1
|
Liu L, Wang T. Male gametophyte development in flowering plants: A story of quarantine and sacrifice. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153365. [PMID: 33548696 DOI: 10.1016/j.jplph.2021.153365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 05/19/2023]
Abstract
Over 160 years ago, scientists made the first microscopic observations of angiosperm pollen. Unlike in animals, male meiosis in angiosperms produces a haploid microspore that undergoes one asymmetric division to form a vegetative cell and a generative cell. These two cells have distinct fates: the vegetative cell exits the cell cycle and elongates to form a tip-growing pollen tube; the generative cell divides once more in the pollen grain or within the growing pollen tube to form a pair of sperm cells. The concept that male germ cells are less active than the vegetative cell came from biochemical analyses and pollen structure anatomy early in the last century and is supported by the pollen transcriptome data of the last decade. However, the mechanism of how and when the transcriptional repression in male germ cells occurs is still not fully understood. In this review, we provide a brief account of the cytological and metabolic differentiation between the vegetative cell and male germ cells, with emphasis on the role of temporary callose walls, dynamic nuclear pore density, transcription repression, and histone variants. We further discuss the intercellular movement of small interfering RNA (siRNA) derived from transposable elements (TEs) and reexamine the function of TE expression in male germ cells.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
2
|
Ohashi Y, Mori T, Igawa T. Behavior of filamentous temperature-sensitive Z2 (FtsZ2) in the male gametophyte during sexual reproduction processes of flowering plants. PROTOPLASMA 2020; 257:1201-1210. [PMID: 32300955 DOI: 10.1007/s00709-020-01503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Filamentous temperature-sensitive Z (FtsZ) is a critical division protein in bacteria that functions in forming a Z-ring structure to constrict the cell. Since the establishment of the plastid by endosymbiosis of a cyanobacterium into a eukaryotic cell, division via Z-ring formation has been conserved in the plastids of flowering plants. The FtsZ gene was transferred from the cyanobacterial ancestor of plastids to the eukaryotic nuclear genome during evolution, and flowering plants evolved two FtsZ homologs, FtsZ1 and FtsZ2, which are involved in chloroplast division through distinct molecular functions. Regarding the behaviors of FtsZ in nonphotosynthetic cells, the plastid localization of FtsZ1 proteins in the cytoplasm of microspores and pollen vegetative cells but not in generative cells or sperm cells has been reported. On the other hand, the significant accumulation of FtsZ2 transcripts in generative cells has been reported. However, the synthesis of FtsZ2 in the male gamete has not been investigated. Additionally, FtsZ2 behavior has not been analyzed in pollen, a nonphotosynthetic male tissue. Here, we report FtsZ2 protein behaviors in the male gamete by analyzing the localization patterns of GFP-fused protein at various pollen developmental stages and in gametes during the fertilization process. Our results showed that FtsZ2 localization coincided with that of plastids. FtsZ2 protein in male gametes was almost absent, despite the presence of the transcripts. Moreover, transmission of paternal FtsZ2 transcripts to the zygote and endosperm was not observed.
Collapse
Affiliation(s)
- Yukino Ohashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba, 271-8510, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba, 271-8510, Japan.
- Plant Molecular Science Center, Chiba University, 648 Matsudo, Matsudo-shi, Chiba, 271-8510, Japan.
| |
Collapse
|
3
|
Chang H, Sun F. Temporal Distinction between Male and Female Floral Organ Development in Nicotiana tabacum cv. Xanthi (Solanaceae). PLANTS (BASEL, SWITZERLAND) 2020; 9:E127. [PMID: 31963844 PMCID: PMC7020162 DOI: 10.3390/plants9010127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Early floral developmental investigations provide crucial evidence for phylogenetic and molecular studies of plants. The developmental and evolutionary mechanisms underlying the variations in floral organs are critical for a thorough understanding of the diversification of flowers. Ontogenetic comparisons between anthers and pistil within single flowers were characterized over time in Nicotiana tabacum cv. Xanthi. The ages of 42 tobacco flower or flower primordia were estimated using corolla growth analysis. Results showed that the protodermal layer in carpel primordia contributes to carpel development by both anticlinal and periclinal divisions. Periclinal divisions in the hypodermal layer of the placenta were observed around 4.8 ± 1.3 days after the formation of early carpel primordia (ECP) and ovule initiation occurred 10.0 ± 0.5 days after ECP. Meiosis in anthers and ovules began about 8.9 ± 1.1 days and 14.4 ± 1.3 days after ECP, respectively. Results showed an evident temporal distinction between megasporogenesis and microsporogenesis. Flower ages spanned a 17-day interval, starting with flower primordia containing the ECP and anther primordia to the tetrad stage of meiosis in megasporocytes and the bicellular stage in pollen grains. These results establish a solid foundation for future studies in order to identify the developmental and molecular mechanisms responsible for the mating system in tobacco.
Collapse
Affiliation(s)
- Hongli Chang
- Shaanxi Key Laboratory for Animal Conservation, School of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| |
Collapse
|
4
|
Dubas E, Custers J, Kieft H, Wędzony M, van Lammeren AAM. Characterization of polarity development through 2- and 3-D imaging during the initial phase of microspore embryogenesis in Brassica napus L. PROTOPLASMA 2014; 251:103-13. [PMID: 23933840 PMCID: PMC3893475 DOI: 10.1007/s00709-013-0530-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/09/2013] [Indexed: 05/21/2023]
Abstract
Isolated microspores of B. napus in culture change their developmental pathway from gametophytic to sporophytic and form embryo-like structures (ELS) upon prolonged heat shock treatment (5 days at 32 °C). ELS express polarity during the initial days of endosporic development. In this study, we focussed on the analysis of polarity development of ELS without suspensor. Fluorescence microscopy and 3-D confocal laser scanning microscopy (CLSM) without tissue interfering enabled us to get a good insight in the distribution of nuclei, mitochondria and endoplasmic reticulum (ER), the architecture of microtubular (MT) cytoskeleton and the places of 5-bromo-2'-deoxy-uridine (BrdU) incorporation in successive stages of microspore embryogenesis. Scanning electron microscopy (SEM) analysis revealed, for the first time, the appearance of a fibrillar extracellular matrix-like structure (ECM-like structure) in androgenic embryos without suspensor. Two types of endosporic development were distinguished based upon the initial location of the microspore nucleus. The polarity of dividing and growing cells was recognized by the differential distributions of organelles, by the organization of the MT cytoskeleton and by the visualization of DNA synthesis in the cell cycle. The directional location of nuclei, ER, mitochondria and starch grains in relation to the MTs configurations were early polarity indicators. Both exine rupture and ECM-like structure on the outer surfaces of ELS are supposed to stabilize ELS's morphological polarity. As the role of cell polarity during early endosporic microspore embryogenesis in apical-basal cell fate determination remains unclear, microspore culture system provides a powerful in vitro tool for studying the developmental processes that take place during the earliest stages of plant embryogenesis.
Collapse
Affiliation(s)
- Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland,
| | | | | | | | | |
Collapse
|
5
|
Risso-Pascotto C, Pagliarini MS, Valle CB, Jank L. Symmetric pollen mitosis I and suppression of pollen mitosis II prevent pollen development in Brachiaria jubata (Gramineae). Braz J Med Biol Res 2005; 38:1603-8. [PMID: 16258628 DOI: 10.1590/s0100-879x2005001100006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microsporogenesis and pollen development were analyzed in a tetraploid (2n = 4x = 36) accession of the forage grass Brachiaria jubata (BRA 007820) from the Embrapa Beef Cattle Brachiaria collection that showed partial male sterility. Microsporocytes and pollen grains were prepared by squashing and staining with 0.5% propionic carmine. The meiotic process was typical of polyploids, with precocious chromosome migration to the poles and laggards in both meiosis I and II, resulting in tetrads with micronuclei in some microspores. After callose dissolution, microspores were released into the anther locule and appeared to be normal. Although each microspore initiated its differentiation into a pollen grain, in 11.1% of them nucleus polarization was not observed, i.e., pollen mitosis I was symmetric and the typical hemispherical cell plate was not detected. After a central cytokinesis, two equal-sized cells showing equal chromatin condensation and the same nuclear shape and size were formed. Generative cells and vegetative cells could not be distinguished. These cells did not undergo the second pollen mitosis and after completion of pollen wall synthesis each gave rise to a sterile and uninucleate pollen grain. The frequency of abnormal pollen mitosis varied among flowers and also among inflorescences. All plants were equally affected. The absence of fertile sperm cells in a considerable amount of pollen grains in this accession of B. jubata may compromise its use in breeding and could explain, at least in part, why seed production is low when compared with the amount of flowers per raceme.
Collapse
Affiliation(s)
- C Risso-Pascotto
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | | | | |
Collapse
|
6
|
Sano Y, Tanaka I. A Histone H3.3-like Gene Specifically Expressed in the Vegetative Cell of Developing Lily Pollen. ACTA ACUST UNITED AC 2005; 46:1299-308. [PMID: 15927943 DOI: 10.1093/pcp/pci139] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the progression of the cell cycle during pollen development, two clones of histone H3 genes, YAH3 and MPH3, were isolated from cDNA libraries of young anthers and mature pollen of Lilium longiflorum. Northern blot and reverse transcription-PCR (RT-PCR) analyses demonstrated that YAH3 transcripts were present in uninucleate microspores and generative cells at the postulated S phase of the cell cycle as well as in young anthers, meristematic root tips, and shoot apices that contained proliferating cells. YAH3 therefore appears to be a major type of histone H3 gene in the lily. In contrast, the expression of MPH3 was detected only during pollen development, and expression increased during the development of mid-bicellular pollen to mature pollen. The results of in situ hybridization revealed that the transcripts of MPH3 were specifically accumulated in the vegetative cell of developing bicellular pollen. The two histone H3s differed at eight amino acid positions, and the deduced amino acid sequence of MPH3 showed identity with histone H3.3, which is a replacement variant of histone H3. The localization of an MPH3-green fluorescent protein (GFP) fusion protein differed from that of YAH3-GFP in onion epidermal cells and tobacco BY-2 cells at stationary phase, which suggests the preferential ability of MPH3 to be incorporated into chromatin. MPH3 may be expressed replication independently in vegetative cells at the G1 phase and be incorporated into highly active chromatin of the vegetative nucleus of bicellular pollen, in a manner similar to histone H3.3 in Drosophila.
Collapse
Affiliation(s)
- Yaeko Sano
- Department of Biology, Graduate School of Integrated Science, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama, Kanagawa, 236-0027 Japan.
| | | |
Collapse
|
7
|
Junqueira Filho RG, Mendes-Bonato AB, Pagliarini MS, Bione NCP, Borges do Valle C, de Oliveira Penteado MI. Absence of microspore polarity, symmetric divisions and pollen cell fate in Brachiaria decumbens (Gramineae). Genome 2003; 46:83-8. [PMID: 12669799 DOI: 10.1139/g02-114] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Meiotic division and male gametophyte development were analyzed in one tetraploid (2n = 4x = 36) accession of Brachiaria decumbens cv. Basilisk that showed some pollen sterility. Meiotic process was typical of polyploids in that it consisted of multiple chromosome associations. Precocious chromosome migration to the poles, laggards, and micronucleus formation were abundant in both meiosis I and II and resulted in tetrads with micronuclei. After callose dissolution, microspores were released into the anther locule and had the semblance of being normal. Although each microspore initiated its differentiation by pollen mitosis, in 43.24% of the microspores, nuclear polarization was not observed and the typical hemispherical cell plate was not detected. Division was symmetric and microspores lacked differentiation between the vegetative and the generative cell. Both nuclei were of equal size, presented equal chromatin condensation, and had a spherical shape. After the first pollen mitosis and cytokinesis, each cell underwent a new symmetric mitosis without nuclear polarization. At the end of the second pollen mitosis, four equal nuclei were observed in each pollen grain. After the second cytokinesis, the cells gave rise to four equal-sized pollen grains with a similar tetrad configuration that initially remained together. Sterile pollen grains resulted from abnormal pollen mitosis. This anomaly may be explained by a mutation, probably affecting microtubule cytoskeleton formation. The importance of this male-sterile mutation for Brachiaria breeding programs is discussed.
Collapse
|
8
|
Induction of typical cell division in isolated microspores of Lilium longiflorum and Tulipa gesneriana. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/0304-4211(80)90158-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|