ARG transfer mechanism and underscores the need to consider and mitigate potential ARG dissemination via transduction.
Collapse
Affiliation(s)
- Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J.J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Álvarez VE, Quiroga MP, Galán AV, Vilacoba E, Quiroga C, Ramírez MS, Centrón D. Crucial Role of the Accessory Genome in the Evolutionary Trajectory of Acinetobacter baumannii Global Clone 1. Front Microbiol 2020; 11:342. [PMID: 32256462 PMCID: PMC7093585 DOI: 10.3389/fmicb.2020.00342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is one of the most important nosocomial pathogens able to rapidly develop extensive drug resistance. Here, we study the role of accessory genome in the success of the globally disseminated clone 1 (GC1) with functional and genomic approaches. Comparative genomics was performed with available GC1 genomes (n = 106) against other A. baumannii high-risk and sporadic clones. Genetic traits related to accessory genome were found common and conserved along time as two novel regions of genome plasticity, and a CRISPR-Cas system acquired before clonal diversification located at the same loci as “sedentary” modules. Although identified within hotspot for recombination, other block of accessory genome was also “sedentary” in lineage 1 of GC1 with signs of microevolution as the AbaR0-type genomic island (GI) identified in A144 and in A155 strains which were maintained one month in independent experiments without antimicrobial pressure. The prophage YMC/09/02/B1251_ABA_BP was found to be “mobile” since, although it was shared by all GC1 genomes, it showed high intrinsic microevolution as well as mobility to different insertion sites. Interestingly, a wide variety of Insertion Sequences (IS), probably acquired by the flow of plasmids related to Rep_3 superfamily was found. These IS showed dissimilar genomic location amongst GC1 genomes presumably associated with promptly niche adaptation. On the other hand, a type VI secretion system and three efflux pumps were subjected to deep processes of genomic loss in A. baumannii but not in GC1. As a whole, these findings suggest that preservation of some genetic modules of accessory genome harbored by strains from different continents in combination with great plasticity of IS and varied flow of plasmids, may be central features of the genomic structure of GC1. Competition of A144 and A155 versus A118 (ST 404/ND) without antimicrobial pressure suggested a higher ability of GC1 to grow over a clone with sporadic behavior which explains, from an ecological perspective, the global achievement of this successful pandemic clone in the hospital habitat. Together, these data suggest an essential role of still unknown properties of “mobile” and “sedentary” accessory genome that is preserved over time under different antibiotic or stress conditions.
Collapse
Affiliation(s)
- Verónica Elizabeth Álvarez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Angélica Viviana Galán
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Elisabet Vilacoba
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Cecilia Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Evangelisti E, Yunusov T, Shenhav L, Schornack S. N-acetyltransferase AAC(3)-I confers gentamicin resistance to Phytophthora palmivora and Phytophthora infestans. BMC Microbiol 2019; 19:265. [PMID: 31775609 PMCID: PMC6882347 DOI: 10.1186/s12866-019-1642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Oomycetes are pathogens of mammals, fish, insects and plants, and the potato late blight agent Phytophthora infestans and the oil palm and cocoa infecting pathogen Phytophthora palmivora cause economically impacting diseases on a wide range of crop plants. Increasing genomic and transcriptomic resources and recent advances in oomycete biology demand new strategies for genetic modification of oomycetes. Most oomycete transformation procedures rely on geneticin-based selection of transgenic strains. Results We established N-acetyltransferase AAC(3)-I as a gentamicin-based selectable marker for oomycete transformation without interference with existing geneticin resistance. Strains carrying gentamicin resistance are fully infectious in plants. We further demonstrate the usefulness of this new antibiotic selection to super-transform well-characterized, already fluorescently-labelled P. palmivora strains and provide a comprehensive protocol for maintenance and zoospore electro-transformation of Phytophthora strains to aid in plant-pathogen research. Conclusions N-acetyltransferase AAC(3)-I is functional in Phytophthora oomycetes. In addition, the substrate specificity of the AAC(3)-I enzyme allows for re-transformation of geneticin-resistant strains. Our findings and resources widen the possibilities to study oomycete cell biology and plant-oomycete interactions.
Collapse
Affiliation(s)
| | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | - Liron Shenhav
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | | |
Collapse
|
6
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
7
|
Lü Y, Zhao S, Liang H, Zhang W, Liu J, Hu H. The first report of a novel IncHI1B bla SIM-1-carrying megaplasmid pSIM-1-BJ01 from a clinical Klebsiella pneumoniae isolate. Infect Drug Resist 2019; 12:2103-2112. [PMID: 31413597 PMCID: PMC6657655 DOI: 10.2147/idr.s212333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/03/2019] [Indexed: 12/03/2022] Open
Abstract
Background: A rare member of metallo-β-lactamases genes, blaSIM-1, carried by a 316-kb plasmid designated pSIM-1-BJ01 was isolated from a clinical cephalosporins- and carbapenem-resistant Klebsiellapneumoniae 13624. This is the first sequence report of a transferable blaSIM-1-carrying conjugative plasmid isolated from K. pneumoniae. Purpose: The sequence analysis of pSIM-1-BJ01 will help us to identify genes responsible for conjugation, plasmid maintenance and drug resistance, to understand the evolution and control the dissemination of resistance plasmids. Patients and methods:K. pneumoniae 13624 was isolated from the urine specimen of a patient. Bacterial genomic DNA was sequenced with PacBio RSII platform. Results: Most of the pSIM-1-BJ01 backbone matches that of pRJA166a, which was isolated from a clinical hypervirulent K. pneumoniae ST23 strain at Shanghai, China, recently. The highly homologous backbones between the two plasmids imply the close relationship of evolution. Two different multidrug-resistant regions both carrying the class 1 integrons with different resistance genes have been assembled into the pSIM-1-BJ01. Besides, the other two resistance plasmids, pKP13624-1 carrying blaTEM-1 and blaCTX-M-15 and pKP13624-2 carrying blaCTX-M-14 and blaLAP-2 were also identified. Conclusion: The emergence of the blaSIM-1-carrying IncHI1B pSIM-1-BJ01 suggests the spread of blaSIM among Enterobacteriaceae is possible. We should pay more attention to supervise and control the dissemination of hypervirulent carbapenem-resistant K. pneumonia in public hospitals.
Collapse
Affiliation(s)
- Yang Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shulong Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Hui Liang
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jia Liu
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongyan Hu
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
8
|
Muth G. The pSG5-based thermosensitive vector family for genome editing and gene expression in actinomycetes. Appl Microbiol Biotechnol 2018; 102:9067-9080. [DOI: 10.1007/s00253-018-9334-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022]
|
9
|
New Shuttle Vectors for Gene Cloning and Expression in Multidrug-Resistant Acinetobacter Species. Antimicrob Agents Chemother 2018; 62:AAC.02480-17. [PMID: 29339383 DOI: 10.1128/aac.02480-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Understanding bacterial pathogenesis requires adequate genetic tools to assess the role of individual virulence determinants by mutagenesis and complementation assays, as well as for homologous and heterologous expression of cloned genes. Our knowledge of Acinetobacter baumannii pathogenesis has so far been limited by the scarcity of genetic tools to manipulate multidrug-resistant (MDR) epidemic strains, which are responsible for most infections. Here, we report on the construction of new multipurpose shuttle plasmids, namely, pVRL1 and pVRL2, which can efficiently replicate in Acinetobacter spp. and in Escherichia coli The pVRL1 plasmid has been constructed by combining (i) the cryptic plasmid pWH1277 from Acinetobacter calcoaceticus, which provides an origin of replication for Acinetobacter spp.; (ii) a ColE1-like origin of replication; (iii) the gentamicin or zeocin resistance cassette for antibiotic selection; and (iv) a multilinker containing several unique restriction sites. Modification of pVRL1 led to the generation of the pVRL2 plasmid, which allows arabinose-inducible gene transcription with an undetectable basal expression level of cloned genes under uninduced conditions and a high dynamic range of responsiveness to the inducer. Both pVRL1 and pVRL2 can easily be selected in MDR A. baumannii, have a narrow host range and a high copy number, are stably maintained in Acinetobacter spp., and appear to be compatible with indigenous plasmids carried by epidemic strains. Plasmid maintenance is guaranteed by the presence of a toxin-antitoxin system, providing more insights into the mechanism of plasmid stability in Acinetobacter spp.
Collapse
|
10
|
Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR). Appl Environ Microbiol 2017; 83:AEM.00712-17. [PMID: 28500045 DOI: 10.1128/aem.00712-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 11/20/2022] Open
Abstract
The capability of biofilm formation has a major impact on the industrial and biotechnological applications of Shewanella putrefaciens CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of S. putrefaciens CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of lrbR, the gene for the other response regulator. The bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in S. putrefaciens CN32.IMPORTANCE Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in S. putrefaciens CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria.
Collapse
|
11
|
Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int J Food Microbiol 2016; 232:95-102. [PMID: 27289192 DOI: 10.1016/j.ijfoodmicro.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The prevalence of antimicrobial resistant Klebsiella pneumoniae in poultry products has been a public concern, as it severely endangers food safety and human health. In this study, we investigated 90 antimicrobial resistant Klebsiella strains that were isolated from a commercial broiler slaughter plant in Shandong province of China. Nearly all (89/90) of the isolates were identified as infectious phylogenetic group KpI-type K. pneumoniae. Out of these 90 strains, 87 (96.7%) were multidrug-resistant isolates, and 87 (96.7%) were extended-spectrum beta-lactamase (ESBL)-producing isolates. An analysis of the prevalence of quinolone resistance genes showed that 7.8%, 77.8%, 26.7%, and 2.2% of the strains carried the qnrA, qnrB, qnrS, and qepA genes, respectively. An analysis of beta-lactam resistance genes showed that a high percentage of the strains contain the blaTEM (76.7%), blaSHV (88.9%), and blaCTX-M (75.6%) genes, among which three blaSHV subtypes (blaSHV-1, n=30; blaSHV-11, n=38; blaSHV-12, n=12) and three blaCTX-M subtypes (blaCTX-M-14, n=14; blaCTX-M-15, n=35; blaCTX-M-55, n=19) were found. A further investigation of mobile genetic elements involved in horizontal multidrug resistance gene transfer showed the presence of class 1 and 2 integrons in 77 (85.6%) and five (5.6%) isolates, respectively, while no class 3 integrons were detected. Four types of class 1 integrons containing specific gene cassette arrays (dfrA12-orfF-aadA2, dfrA17-aadA5, dfrA1-aadA1, and empty) were identified. Only one gene cassette array (dfrA1-sat2-aadA1) was detected in the class 2 integrons. Furthermore, four different types of insertion sequence common region 1 (ISCR1)-mediated downstream structures were successfully identified in 46 class 1 integron-positive isolates, among which ISCR1-sapA-like-qnrB2-qacEΔ1 was the most commonly observed structure. Chi-square tests revealed a significant association between ESBL genes, plasmid-mediated quinolone resistance (PMQR) genes, and class 1 integrons (p<0.01). Additional conjugation experiments confirmed this relationship (p<0.01) in transconjugants by finding that a high percentage of PMQR genes (74.0%) and class 1 integrons (73.7%) were co-transferred with ESBL genes. Finally, multilocus sequence typing (MLST) was performed, and it revealed that the isolates from chickens are widely distributed in humans, and that antimicrobial resistance is not only disseminated by clonal spreading, but largely by horizontal gene transfer. These results suggest that horizontal transfer of antimicrobial resistance genes by mobile genetic elements, such as integrons, plays a major role in the spread of antimicrobial resistance. Therefore, elucidating the structures of drug resistance integrons is of great importance to the commercial broiler slaughter plant in Shandong, China.
Collapse
|
12
|
Identification of integrons and phylogenetic groups of drug-resistant Escherichia coli from broiler carcasses in China. Int J Food Microbiol 2015; 211:51-6. [PMID: 26173199 DOI: 10.1016/j.ijfoodmicro.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
Abstract
The dissemination of drug-resistant Escherichia coli in poultry products is becoming a public concern, as it endangers food security and human health. It is very common for E. coli to exhibit drug resistance in the poultry industry in China due to the excessive use of antibiotics. However, few studies have examined the drug resistance endowed by integrons and integron-associated gene cassettes in different phylogenetic groups of E. coli isolated from broiler carcasses. In this study, 373 antibiotic-resistant E. coli strains were isolated from the surfaces or insides of broiler carcasses from a slaughterhouse in Shandong Province, China. According to phylogenetic assays of chuA, yjaA, and an anonymous DNA fragment, TSPE4-C2, these isolates belong to four phylogenetic groups (A, B1, B2, and D) and seven subgroups (A0, A1, B1, B21, B22, D1, and D2). Of the tested isolates, 95.71% (n=357) are multi-drug resistant, among which group B1 was predominant, accounting for 33.51% (n=125) of the tested isolates. A high percentage of the E. coli isolates were resistant to amoxicillin-clavulanic acid (99.20%, n=370), doxycycline (92.23%, n=344), sulfamethoxazole-trimethoprim (90.88%, n=339), ciprofloxacin, (64.61%, n=241), sulbactam-cefoperazone (51.21%, n=191), and amikacin (33.78%, n=126). Furthermore, among the 373 isolates, class 1 and 2 integrons were identified in 292 (78.28%) and 49 (13.14%) of the isolates, respectively, while no class 3 integrons were detected. The most prevalent gene cassette arrays were dfrA17-aadA5 and dfrA12-orfF-aadA2 in the variable region of class 1 integrons, while only one gene cassette array (dfrA1-sat2-aadA1) was detected in the variable region of class 2 integrons. Class 1 integrons were distributed in various physiological subtypes, whereas no predominant phylogenetic groups could be identified. The presence of class 2 integrons in the B21 subtype was significantly higher than in the other subtypes, and it coexisted with the class 1 integron. This study suggests that broiler products are potential sources of multi-drug resistant E. coli, and that resistance genes could be spread by lateral gene transfer.
Collapse
|
13
|
|
14
|
Development of a modified gentamicin resistance cassette for genetic manipulation of the oral spirochete Treponema denticola. Appl Environ Microbiol 2012; 78:2059-62. [PMID: 22247130 DOI: 10.1128/aem.07461-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Herein, we report that a modified gentamicin cassette and a PCR-based method can be used for targeted mutagenesis of the oral spirochete Treponema denticola. This approach minimizes polar effects and spontaneous antibiotic resistance. Therefore, it can serve as a reliable tool for genetic manipulation of T. denticola.
Collapse
|
15
|
Koenig JE, Bourne DG, Curtis B, Dlutek M, Stokes HW, Doolittle WF, Boucher Y. Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation. ISME JOURNAL 2011; 5:962-72. [PMID: 21270840 DOI: 10.1038/ismej.2010.193] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integron cassette arrays in a dozen cultivars of the most prevalent group of Vibrio isolates obtained from mucus expelled by a scleractinian coral (Pocillopora damicornis) colony living on the Great Barrier Reef were sequenced and compared. Although all cultivars showed >99% identity across recA, pyrH and rpoB genes, no two had more than 10% of their integron-associated gene cassettes in common, and some individuals shared cassettes exclusively with distantly-related members of the genus. Of cassettes shared within the population, a number appear to have been transferred between Vibrio isolates, as assessed by phylogenetic analysis. Prominent among the mucus Vibrio cassettes with potentially inferable functions are acetyltransferases, some with close similarity to known antibiotic-resistance determinants. A subset of these potential resistance cassettes were shared exclusively between the mucus Vibrio cultivars, Vibrio coral pathogens and human pathogens, thus illustrating a direct link between these microbial niches through exchange of integron-associated gene cassettes.
Collapse
Affiliation(s)
- Jeremy E Koenig
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different -OH or -NH₂ groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltransferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes.
Collapse
|
17
|
Ushida K, Segawa T, Kohshima S, Takeuchi N, Fukui K, Li Z, Kanda H. Application of real-time PCR array to the multiple detection of antibiotic resistant genes in glacier ice samples. J GEN APPL MICROBIOL 2010; 56:43-52. [DOI: 10.2323/jgam.56.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Cabrera R, Ruiz J, Sánchez-Céspedes J, Goñi P, Gómez-Lus R, Jiménez de Anta MT, Gascón J, Vila J. Characterization of the enzyme aac(3)-Id in a clinical isolate of Salmonella enterica serovar Haifa causing traveler's diarrhea. Enferm Infecc Microbiol Clin 2009; 27:453-6. [PMID: 19403206 DOI: 10.1016/j.eimc.2008.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 10/13/2008] [Accepted: 11/11/2008] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The objective of this investigation was to identify the mechanism of decreased susceptibility to gentamicin in a Salmonella clinical isolate, leading to the detection of a aminoglycoside acetyltransferase gene found in a class 1 integron. METHODS A multidrug-resistant Salmonella strain was recovered from feces of a traveler to Egypt. The antimicrobial susceptibility test to 12 antimicrobial agents was performed with the Kirby-Bauer method. The presence of class 1 integron was determined by PCR. The amplified product was recovered and sequenced in order to establish the genes carried. In addition, susceptibility to gentamicin C1a, gentamicin C1, sisomicin, neomycin, dibekacin, kanamycin, tobramycin, amikacin, netilmicin, apramycin, dactimicin, spectinomycin, streptomycin, lividomycin and butirosin, was established. The Champion pET101 Directional TOPO Expression Kit was used to clone and express the aac(3)-I gene. RESULTS The isolate was identified as Salmonella enterica serovar Haifa, showing resistance to nalidixic acid, tetracycline and decreased susceptibility to gentamicin. One integron with a size circa 1,500 bp, encoding an aac(3)-Id plus aadA7 genes was observed. The analysis of the susceptibility to different aminoglycosides in the E. coli TOP10F' transformed with the vector carrying aac(3)-Id gene showed resistance to gentamicin C1a, gentamicin C1, and dactimicin, in accordance with the presence of this enzyme but, was susceptible to sisomicin. The homology of the amino acid and nucleotide sequences with the AAC(3)-Id enzyme was of 100%. CONCLUSION The presence of the AAC(3)-Id enzyme was described for the first time in a S. Haifa.
Collapse
Affiliation(s)
- Roberto Cabrera
- Servicio de Microbiología, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hall RM, Collis CM. Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updat 2007; 1:109-19. [PMID: 16904397 DOI: 10.1016/s1368-7646(98)80026-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Revised: 02/10/1998] [Accepted: 02/20/1998] [Indexed: 11/24/2022]
Abstract
Resistance of gram-negative organisms to antibiotics such as beta-lactams, aminoglycosides, trimethoprim and chloramphenicol is caused by many different acquired genes, and a substantial proportion of these are part of small mobile elements known as gene cassettes. A gene cassette consists of the gene and a downstream sequence, known as a 59-base element (59-be), that acts as a specific recombination site. Gene cassettes can move into or out of a specific receptor site (attl site) in a companion element called an integron, and integration or excision of the cassettes is catalysed by a site-specific recombinase (Intl) that is encoded by the integron. At present count there are 40 different cassette-associated resistance genes and three distinct classes of integron, each encoding a distinct Intl integrase. The same cassettes are found in all three classes of integron, indicating that cassettes can move freely between different integrons. Integrons belonging to class I often contain a further antibiotic resistance gene, sull, conferring resistance to sulphonamides. The sull gene is found in a conserved region (3'-CS) that is not present in all members of this class. Class I integrons of the sull type are most prevalent in clinical isolates and have been found in many different organisms. Even though most of them are defective transposon derivatives, having lost at least one of the transposition genes, they are none the less translocatable and consequently found in many different locations. The transposon Tn7 is the best known representative of class 2 integrons, and Tn7 and relatives are also found in many different species.
Collapse
Affiliation(s)
- R M Hall
- CSIRO Molecular Science, Sydney Laboratory, New South Wales, Australia.
| | | |
Collapse
|
20
|
Xu H, Davies J, Miao V. Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 2007; 189:6276-83. [PMID: 17573473 PMCID: PMC1951913 DOI: 10.1128/jb.00348-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two environmental strains, Delftia acidovorans C17 and Delftia tsuruhatensis A90, were found to carry class 3 integrons, which have seldom been reported and then only from pathogens in which they are associated with antibiotic resistance genes. The Delftia integrons comprised a highly conserved class 3 integrase gene, upstream and oppositely oriented from a set of three or four gene cassettes that encoded unidentified functions. The A90 integron had one more gene cassette than the C17 integron, but the two were otherwise the same; furthermore, they were located within regions of sequence identity in both strains and linked to chromosomal genes. A screen of other Delftia and related strains did not reveal the presence of additional class 3 integrons. The observations suggest that these integrons were horizontally transferred to Delftia as part of a larger region and reside as chromosomal elements that probably predate transposon dissemination, as has been proposed for certain class 1 integrons.
Collapse
Affiliation(s)
- Hai Xu
- Department of Microbiology and Immunology, Life Science Centre, University of British Columbia, 2350 Life Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
21
|
Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007; 20:79-114. [PMID: 17223624 PMCID: PMC1797629 DOI: 10.1128/cmr.00015-06] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Since antibiotic resistance usually affords a gain of function, there is an associated biological cost resulting in a loss of fitness of the bacterial host. Considering that antibiotic resistance is most often only transiently advantageous to bacteria, an efficient and elegant way for them to escape the lethal action of drugs is the alteration of resistance gene expression. It appears that expression of bacterial resistance to antibiotics is frequently regulated, which indicates that modulation of gene expression probably reflects a good compromise between energy saving and adjustment to a rapidly evolving environment. Modulation of gene expression can occur at the transcriptional or translational level following mutations or the movement of mobile genetic elements and may involve induction by the antibiotic. In the latter case, the antibiotic can have a triple activity: as an antibacterial agent, as an inducer of resistance to itself, and as an inducer of the dissemination of resistance determinants. We will review certain mechanisms, all reversible, that bacteria have elaborated to achieve antibiotic resistance by the fine-tuning of the expression of genetic information.
Collapse
Affiliation(s)
- Florence Depardieu
- Unité des Agents Antibactériens, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
22
|
Poteete AR, Rosadini C, St Pierre C. Gentamicin and other cassettes for chromosomal gene replacement in Escherichia coli. Biotechniques 2006; 41:261-2, 264. [PMID: 16989085 DOI: 10.2144/000112242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Anthony R Poteete
- University of Massachusetts Medical School, Department of Molecular Genetics & Microbiology, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
23
|
Hoffmann D, Gutekunst K, Klissenbauer M, Schulz-Friedrich R, Appel J. Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803. Additional homologues of hypA and hypB are not active in hydrogenase maturation. FEBS J 2006; 273:4516-27. [PMID: 16972939 DOI: 10.1111/j.1742-4658.2006.05460.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genes homologous to hydrogenase accessory genes are scattered over the whole genome in the cyanobacterium Synechocystis sp. PCC 6803. Deletion and insertion mutants of hypA1 (slr1675), hypB1 (sll1432), hypC, hypD, hypE and hypF were constructed and showed no hydrogenase activity. Involvement of the respective genes in maturation of the enzyme was confirmed by complementation. Deletion of the additional homologues hypA2 (sll1078) and hypB2 (sll1079) had no effect on hydrogenase activity. Thus, hypA1 and hypB1 are specific for hydrogenase maturation. We suggest that hypA2 and hypB2 are involved in a different metal insertion process. The hydrogenase activity of DeltahypA1 and DeltahypB1 could be increased by the addition of nickel, suggesting that HypA1 and HypB1 are involved in the insertion of nickel into the active site of the enzyme. The urease activity of all the hypA and hypB single- and double-mutants was the same as in wild-type cells. Therefore, there seems to be no common function for these two hyp genes in hydrogenase and urease maturation in Synechocystis. Similarity searches in the whole genome yielded Slr1876 as the best candidate for the hydrogenase-specific protease. The respective deletion mutant had no hydrogenase activity. Deletion of hupE had no effect on hydrogenase activity but resulted in a mutant unable to grow in a medium containing the metal chelator nitrilotriacetate. Growth was resumed upon the addition of cobalt or methionine. Because the latter is synthesized by a cobalt-requiring enzyme in Synechocystis, HupE is a good candidate for a cobalt transporter in cyanobacteria.
Collapse
Affiliation(s)
- Dörte Hoffmann
- Botanisches Institut, Christian-Albrechts University, Kiel, Germany
| | | | | | | | | |
Collapse
|
24
|
Elbourne LDH, Hall RM. Gene cassette encoding a 3-N-aminoglycoside acetyltransferase in a chromosomal integron. Antimicrob Agents Chemother 2006; 50:2270-1. [PMID: 16723604 PMCID: PMC1479136 DOI: 10.1128/aac.01450-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie JM. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2:e7. [PMID: 16415984 PMCID: PMC1326220 DOI: 10.1371/journal.pgen.0020007] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 12/06/2005] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
- * To whom correspondence should be addressed. E-mail: (PEF); (JMC)
| | - David Vallenet
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Valérie Barbe
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Stéphane Audic
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
| | - Hiroyuki Ogata
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
| | - Laurent Poirel
- Département de Bactériologie-Virologie, Hôpital de Bicêtre, Le-Kremlin-Bicêtre, France
| | - Hervé Richet
- Unité des Rickettsies, CNRS UMR6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Catherine Robert
- Unité des Rickettsies, CNRS UMR6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Sophie Mangenot
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Chantal Abergel
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
| | - Patrice Nordmann
- Département de Bactériologie-Virologie, Hôpital de Bicêtre, Le-Kremlin-Bicêtre, France
| | - Jean Weissenbach
- Génoscope, Centre National de Séquençage and CNRS UMR8030, Evry, France
| | - Didier Raoult
- Unité des Rickettsies, CNRS UMR6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Jean-Michel Claverie
- Information Génomique et Structurale, Institute for Structural Biology and Microbiology, IBSM, Marseille, France
- * To whom correspondence should be addressed. E-mail: (PEF); (JMC)
| |
Collapse
|
26
|
Levings RS, Partridge SR, Lightfoot D, Hall RM, Djordjevic SP. New integron-associated gene cassette encoding a 3-N-aminoglycoside acetyltransferase. Antimicrob Agents Chemother 2005; 49:1238-41. [PMID: 15728939 PMCID: PMC549260 DOI: 10.1128/aac.49.3.1238-1241.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fifth gene cassette containing an aacC gene, aacCA5, was found in an aacCA5-aadA7 cassette array in a class 1 integron isolated from a multiply drug resistant Salmonella enterica serovar Kentucky strain. The AacC-A5 or AAC(3)-Ie acetyltransferase encoded by aacCA5 is related to other AAC(3)-I enzymes and confers resistance to gentamicin.
Collapse
Affiliation(s)
- Renee S Levings
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Rm. 737 Botterell Hall, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
28
|
Doublet B, Weill FX, Fabre L, Chaslus-Dancla E, Cloeckaert A. Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3'-N-aminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar newport. Antimicrob Agents Chemother 2004; 48:3806-12. [PMID: 15388438 PMCID: PMC521890 DOI: 10.1128/aac.48.10.3806-3812.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) harbors an antibiotic resistance gene cluster and was previously identified in the multidrug-resistant Salmonella enterica serovars Typhimurium DT104, Agona, Paratyphi B, and Albany. This antibiotic resistance gene cluster is a complex class 1 integron and most often confers resistance to ampicillin (Ap), chloramphenicol (Cm)/florfenicol (Ff), streptomycin (Sm)/spectinomycin (Sp), sulfonamides (Su), and tetracycline (Tc) (ApCmFfSmSpSuTc profile). Recently, variant SGI1 antibiotic resistance gene clusters conferring different antibiotic resistance profiles have been identified in several S. enterica serovars and were classified as SGI1-A to -G. We identified a new variant SGI1 antibiotic resistance gene cluster in two multidrug-resistant S. enterica serovar Newport strains isolated from humans in France. In these strains, the Sm/Sp resistance gene cassette aadA2 inserted at the first attI1 site was replaced by two other aminoglycoside resistance gene cassettes. The first one contains a new resistance gene encoding an AAC(3)-I aminoglycoside 3-N-acetyltransferase that confers resistance to gentamicin (Gm) and sisomicin (Sc). This gene has been named aac(3)-Id. The second one harbors the Sm/Sp resistance gene aadA7. This gene cassette replacement in the SGI1 complex integron of serovar Newport strains constitutes a new variant SGI1 antibiotic resistance gene cluster named SGI1-H. The occurrence of SGI1 in different S. enterica serovars, now including serovar Newport, strengthens the hypothesis of horizontal transfer of SGI1.
Collapse
Affiliation(s)
- Benoît Doublet
- Unité BioAgresseurs, Santé, Environnement, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
29
|
Gartemann KH, Kirchner O, Engemann J, Gräfen I, Eichenlaub R, Burger A. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol 2004; 106:179-91. [PMID: 14651860 DOI: 10.1016/j.jbiotec.2003.07.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible.
Collapse
Affiliation(s)
- Karl-Heinz Gartemann
- Lehrstuhl Gentechnologie/Mikrobiologie, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse 25, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Quandt J, Clark RG, Venter AP, Clark SRD, Twelker S, Hynes MF. Modified RP4 and Tn5-Mob derivatives for facilitated manipulation of large plasmids in Gram-negative bacteria. Plasmid 2004; 52:1-12. [PMID: 15212888 DOI: 10.1016/j.plasmid.2004.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/07/2004] [Indexed: 11/23/2022]
Abstract
We have constructed a set of RP4 (NmS/TcS) and Tn5-Mob derivatives which have applications in experiments involving mobilization of replicons in many Gram-negative organisms. The different selection markers of the RP4 and Tn5-Mob derivatives include streptomycin, chloramphenicol, gentamicin, and spectinomycin resistance as well as mercury resistance, and a constitutively expressed lacZ gene. This choice of markers allows the use of these derivatives in bacteria which are naturally resistant to many antibiotics, and in strains which contain pre-existing resistance plasmids, transposons, or antibiotic cassette insertions. In addition, a RP4 derivative carrying the sacB gene of Bacillus subtilis was constructed. This allows the selection for the loss of RP4 after it has been used to mobilize other plasmids. A Tn5-Mob-sacB derivative with a new marker (Gm) was also developed, as were vectors which take advantage of the sacB gene to facilitate replacement of existing Tn5 inserts with other Tn5 derivatives. As an example of the use of these tools, three Rhizobium leguminosarum bv. viciae VF39 plasmids which have been shown to be involved in symbiosis were differentially tagged and mobilized (individually and in various combinations) to the plasmid-free Agrobacterium tumefaciens strain UBAPF2. None of the resultant Agrobacterium strains was able to fix nitrogen in symbiosis with peas.
Collapse
Affiliation(s)
- Jürgen Quandt
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB, Canada T2N 1N4
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Integrons are genetic elements composed of a gene encoding an integrase, gene cassettes and an integration site for the gene cassettes (att). The integrase excises and integrates the gene cassettes from and into the integron, but integrons themselves are not mobile. Two groups of integrons are known: resistance integrons and super-integrons. Nearly all known gene cassettes from resistance integrons encode resistance to antibiotics or disinfectants. These integrons are found on transposons, plasmids and the bacterial chromosome. Gene cassettes in super-integrons encode a variety of different functions. Super-integrons are located on the bacterial chromosome. More than 100 gene cassettes may be present, in contrast to resistance integrons where less than ten cassettes are present. Many species harbour super-integrons, which are species-specific, whereas particular resistance integrons can be found in a variety of species. The gene cassettes in resistance integrons probably originated from super-integrons. In the last few years, a variety of new gene cassettes have been described. Many of these encode resistance against newer antibiotics such as cephalosporins and carbapenems. Resistance integrons have been found in isolates from a wide variety of sources, including food.
Collapse
Affiliation(s)
- A C Fluit
- Eijkman-Winkler Center, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | | |
Collapse
|
32
|
Abstract
Aminoglycoside antibiotics have had a major impact on our ability to treat bacterial infections for the past half century. Whereas the interest in these versatile antibiotics continues to be high, their clinical utility has been compromised by widespread instances of resistance. The multitude of mechanisms of resistance is disconcerting but also illuminates how nature can manifest resistance when bacteria are confronted by antibiotics. This article reviews the most recent knowledge about the mechanisms of aminoglycoside action and the mechanisms of resistance to these antibiotics.
Collapse
Affiliation(s)
- Sergei B Vakulenko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
33
|
Riccio ML, Docquier JD, Dell'Amico E, Luzzaro F, Amicosante G, Rossolini GM. Novel 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ic, from a Pseudomonas aeruginosa integron. Antimicrob Agents Chemother 2003; 47:1746-8. [PMID: 12709352 PMCID: PMC153335 DOI: 10.1128/aac.47.5.1746-1748.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel gene, aac(3)-Ic, encoding an AAC(3)-I aminoglycoside 3-N-acetyltransferase, was identified on a gene cassette inserted into a Pseudomonas aeruginosa integron that also carries a bla(VIM-2) and a cmlA7 gene cassette. The aac(3)-Ic gene product is 59 and 57% identical to AAC(3)-Ia and AAC(3)-Ib, respectively, and confers resistance to gentamicin and sisomicin.
Collapse
Affiliation(s)
- Maria Letizia Riccio
- Dipartimento di Biologia Molecolare, Sezione di Microbiologia, Università di Siena, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Shinjoh M, Tomiyama N, Miyazaki T, Hoshino T. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem 2002; 66:2314-22. [PMID: 12506966 DOI: 10.1271/bbb.66.2314] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.
Collapse
Affiliation(s)
- Masako Shinjoh
- Department of Applied Microbiology, Nippon Roche Research Center, 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | | | | | |
Collapse
|
35
|
Centrón D, Roy PH. Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob Agents Chemother 2002; 46:1402-9. [PMID: 11959575 PMCID: PMC127176 DOI: 10.1128/aac.46.5.1402-1409.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the role of integrons in the dissemination of antibiotic resistance in a recent multiresistant clinical isolate, Serratia marcescens SCH88050909 (SCH909). This isolate harbors three integrons, all on a 60-kb conjugative plasmid. By PCR, hybridization, and sequencing analyses, we found that integron 1 has the dfrA1 and ant(3")-Ia cassettes. The first cassette in integron 2 contains the ant(2")-Ia gene, separated from its attC site (59-base element) by a 1,971-bp insert containing a group II intron; this intron codes for a putative maturase-reverse transcriptase on the complementary strand and is the first such intron to be found associated with an integron. The attC site is followed by a novel aminoglycoside resistance gene, ant(3")-Ii-aac(6')-IId, which has been characterized for its bifunctional ANT(3")-I and AAC(6')-II activities. DNA sequence analysis of this fused cassette suggests that insertion and excision due to the integrase activity could have an important role in the evolution of aminoglycoside resistance genes. This gene is followed by an unknown open reading frame with a typical attC site and a partial cassette composed of the beginning of the bla(OXA-10) cassette interrupted by IS1. The sequence downstream of IS1 revealed that the bla(OXA-10) cassette is incomplete and that the 3' conserved segment of this integron is absent. Integron 3 is in a Tn1696-like transposon with the aac(3)-Ia cassette followed by three unknown cassettes and ant(3")-Ia. The presence of the group II intron and the relationship of group II introns in eubacteria with mobile elements suggest a possible role of this element in events such as cassette formation and/or plasmid evolution.
Collapse
Affiliation(s)
- Daniela Centrón
- Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4.
| | | |
Collapse
|
36
|
Severino P, Magalhães VD. The role of integrons in the dissemination of antibiotic resistance among clinical isolates of Pseudomonas aeruginosa from an intensive care unit in Brazil. Res Microbiol 2002; 153:221-6. [PMID: 12066893 DOI: 10.1016/s0923-2508(02)01310-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Eighty-five Pseudomonas aeruginosa isolates resistant to various antibiotics were selected from the intensive care unit of a Brazilian hospital and analyzed for integron content by PCR. Fifty-four of them had class-1-related integrons, some of which were identical. Integron-positive isolates were statistically more resistant to aminoglicoside, quinolone and beta-lactam compounds. Ribotyping of integron-positive isolates demonstrated the presence of identical integrons among genetically unrelated strains in the hospital environment, confirming its role in the spread of gene cassettes in bacterial populations of clinical importance.
Collapse
Affiliation(s)
- Patricia Severino
- Laboratório de Pesquisa, Instituto de Ensino e Pesquisa, Hospital Albert Einstein, São Paulo, SP, Brazil.
| | | |
Collapse
|
37
|
Hanau-Berçot B, Podglajen I, Casin I, Collatz E. An intrinsic control element for translational initiation in class 1 integrons. Mol Microbiol 2002; 44:119-30. [PMID: 11967073 DOI: 10.1046/j.1365-2958.2002.02843.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrons are genetic elements able to capture anti-biotic resistance and other genes and to promote their transcription. Here, we have investigated integron-dependent translation of an aminoglycoside 6'-N-acetyltransferase gene (aac(6')-Ib7) inserted at the attI1 site. N-terminal sequencing revealed that translation of this gene was initiated at a GTG codon, which is not part of a plausible translation initiation region (TIR). A short open reading frame (called ORF-11) overlapping the attI1 site was probed by site-directed mutagenesis for its contribution to aac(6')-Ib7 translation. When ORF-11 and its TIR were deleted en bloc, translational efficiency dropped by over 80%, as determined with an acetyltransferase- luciferase fusion product. Invalidation of the ATG start codon of ORF-11 or its putative Shine-Dalgarno sequence resulted in a decrease of over 60%, whereas the decrease was much less pronounced when the amino acid sequence of the putative ORF-11-encoded peptide was altered or when the distance between ORF-11 and aac(6')-Ib7 was doubled. This demonstrates that aac(6')-Ib7 translation is dependent upon the translation of ORF-11, but almost certainly not upon the corresponding peptide. These results lead us to conclude that an intrinsic short ORF present in the 5'-conserved segment of many class 1 integrons may substantially enhance expression at the translational level of captured TIR-deficient anti-biotic resistance genes.
Collapse
Affiliation(s)
- Béatrice Hanau-Berçot
- INSERM EMI 0004 - LRMA, Université Paris VI, 15, rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
38
|
Gartemann KH, Eichenlaub R. Isolation and characterization of IS1409, an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis. J Bacteriol 2001; 183:3729-36. [PMID: 11371537 PMCID: PMC95250 DOI: 10.1128/jb.183.12.3729-3736.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new insertion element of 1,449 bp with 25-bp perfect terminal repeats, designated IS1409, was identified in the chromosome of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1 NCIB12013. Upon insertion, IS1409 causes a target duplication of 8 bp. IS1409 carries only a single open reading frame of 435 codons encoding the transposase TnpA. Both TnpA and the overall organization of IS1409 are highly similar to those of some related insertion elements of the ISL3 group (J. Mahillon and M. Chandler, Microbiol. Mol. Biol. Rev. 62:725--774, 1998). IS1409 was also found in other 4-chlorobenzoate-degrading Arthrobacter strains and Micrococcus luteus. Based on IS1409, a series of transposons carrying resistance genes for chloramphenicol and gentamicin were constructed. These transposons were used to demonstrate transposition events in vivo and to mutagenize Arthrobacter sp. strains.
Collapse
Affiliation(s)
- K H Gartemann
- Fakultät für Biologie, Lehrstuhl für Mikrobiologie/Gentechnologie, Universität Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
39
|
Partridge SR, Brown HJ, Stokes HW, Hall RM. Transposons Tn1696 and Tn21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother 2001; 45:1263-70. [PMID: 11257044 PMCID: PMC90453 DOI: 10.1128/aac.45.4.1263-1270.2001] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first 13.6 kb of the mercury and multidrug resistance transposon Tn1696, which includes the class 1 integron In4, has been sequenced. In4 is 8.33 kb long and contains the 5'-conserved segment (5'-CS) and 2.24 kb of the 3'-conserved segment (3'-CS) flanking four integrated cassettes. The 3'-CS region is followed by one full copy and an adjacent partial copy of the insertion sequence IS6100 flanked, in inverse orientation, by two short segments (123 and 152 bp) from the outer right-hand end of class 1 integrons. This structure is representative of a distinct group of class 1 integrons that differs from In2, found in Tn21, and other related class 1 integrons. In4 does not include transposition genes but is bounded by characteristic 25-bp inverted repeats and flanked by a direct duplication of 5 bp of the target sequence, indicating that it was inserted by a transpositional mechanism. In4 lies between the resII and resI sites of a backbone mercury resistance transposon which is >99.5% identical to Tn5036. Although Tn21 and Tn1696 are both classified as members of the Tn21 subfamily of the Tn3 transposon family, the backbone mercury resistance transposons are only 79 to 96% identical. Tn21 also contains a region of about 0.7 kb not found in Tn1696. The integrons In2 and In4 carrying the antibiotic resistance genes have been inserted at different locations into distinct ancestral mercury resistance transposons. Thus, Tn21 and Tn1696 have independent histories and origins. Other transposons (Tn1403 and Tn1412) that include a class 1 integron also have independent origins. In all except Tn21, the integron is located within the res region of the backbone transposon.
Collapse
Affiliation(s)
- S R Partridge
- Sydney Laboratory, CSIRO Molecular Science, North Ryde 2113, Australia
| | | | | | | |
Collapse
|
40
|
Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R. The endo-beta-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:703-714. [PMID: 10875331 DOI: 10.1094/mpmi.2000.13.7.703] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt and canker of tomato, harbors two plasmids, pCM1 (27.35 kb) and pCM2 (72 kb), encoding genes involved in virulence (D. Meletzus, A. Bermpohl, J. Dreier, and R. Eichenlaub, 1993, J. Bacteriol. 175:2131-2136; J. Dreier, D. Meletzus, and R. Eichenlaub, 1997, Mol. Plant-Microbe Interact. 10:195-206). The region of pCM1 carrying the endoglucanase gene celA was mapped by deletion analysis and complementation. RNA hybridization identified a 2.4-knt (kilonucleotide) transcript of the celA structural gene and the transcriptional initiation site was mapped. The celA gene encodes CelA, a protein of 78 kDa (746 amino acids) with similarity to endo-beta-1,4-glucanases of family A1 cellulases. CelA has a three-domain structure with a catalytic domain, a type IIa-like cellulose-binding domain, and a C-terminal domain. We present evidence that CelA plays a major role in pathogenicity, since wilt induction capability is obtained by endoglucanase expression in plasmid-free, nonvirulent strains and by complementation of the CelA- gene-replacement mutant CMM-H4 with the wild-type celA gene.
Collapse
Affiliation(s)
- H Jahr
- Universität Bielefeld, Fakultät für Biologie, Gentechnologie/Mikrobiologie, Germany
| | | | | | | | | |
Collapse
|
41
|
Sallen B, Rajoharison A, Desvarenne S, Mabilat C. Molecular epidemiology of integron-associated antibiotic resistance genes in clinical isolates of enterobacteriaceae. Microb Drug Resist 2000; 1:195-202. [PMID: 9158775 DOI: 10.1089/mdr.1995.1.195] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The epidemiology of integron-mediated antibiotic-resistant genes in clinical enterobacteria from a single location was investigated. Forty-nine isolates (kindly provided by Dr. D. Sirot, Clermont-Ferrand, France) were selected for transferable resistance to aminoglycosides or to other antibiotics. Total DNA prepared from these strains was screened for the presence of conserved segments of integrons by PCR. The nature and frequency of inserted resistance gene cassettes were determined by direct nucleotide sequencing and were related to the resistances expressed by the strain. Integron hot-spots were present in 59% of the strains from 6 species, in either one or two copies. For amplicons sequenced, one or two antibiotic-resistant genes were found in various combinations, and were always expressed at the phenotypic level. They included the aminoglycoside resistance genes ant(3")-Ia and aac(6')-Ib (75%), as well as dhfr-I,-VII (21.4%) and blaOXA-1 (3.6%). Almost half of the transferable resistance to aminoglycosides (53%) was mediated by integron hot-spots in strains characterized at the nucleotide level. The proportion rose to 100% for the AAC(6')-I resistance profile. This study emphasizes the important contribution of integrons to aminoglycoside resistance within enterobacteria from a clinical setting.
Collapse
Affiliation(s)
- B Sallen
- bioMérieux S.A. Marcy l'Etoile, France
| | | | | | | |
Collapse
|
42
|
Bass L, Liebert CA, Lee MD, Summers AO, White DG, Thayer SG, Maurer JJ. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 1999; 43:2925-9. [PMID: 10582884 PMCID: PMC89589 DOI: 10.1128/aac.43.12.2925] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance among avian bacterial isolates is common and is of great concern to the poultry industry. Approximately 36% (n = 100) of avian, pathogenic Escherichia coli isolates obtained from diseased poultry exhibited multiple-antibiotic resistance to tetracycline, oxytetracycline, streptomycin, sulfonamides, and gentamicin. Clinical avian E. coli isolates were further screened for the presence of markers for class 1 integrons, the integron recombinase intI1 and the quaternary ammonium resistance gene qacEDelta1, in order to determine the contribution of integrons to the observed multiple-antibiotic resistance phenotypes. Sixty-three percent of the clinical isolates were positive for the class 1 integron markers intI1 and qacEDelta1. PCR analysis with the conserved class 1 integron primers yielded amplicons of approximately 1 kb from E. coli isolates positive for intI1 and qacEDelta1. These PCR amplicons contained the spectinomycin-streptomycin resistance gene aadA1. Further characterization of the identified integrons revealed that many were part of the transposon Tn21, a genetic element that encodes both antibiotic resistance and heavy-metal resistance to mercuric compounds. Fifty percent of the clinical isolates positive for the integron marker gene intI1 as well as for the qacEDelta1 and aadA1 cassettes also contained the mercury reductase gene merA. The correlation between the presence of the merA gene with that of the integrase and antibiotic resistance genes suggests that these integrons are located in Tn21. The presence of these elements among avian E. coli isolates of diverse genetic makeup as well as in Salmonella suggests the mobility of Tn21 among pathogens in humans as well as poultry.
Collapse
Affiliation(s)
- L Bass
- Departments of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The transposon Tn21 and a group of closely related transposons (the Tn21 family) are involved in the global dissemination of antibiotic resistance determinants in gram-negative facultative bacteria. The molecular basis for their involvement is carriage by the Tn21 family of a mobile DNA element (the integron) encoding a site-specific system for the acquisition of multiple antibiotic resistance genes. The paradigm example, Tn21, also carries genes for its own transposition and a mercury resistance (mer) operon. We have compiled the entire 19,671-bp sequence of Tn21 and assessed the possible origins and functions of the genes it contains. Our assessment adds molecular detail to previous models of the evolution of Tn21 and is consistent with the insertion of the integron In2 into an ancestral Tn501-like mer transposon. Codon usage analysis indicates distinct host origins for the ancestral mer operon, the integron, and the gene cassette and two insertion sequences which lie within the integron. The sole gene of unknown function in the integron, orf5, resembles a puromycin-modifying enzyme from an antibiotic producing bacterium. A possible seventh gene in the mer operon (merE), perhaps with a role in Hg(II) transport, lies in the junction between the integron and the mer operon. Analysis of the region interrupted by insertion of the integron suggests that the putative transposition regulator, tnpM, is the C-terminal vestige of a tyrosine kinase sensor present in the ancestral mer transposon. The extensive dissemination of the Tn21 family may have resulted from the fortuitous association of a genetic element for accumulating multiple antibiotic resistances (the integron) with one conferring resistance to a toxic metal at a time when clinical, agricultural, and industrial practices were rapidly increasing the exposure to both types of selective agents. The compendium offered here will provide a reference point for ongoing observations of related elements in multiply resistant strains emerging worldwide.
Collapse
Affiliation(s)
- C A Liebert
- Department of Microbiology, The University of Georgia, Athens, Georgia 30602-2605, USA
| | | | | |
Collapse
|
44
|
Seward RJ. Detection of integrons in worldwide nosocomial isolates of Acinetobacter spp. Clin Microbiol Infect 1999; 5:308-318. [PMID: 11856275 DOI: 10.1111/j.1469-0691.1999.tb00149.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE: To examine the distribution of integrons in genotypically unrelated worldwide multiresistant clinical isolates of Acinetobacter spp. METHODS: The presence and genetic location of class 1, 2 and 3 integrons were examined in a genotypically heterogeneous collection of 25 nosocomial isolates of Acinetobacter spp., from 15 locations in 11 different countries worldwide, by hybridization and PCR-based methods. Class 1 integron structures were characterized genetically by a PCR mapping technique. RESULTS: Class 1 integrons were detected in 17 of the 25 Acinetobacter isolates examined. Only one isolate contained a class 2 integron. No class 3 integrons were detected. The integrons varied in size and in the number of inserted cassettes, but similar integrons were found in genotypically distinct isolates from different locations worldwide. These structures were integrated into the chromosome in all isolates where they were detected, although some integrons were capable of subsequent transfer or mobilization. Genes coding for aminoglycoside-modifying enzymes formed the predominant cassettes identified within the integrons. CONCLUSIONS: Clinical isolates of Acinetobacter spp. from diverse locations seem to share resistance mechanisms acquired from other genera by a variety of mechanisms, including dissemination of integrons. Once integrons are incorporated into the bacterial genome, Acinetobacter spp. are potentially able to act as a reservoir of resistance genes for other species and genera.
Collapse
Affiliation(s)
- Rebecca J. Seward
- Department of Microbiology and PHLS Laboratory, University Hospital, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
45
|
Bennett PM. Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother 1999. [DOI: 10.1093/jac/43.1.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
46
|
Collis CM, Kim MJ, Stokes HW, Hall RM. Binding of the purified integron DNA integrase Intl1 to integron- and cassette-associated recombination sites. Mol Microbiol 1998; 29:477-90. [PMID: 9720866 DOI: 10.1046/j.1365-2958.1998.00936.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The site-specific recombinase Intl1, encoded by class 1 integrons, catalyses the integration and excision of gene cassettes by recognizing two classes of sites, the integron-associated attl1 site and the 59-base element (59-be) family of sites that are associated with gene cassettes. Intl1 includes the four conserved amino acids that are characteristic of members of the integrase family, and Intl1 proteins with single amino acid substitutions at each of these positions had substantially reduced catalytic activity, consistent with this classification. Intl1 was purified as a fusion protein and shown to bind to isolated attl1 or 59-be recombination sites. Binding to attl1 was considerably stronger than to a 59-be. Binding adjacent to the recombination cross-over point was not detected. A strong Intl1 binding site within attl1 was localized by both deletion and footprinting analysis to a 14 bp region 24-37 bp to the left of the recombination cross-over point, and this region is known to be critical for recombination in vivo (Recchia et al., 1994). An imperfect (13/15) direct repeat of this region, located 41-55 bp to the left of the recombination cross-over point, contains a weaker Intl1 binding site. Mutation of the stronger binding site showed that a single base pair change accounted for the difference in the strength of binding.
Collapse
Affiliation(s)
- C M Collis
- CSIRO Molecular Science, Sydney Laboratory, North Ryde, NSW, Australia
| | | | | | | |
Collapse
|
47
|
Mugnier P, Podglajen I, Goldstein FW, Collatz E. Carbapenems as inhibitors of OXA-13, a novel, integron-encoded beta-lactamase in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):1021-1031. [PMID: 9579076 DOI: 10.1099/00221287-144-4-1021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A clinical Pseudomonas aeruginosa strain, PAe391, was found to be resistant to a number of antibiotics including ticarcillin, piperacillin, cefsulodin and amikacin, and a disk diffusion assay showed evidence of pronounced synergy between imipenem and various beta-lactam antibiotics. Cloning and nucleotide sequence analysis revealed the dicistronic arrangement of an aac(6')-Ib variant and a novel blaOXA-type gene between the intI and qacE delta 1 genes typical of integrons, in PAe391, this integron was apparently chromosome-borne. The beta-lactamase, named OXA-13, displayed nine amino acid changes with respect to OXA-10:I in position 10 of OXA-10 to T (I10T), G20S, D55N, N73S, T107S, Y174F, E229G, S245N and E259A, OXA-13 (pIapp = 8.0) showed poor catalytic activity against penicillins as well as cephalosporins, but was efficient in hydrolysing some penicillinase-resistant beta-lactams, such as cefotaxime and aztreonam. It was efficiently inhibited by imipenem (KIapp = 11 nM), and formed a stable complex. While the KIapp value of meropenem was similar (16 nM), the corresponding complex was less stable.
Collapse
Affiliation(s)
- P Mugnier
- 1 Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, 15 rue de I'Ecole de Médecine, 75270 Paris Cedex 06, France
| | - I Podglajen
- 1 Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, 15 rue de I'Ecole de Médecine, 75270 Paris Cedex 06, France
| | - F W Goldstein
- 2 Service de Microbiologie Médicale, Fondation HoCpital Saint-Joseph, 7 rue Pierre-Larousse, 75674 Paris Cedex 14, France
| | - E Collatz
- 1 Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, 15 rue de I'Ecole de Médecine, 75270 Paris Cedex 06, France
| |
Collapse
|
48
|
Casin I, Bordon F, Bertin P, Coutrot A, Podglajen I, Brasseur R, Collatz E. Aminoglycoside 6'-N-acetyltransferase variants of the Ib type with altered substrate profile in clinical isolates of Enterobacter cloacae and Citrobacter freundii. Antimicrob Agents Chemother 1998; 42:209-15. [PMID: 9527761 PMCID: PMC105389 DOI: 10.1128/aac.42.2.209] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Three clinical isolates, Enterobacter cloacae EC1562 and EC1563 and Citrobacter freundii CFr564, displayed an aminoglycoside resistance profile evocative of low-level 6'-N acetyltransferase type II [AAC(6')-II] production, which conferred reduced susceptibility to gentamicin but not to amikacin or isepamicin. Aminoglycoside acetyltransferase assays suggested the synthesis in the three strains of an AAC(6') which acetylated amikacin practically as well as it acetylated gentamicin in vitro. Both compounds, however, as well as isepamicin, retained good bactericidal activity against the three strains. The aac genes were borne by conjugative plasmids (pLMM562 and pLMM564 of ca. 100 kb and pLMM563 of ca. 20 kb). By PCR mapping and nucleotide sequence analysis, an aac(6')-Ib gene was found in each strain upstream of an ant(3")-I gene in a sulI-type integron. The size of the AAC(6')-Ib variant encoded by pLMM562 and pLMM564, AAC(6')-Ib7, was deduced to be 184 (or 177) amino acids long, whereas in pLMM563 a 21-bp duplication allowing the recruitment of a start codon resulted in the translation of a variant, AAC(6')-Ib8, of 196 amino acids, in agreement with size estimates obtained by Western blot analysis. Both variants had at position 119 a serine instead of the leucine typical for the AAC(6')-Ib variants conferring resistance to amikacin. By using methods that predict the secondary structure, these two amino acids appear to condition an alpha-helical structure within a putative aminoglycoside binding domain of AAC(6')-Ib variants.
Collapse
Affiliation(s)
- I Casin
- Service de Microbiologie, Hôpital Saint-Louis, and Université Paris VII, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Wireman J, Liebert CA, Smith T, Summers AO. Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Appl Environ Microbiol 1997; 63:4494-503. [PMID: 9361435 PMCID: PMC168768 DOI: 10.1128/aem.63.11.4494-4503.1997] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gram-negative fecal bacterial from three longitudinal Hg exposure experiments and from two independent survey collections were examined for their carriage of the mercury resistance (mer) locus. The occurrence of antibiotic resistance was also assessed in both mercury-resistant (Hgr) and mercury-susceptible (Hgs) isolates from the same collections. The longitudinal studies involved exposure of the intestinal flora to Hg released from amalgam "silver" dental restorations in six monkeys. Hgr strains were recovered before the installation of amalgams, and frequently these became the dominant strains while amalgams were installed. Such persistent Hgr strains always carried the same mer locus throughout the experiments. In both the longitudinal and survey collections, certain mer loci were preferentially associated with one genus, whereas other mer loci were recovered from many genera. In general, strains with any mer locus were more likely to be multiresistant than were strains without mer loci; this clustering tendency was also seen for antibiotic resistance genes. However, the association of antibiotic multiresistance with mer loci was not random; regardless of source, certain mer loci occurred in highly multiresistant strains (with as many as seven antibiotic resistances), whereas other mer loci were found in strains without any antibiotic resistance. The majority of highly multiresistant Hgr strains also carried genes characteristic of an integron, a novel genetic element which enables the formation of tandem arrays of antibiotic resistance genes. Hgr strains lacking antibiotic resistance showed no evidence of integron components.
Collapse
Affiliation(s)
- J Wireman
- Department of Microbiology, University of Georgia, Athens 30602-2605, USA
| | | | | | | |
Collapse
|
50
|
Abstract
A chemotaxis gene cluster from the photosynthetic bacterium Rhodospirillum centenum has been cloned, sequenced, and analyzed for the control of transcription during swimmer-to-swarm cell differentiation. The first gene of the operon (cheAY) codes for a large 108-kDa polypeptide with an amino-terminal domain that is homologous to CheA and a carboxyl terminus that is homologous to CheY. cheAY is followed by cheW, an additional homolog of cheY, cheB, and cheR. Sequence analysis indicated that all of the che genes are tightly compacted with the same transcriptional polarity, suggesting that they are organized in an operon. Cotranscription of the che genes was confirmed by demonstrating through Western blot analysis that insertion of a polar spectinomycin resistance gene in cheAY results in loss of cheR expression. The promoter for the che operon was mapped by primer extension analysis as well as by the construction of promoter reporter plasmids that include several deletion intervals. This analysis indicated that the R. centenum che operon utilizes two promoters; one exhibits a sigma 70-like sequence motif, and the other exhibits a sigma 54-like motif. Expression of the che operon is shown to be relatively constant for swimmer cells which contain a single flagellum and for swarm cells that contain multiple lateral flagella.
Collapse
Affiliation(s)
- Z Y Jiang
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|