1
|
Carver GE, Locknar SA, Ghule PN, Pung CJ, Weaver DL, Stein JL, Stein GS. Multispectral Imaging of Metabolic Fluorophores: Comparing In Vivo and Fresh Ex Vivo Tissue. Crit Rev Eukaryot Gene Expr 2024; 34:69-74. [PMID: 37824393 PMCID: PMC10792540 DOI: 10.1615/critreveukaryotgeneexpr.2023049567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The enhanced uptake of glucose by cancer cells via aerobic glycolysis occurs when the lactic acid pathway is favored over the citric acid cycle. The lactic acid cycle in cancer cells influences the cytosolic concentration of metabolic fluorophores including NADH (the reduced form of nicotinamide adenine dinucleotide) and flavin adenine dinucleotide (FAD). In particular, the literature has shown that breast cancer influences the relative magnitude of fluorescence from NADH and FAD. A multispectral imaging system has been developed for rapid non-destructive imaging of intrinsic fluorescence in tissue. This paper compares in vivo data to fresh ex vivo data gathered as a function of time in mouse models. The data indicate that, if measured within 30 min of excision, a cancer diagnosis in fresh ex vivo tissue correlates with a cancer diagnosis in in vivo tissue. These results justify a plan to evaluate fresh ex vivo human tissue to quantify the sensitivity and specificity of the multispectral system.
Collapse
Affiliation(s)
- Gary E. Carver
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Sarah A. Locknar
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Christopher J. Pung
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Donald L. Weaver
- Department of Pathology and Laboratory Medicine and UVM Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
2
|
Rodriguez Troncoso J, Marium Mim U, Ivers JD, Paidi SK, Harper MG, Nguyen KG, Ravindranathan S, Rebello L, Lee DE, Zaharoff DA, Barman I, Rajaram N. Evaluating differences in optical properties of indolent and aggressive murine breast tumors using quantitative diffuse reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:6114-6126. [PMID: 38420330 PMCID: PMC10898562 DOI: 10.1364/boe.505153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 03/02/2024]
Abstract
We used diffuse reflectance spectroscopy to quantify tissue absorption and scattering-based parameters in similarly sized tumors derived from a panel of four isogenic murine breast cancer cell lines (4T1, 4T07, 168FARN, 67NR) that are each capable of accomplishing different steps of the invasion-metastasis cascade. We found lower tissue scattering, increased hemoglobin concentration, and lower vascular oxygenation in indolent 67NR tumors incapable of metastasis compared with aggressive 4T1 tumors capable of metastasis. Supervised learning statistical approaches were able to accurately differentiate between tumor groups and classify tumors according to their ability to accomplish each step of the invasion-metastasis cascade. We investigated whether the inhibition of metastasis-promoting genes in the highly metastatic 4T1 tumors resulted in measurable optical changes that made these tumors similar to the indolent 67NR tumors. These results demonstrate the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology and discriminate between indolent and aggressive tumors.
Collapse
Affiliation(s)
| | - Umme Marium Mim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jesse D. Ivers
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Santosh K. Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mason G. Harper
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Khue G. Nguyen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sruthi Ravindranathan
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lisa Rebello
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - David E. Lee
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Exercise Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - David A. Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Shanthakumar D, Leiloglou M, Kelliher C, Darzi A, Elson DS, Leff DR. A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15112884. [PMID: 37296847 DOI: 10.3390/cancers15112884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 19% of patients require re-excision surgery due to positive margins in breast-conserving surgery (BCS). Intraoperative margin assessment tools (IMAs) that incorporate tissue optical measurements could help reduce re-excision rates. This review focuses on methods that use and assess spectrally resolved diffusely reflected light for breast cancer detection in the intraoperative setting. Following PROSPERO registration (CRD42022356216), an electronic search was performed. The modalities searched for were diffuse reflectance spectroscopy (DRS), multispectral imaging (MSI), hyperspectral imaging (HSI), and spatial frequency domain imaging (SFDI). The inclusion criteria encompassed studies of human in vivo or ex vivo breast tissues, which presented data on accuracy. The exclusion criteria were contrast use, frozen samples, and other imaging adjuncts. 19 studies were selected following PRISMA guidelines. Studies were divided into point-based (spectroscopy) or whole field-of-view (imaging) techniques. A fixed-or random-effects model analysis generated pooled sensitivity/specificity for the different modalities, following heterogeneity calculations using the Q statistic. Overall, imaging-based techniques had better pooled sensitivity/specificity (0.90 (CI 0.76-1.03)/0.92 (CI 0.78-1.06)) compared with probe-based techniques (0.84 (CI 0.78-0.89)/0.85 (CI 0.79-0.91)). The use of spectrally resolved diffusely reflected light is a rapid, non-contact technique that confers accuracy in discriminating between normal and malignant breast tissue, and it constitutes a potential IMA tool.
Collapse
Affiliation(s)
- Dhurka Shanthakumar
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Maria Leiloglou
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Colm Kelliher
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Daniel S Elson
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Daniel R Leff
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Dip F, Rosenthal D, Socolovsky M, Falco J, De la Fuente M, White KP, Rosenthal RJ. Nerve autofluorescence under near-ultraviolet light: cutting-edge technology for intra-operative neural tissue visualization in 17 patients. Surg Endosc 2022; 36:4079-4089. [PMID: 34694489 DOI: 10.1007/s00464-021-08729-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/06/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Nerve visualization and the identification of other neural tissues during surgery is crucial for numerous reasons, including the prevention of iatrogenic nerve and neural structure injury and facilitation of nerve repair. However, current methods of intra-operative nerve detection are generally expensive, unproven, and/or technically challenging. Recently, we have documented, in both in vivo animal models and ex vivo human tissue, that nerves autofluorescence when viewed in near-ultraviolet light (NUV). In this paper, we describe our use of nerve autofluorescence to facilitate the visualization of nerves and other neural tissues intra-operatively in 17 patients undergoing a range of surgical procedures. METHODS Employing the same prototype axon imaging system previously documented to markedly enhance nerve visualization in both in vivo animal and ex vivo human models, surgical fields were observed in 17 patients under both white and NUV light during parotid tumor resection (n = 3), thyroid tumor resection (n = 7), and surgery for peripheral nerve and spinal tumors and injury (n = 7). RESULTS In all 17 patients, the intra-operative use of the imaging system both was feasible and markedly enhanced the localization of all neural tissues throughout their course within the surgical field. All 17 procedures were successful and devoid of any peri-operative complications or post-operative neurological deficits. CONCLUSIONS Intra-operatively visualizing auto-fluorescent peripheral nerves and other neural tissues under NUV light is feasible in human patients across a range of clinical scenarios and appears to appreciably enhance nerve and other neural tissue visualization. Controlled studies to explore this technology further are needed.
Collapse
Affiliation(s)
- Fernando Dip
- Florida Department of General Surgery, Cleveland Clnic Florida, 2950 Cleveland Clinic Boulevard, Weston, FL, 33331, USA.,Instituto Argentino de Diagnóstico y Tratamiento Buenos Aires Argentina, Av. Córdoba 2351, C1121ABJ CABA, Buenos Aires, Argentina
| | | | - Mariano Socolovsky
- Division of Neurosurgery, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Jorge Falco
- Instituto Argentino de Diagnóstico y Tratamiento Buenos Aires Argentina, Av. Córdoba 2351, C1121ABJ CABA, Buenos Aires, Argentina
| | - Martin De la Fuente
- Department of Surgery, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Kevin P White
- ScienceRight Research Consulting, 195 Dufferin Ave., #605, London, ON, N6A 1X7, Canada
| | - Raul J Rosenthal
- Florida Department of General Surgery, Cleveland Clnic Florida, 2950 Cleveland Clinic Boulevard, Weston, FL, 33331, USA.
| |
Collapse
|
5
|
Dip F, Bregoli P, Falco J, White KP, Rosenthal RJ. Nerve autofluorescence in near-ultraviolet light markedly enhances nerve visualization in vivo. Surg Endosc 2022; 36:1999-2005. [PMID: 33835251 DOI: 10.1007/s00464-021-08484-0/tables/3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND During surgery, surgeons must accurately localize nerves to avoid injuring them. Recently, we have discovered that nerves fluoresce in near-ultraviolet light (NUV) light. The aims of the current study were to determine the extent to which nerves fluoresce more brightly than background and vascular structures in NUV light, and identify the NUV intensity at which nerves are most distinguishable from other tissues. METHODS We exposed sciatic nerves within the posterior thigh in five 250-300 gm Wistar rats, then observed them at four different NUV intensity levels: 20%, 35%, 50%, and 100%. Brightness of fluorescence was measured by fluorescence spectroscopy, quantified as a fluorescence score using Image-J software, and statistically compared between nerves, background, and both an artery and vein by unpaired Student's t tests with Bonferroni adjustment to accommodate multiple comparisons. Sensitivity, specificity, and accuracy were calculated for each NUV intensity. RESULTS At 20, 35, 50, and 100% NUV intensity, fluorescence scores for nerves versus background tissues were 117.4 versus 40.0, 225.8 versus 88.0, 250.6 versus 121.4, and 252.8 versus 169.4, respectively (all p < 0.001). Fluorescence scores plateaued at 50% NUV intensity for nerves, but continued to rise for background. At 35%, 50%, and 100% NUV intensity, a fluorescence score of 200 was 100% sensitive, specific, and accurate identifying nerves. At 100 NUV intensity, artery and vein scores were 61.8 and 60.0, both dramatically lower than for nerves (p < 0.001). CONCLUSIONS At all NUV intensities ≥ 35%, a fluorescence score of 200 is 100% accurate distinguishing nerves from other anatomical structures in vivo.
Collapse
Affiliation(s)
- Fernando Dip
- Instituto Argentino de Diagnóstico y Tratamiento, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cleveland Clinic Florida, Weston, FL, 33325, USA
| | - Pedro Bregoli
- Instituto Argentino de Diagnóstico y Tratamiento, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Falco
- Instituto Argentino de Diagnóstico y Tratamiento, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kevin P White
- ScienceRight Research Consulting, London, ON, Canada
| | - Raúl J Rosenthal
- Cleveland Clinic Florida, Weston, FL, 33325, USA.
- Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA.
| |
Collapse
|
6
|
Dip F, Bregoli P, Falco J, White KP, Rosenthal RJ. Nerve autofluorescence in near-ultraviolet light markedly enhances nerve visualization in vivo. Surg Endosc 2021; 36:1999-2005. [PMID: 33835251 DOI: 10.1007/s00464-021-08484-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/28/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND During surgery, surgeons must accurately localize nerves to avoid injuring them. Recently, we have discovered that nerves fluoresce in near-ultraviolet light (NUV) light. The aims of the current study were to determine the extent to which nerves fluoresce more brightly than background and vascular structures in NUV light, and identify the NUV intensity at which nerves are most distinguishable from other tissues. METHODS We exposed sciatic nerves within the posterior thigh in five 250-300 gm Wistar rats, then observed them at four different NUV intensity levels: 20%, 35%, 50%, and 100%. Brightness of fluorescence was measured by fluorescence spectroscopy, quantified as a fluorescence score using Image-J software, and statistically compared between nerves, background, and both an artery and vein by unpaired Student's t tests with Bonferroni adjustment to accommodate multiple comparisons. Sensitivity, specificity, and accuracy were calculated for each NUV intensity. RESULTS At 20, 35, 50, and 100% NUV intensity, fluorescence scores for nerves versus background tissues were 117.4 versus 40.0, 225.8 versus 88.0, 250.6 versus 121.4, and 252.8 versus 169.4, respectively (all p < 0.001). Fluorescence scores plateaued at 50% NUV intensity for nerves, but continued to rise for background. At 35%, 50%, and 100% NUV intensity, a fluorescence score of 200 was 100% sensitive, specific, and accurate identifying nerves. At 100 NUV intensity, artery and vein scores were 61.8 and 60.0, both dramatically lower than for nerves (p < 0.001). CONCLUSIONS At all NUV intensities ≥ 35%, a fluorescence score of 200 is 100% accurate distinguishing nerves from other anatomical structures in vivo.
Collapse
Affiliation(s)
- Fernando Dip
- Instituto Argentino de Diagnóstico y Tratamiento, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cleveland Clinic Florida, Weston, FL, 33325, USA
| | - Pedro Bregoli
- Instituto Argentino de Diagnóstico y Tratamiento, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Falco
- Instituto Argentino de Diagnóstico y Tratamiento, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kevin P White
- ScienceRight Research Consulting, London, ON, Canada
| | - Raúl J Rosenthal
- Cleveland Clinic Florida, Weston, FL, 33325, USA.
- Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA.
| |
Collapse
|
7
|
Lu H, Grygoryev K, Bermingham N, Jansen M, O’Sullivan M, Nunan G, Buckley K, Manley K, Burke R, Andersson-Engels S. Combined autofluorescence and diffuse reflectance for brain tumour surgical guidance: initial ex vivo study results. BIOMEDICAL OPTICS EXPRESS 2021; 12:2432-2446. [PMID: 33996239 PMCID: PMC8086447 DOI: 10.1364/boe.420292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This ex vivo study was conducted to assess the potential of using a fibre optic probe system based on autofluorescence and diffuse reflectance for tissue differentiation in the brain. A total of 180 optical measurements were acquired from 28 brain specimens (five patients) with eight excitation and emission wavelengths spanning from 300 to 700 nm. Partial least square-linear discriminant analysis (PLS-LDA) was used for tissue discrimination. Leave-one-out cross validation (LOOCV) was then used to evaluate the performance of the classification model. Grey matter was differentiated from tumour tissue with sensitivity of 89.3% and specificity of 92.5%. The variable importance in projection (VIP) derived from the PLS regression was applied to wavelengths selection, and identified the biochemical sources of the detected signals. The initial results of the study were promising and point the way towards a cost-effective, miniaturized hand-held probe for real time and label-free surgical guidance.
Collapse
Affiliation(s)
- Huihui Lu
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Konstantin Grygoryev
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Niamh Bermingham
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Michael Jansen
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | | | - Gerard Nunan
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Kevin Buckley
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Kevin Manley
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Ray Burke
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Nerve spectroscopy: understanding peripheral nerve autofluorescence through photodynamics. Surg Endosc 2021; 35:7104-7111. [PMID: 33782757 DOI: 10.1007/s00464-020-08227-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Being able to accurately identify sensory and motor nerves is crucial during surgical procedures to prevent nerve injury. We aimed to (1) evaluate the feasibility of performing peripheral human nerve visualization utilizing nerves' own autofluorescence in an ex-vivo model; (2) compare the effect of three different nerve fiber fixation methods on the intensity of fluorescence, indicated as the intensity ratio; and (3) similarly compare three different excitation ranges. METHODS Samples from various human peripheral nerves were selected postoperatively. Nerve fibers were divided into three groups: Group A nerve fibers were washed with a physiologic solution; Group B nerve fibers were fixated with formaldehyde for 6 h first, and then washed with a physiologic solution; Group C nerve fibers were fixated with formaldehyde for six hours, but not washed afterwards. An Olympus IX83 inverted microscope was used for close-up image evaluation. Nerve fibers were exposed to white-light wavelength spectrums for a specific time frame prior to visualization under three different filters-Filter 1-LF405-B-OMF Semrock; Filter 2-U-MGFP; Filter 3-U-MRFPHQ Olympus, with excitation ranges of 390-440, 460-480, and 535-555, respectively. The fluorescence intensity of all images was subsequently analyzed using Image-J Software, and results compared by analysis of variance (ANOVA). RESULTS The intensity ratios observed with Filter 1 failed to distinguish the different nerve fiber groups (p = 0.39). Conversely, the intensity ratios seen under Filters 2 and 3 varied significantly between the three nerve-fiber groups (p = 0.021, p = 0.030, respectively). The overall intensity of measurements was greater with Filter 1 than Filter 3 (p < 0.05); however, all nerves were well visualized by all filters. CONCLUSION The current results on ex vivo peripheral nerve fiber autofluorescence suggest that peripheral nerve fiber autofluorescence intensity does not greatly depend upon the excitation wavelength or fixation methods used in an ex vivo setting. Implications for future nerve-sparing surgery are discussed.
Collapse
|
9
|
Lu H, Floris F, Rensing M, Andersson-Engels S. Fluorescence Spectroscopy Study of Protoporphyrin IX in Optical Tissue Simulating Liquid Phantoms. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2105. [PMID: 32370118 PMCID: PMC7254220 DOI: 10.3390/ma13092105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
Fluorescence spectroscopy has been extensively investigated for disease diagnosis. In this framework, optical tissue phantoms are widely used for validating the biomedical device system in a laboratory environment outside of clinical procedures. Moreover, it is fundamental to consider that there are several scattering components and chromophores inside biological tissues and the interplay between scattering and absorption may result in a distortion of the emitted fluorescent signal. In this work, the photophysical behaviour of a set of liquid, tissue-like phantoms containing different compositions was analysed: phosphate buffer saline (PBS) was used as the background medium, low fat milk as a scatterer, Indian ink as an absorber and protoporphyrin IX (PpIX) dissolved in dimethyl formamide (DMF) as a fluorophore. We examined the collected data in terms of the impact of surfactant Tween-20 on the background medium, scattering effects and combination of scattering and absorption within a luminescent body on PpIX. The results indicated that the intrinsic emission peaks are red shifted by the scattering particles or surfactant, whilst the scattering agent and the absorbent can alter the emission intensity substantially. We corroborated that phantoms containing higher surfactant content (>0.5% Tween 20) are essential to prepare stable aqueous phantoms.
Collapse
Affiliation(s)
- Huihui Lu
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland;
| | - Francesco Floris
- Photonics Packaging Group, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (F.F.); (M.R.)
| | - Marc Rensing
- Photonics Packaging Group, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (F.F.); (M.R.)
| | - Stefan Andersson-Engels
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland;
- Department of Physics, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
10
|
de Boer LL, Bydlon TM, van Duijnhoven F, Vranken Peeters MJTFD, Loo CE, Winter-Warnars GAO, Sanders J, Sterenborg HJCM, Hendriks BHW, Ruers TJM. Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery. J Transl Med 2018; 16:367. [PMID: 30567584 PMCID: PMC6299954 DOI: 10.1186/s12967-018-1747-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Breast cancer surgeons struggle with differentiating healthy tissue from cancer at the resection margin during surgery. We report on the feasibility of using diffuse reflectance spectroscopy (DRS) for real-time in vivo tissue characterization. Methods Evaluating feasibility of the technology requires a setting in which measurements, imaging and pathology have the best possible correlation. For this purpose an optical biopsy needle was used that had integrated optical fibers at the tip of the needle. This approach enabled the best possible correlation between optical measurement volume and tissue histology. With this optical biopsy needle we acquired real-time DRS data of normal tissue and tumor tissue in 27 patients that underwent an ultrasound guided breast biopsy procedure. Five additional patients were measured in continuous mode in which we obtained DRS measurements along the entire biopsy needle trajectory. We developed and compared three different support vector machine based classification models to classify the DRS measurements. Results With DRS malignant tissue could be discriminated from healthy tissue. The classification model that was based on eight selected wavelengths had the highest accuracy and Matthews Correlation Coefficient (MCC) of 0.93 and 0.87, respectively. In three patients that were measured in continuous mode and had malignant tissue in their biopsy specimen, a clear transition was seen in the classified DRS measurements going from healthy tissue to tumor tissue. This transition was not seen in the other two continuously measured patients that had benign tissue in their biopsy specimen. Conclusions It was concluded that DRS is feasible for integration in a surgical tool that could assist the breast surgeon in detecting positive resection margins during breast surgery. Trail registration NIH US National Library of Medicine–clinicaltrails.gov, NCT01730365. Registered: 10/04/2012 https://clinicaltrials.gov/ct2/show/study/NCT01730365
Collapse
Affiliation(s)
- Lisanne L de Boer
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands.
| | - Torre M Bydlon
- In-body Systems, Philips Research, High Tech, Campus 34, 5656 AE, Eindhoven, The Netherlands
| | - Frederieke van Duijnhoven
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands
| | - Marie-Jeanne T F D Vranken Peeters
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands
| | - Claudette E Loo
- Department of Radiology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Gonneke A O Winter-Warnars
- Department of Radiology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Henricus J C M Sterenborg
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands.,Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benno H W Hendriks
- In-body Systems, Philips Research, High Tech, Campus 34, 5656 AE, Eindhoven, The Netherlands.,Biomechanical Engineering, Delft University of Technology, Mekelweg 5, 2628 CD, Delft, The Netherlands
| | - Theo J M Ruers
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands.,Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| |
Collapse
|
11
|
Carver GE, Locknar SA, Weaver DL, Stein JL, Stein GS. Real-time detection of breast cancer at the cellular level. J Cell Physiol 2018; 234:5413-5419. [PMID: 30362286 DOI: 10.1002/jcp.27451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 11/05/2022]
Abstract
Novel optoelectronic instrumentation has been developed for the multispectral imaging of autofluorescence emitted by metabolic fluorophores. The images resolve individual cells while spectra are collected for each pixel in the images. These datacubes are generated at a rate of 10 per second-fast enough for surgical guidance. The data is processed in real time to provide a single color-coded image to the surgeon. To date, the system has been applied to fresh, ex vivo, human surgical specimens and has distinguished breast cancer from benign tissue. The approach is applicable to in vivo measurements of surgical margins and needle-based optical biopsies. Ongoing work demonstrates that the system has great potential for translation to a hand-held probe with high sensitivity and specificity.
Collapse
Affiliation(s)
| | | | - Donald L Weaver
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont Cancer Center, Burlington, Vermont
| | - Gary S Stein
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
12
|
Shalaby N, Al-Ebraheem A, Le D, Cornacchi S, Fang Q, Farrell T, Lovrics P, Gohla G, Reid S, Hodgson N, Farquharson M. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer. Lasers Surg Med 2018; 50:236-245. [DOI: 10.1002/lsm.22795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Nourhan Shalaby
- School of Interdisciplinary Science; McMaster University; Ontario Canada
| | - Alia Al-Ebraheem
- School of Interdisciplinary Science; McMaster University; Ontario Canada
| | - Du Le
- School of Interdisciplinary Science; McMaster University; Ontario Canada
| | - Sylvie Cornacchi
- Faculty of Health Sciences, Department of Surgery; McMaster University; Hamilton Ontario Canada
| | - Qiyin Fang
- Faculty of Engineering; McMaster University; Hamilton Ontario Canada
| | - Thomas Farrell
- Juravinski Hospital and Cancer Centre; Hamilton Ontario Canada
| | - Peter Lovrics
- Faculty of Health Sciences, Department of Surgery; McMaster University; Hamilton Ontario Canada
- St. Joseph's Healthcare; Hamilton Ontario Canada
| | - Gabriela Gohla
- St. Joseph's Healthcare; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Susan Reid
- Juravinski Hospital and Cancer Centre; Hamilton Ontario Canada
| | - Nicole Hodgson
- Juravinski Hospital and Cancer Centre; Hamilton Ontario Canada
| | | |
Collapse
|
13
|
Maciel VH, Correr WR, Kurachi C, Bagnato VS, da Silva Souza C. Fluorescence spectroscopy as a tool to in vivo discrimination of distinctive skin disorders. Photodiagnosis Photodyn Ther 2017; 19:45-50. [DOI: 10.1016/j.pdpdt.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/19/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
|
14
|
Stelzle F, Rohde M, Riemann M, Oetter N, Adler W, Tangermann-Gerk K, Schmidt M, Knipfer C. Autofluorescence spectroscopy for nerve-sparing laser surgery of the head and neck-the influence of laser-tissue interaction. Lasers Med Sci 2017; 32:1289-1300. [PMID: 28551764 DOI: 10.1007/s10103-017-2240-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
Abstract
The use of remote optical feedback systems represents a promising approach for minimally invasive, nerve-sparing laser surgery. Autofluorescence properties can be exploited for a fast, robust identification of nervous tissue. With regard to the crucial step towards clinical application, the impact of laser ablation on optical properties in the vicinity of structures of the head and neck has not been investigated up to now. We acquired 24,298 autofluorescence spectra from 135 tissue samples (nine ex vivo tissue types from 15 bisected pig heads) both before and after ER:YAG laser ablation. Sensitivities, specificities, and area under curve(AUC) values for each tissue pair as well as the confusion matrix were statistically calculated for pre-ablation and post-ablation autofluorescence spectra using principal component analysis (PCA), quadratic discriminant analysis (QDA), and receiver operating characteristics (ROC). The confusion matrix indicated a highly successful tissue discrimination rate before laser exposure, with an average classification error of 5.2%. The clinically relevant tissue pairs nerve/cancellous bone and nerve/salivary gland yielded an AUC of 100% each. After laser ablation, tissue discrimination was feasible with an average classification accuracy of 92.1% (average classification error 7.9%). The identification of nerve versus cancellous bone and salivary gland performed very well with an AUC of 100 and 99%, respectively. Nerve-sparing laser surgery in the area of the head and neck by means of an autofluorescence-based feedback system is feasible even after ER-YAG laser-tissue interactions. These results represent a crucial step for the development of a clinically applicable feedback tool for laser surgery interventions in the oral and maxillofacial region.
Collapse
Affiliation(s)
- Florian Stelzle
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Glückstraße 11, 91054, Erlangen, Germany.,Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, 91052, Erlangen, Germany
| | - Maximilian Rohde
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Glückstraße 11, 91054, Erlangen, Germany.,Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, 91052, Erlangen, Germany
| | - Max Riemann
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Glückstraße 11, 91054, Erlangen, Germany
| | - Nicolai Oetter
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Glückstraße 11, 91054, Erlangen, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Waldstraße 6, 91054, Erlangen, Germany
| | | | - Michael Schmidt
- Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, 91052, Erlangen, Germany.,Bavarian Laser Center GmbH (blz), Konrad-Zuse-Straße 2-6, 91054, Erlangen, Germany.,Institute of Photonic Technologies, Friedrich-Alexander-University Erlangen-Nürnberg(FAU), Konrad-Zuse-Straße 3-5, 91052, Erlangen, Germany
| | - Christian Knipfer
- Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, 91052, Erlangen, Germany. .,Department of Oral and Maxillofacial Surgery, University of Hamburg (UHH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Spectroscopic and Imaging Characteristics of Pigmented Non-Melanoma Skin Cancer and Melanoma in Patients with Skin Phototypes III and IV. Oncol Ther 2016; 4:315-331. [PMID: 28261658 PMCID: PMC5315082 DOI: 10.1007/s40487-016-0036-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Non-melanoma skin cancer is the most common malignancy worldwide. Differentiating between malignant and benign skin tumors, however, can be challenging. As a result, various auxiliary tools have been developed to aid in the diagnosis of cutaneous neoplasms. Here, skin tumors were investigated through analysis of their digital image histograms and spectroscopic response under ultraviolet (UV) and white light-emitting diodes (LEDs). METHODS Fifty tumoral lesions were spectroscopically and histologically studied. For optical studies, UV at 375 nm and white LEDs were used to illuminate the lesions. Commercial cameras were used for imaging, and a miniature spectrometer with a bifurcated optical fiber was used for spectroscopic measurements. RESULTS In this study, the intensity histograms of the images taken under white and UV illumination and the spectroscopic response under white light showed clear differences between pigmented basal cell carcinoma (BCC), intradermal melanocytic nevus (IDN), and melanoma lesions for skin phototypes III and IV. However, there was little difference in their spectroscopic response to the UV LED. CONCLUSION We found differences in the intensity and shape of diffuse reflectance spectra of pigmented BCC, IDN, and melanoma lesions in patients with skin phototypes III and IV. Also, images taken under UV and white light were helpful for differentiation of these pigmented lesions. Additional research is needed to ascertain the clinical utility of these tools for skin cancer diagnosis.
Collapse
|
16
|
Valdez TA, Pandey R, Spegazzini N, Longo K, Roehm C, Dasari RR, Barman I. Multiwavelength fluorescence otoscope for video-rate chemical imaging of middle ear pathology. Anal Chem 2014; 86:10454-60. [PMID: 25226556 PMCID: PMC4204905 DOI: 10.1021/ac5030232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A common
motif in otolaryngology is the lack of certainty regarding
diagnosis for middle ear conditions, resulting in many patients being
overtreated under the worst-case assumption. Although pneumatic otoscopy
and adjunctive tests offer additional information, white light otoscopy
has been the main tool for diagnosis of external auditory canal and
middle ear pathologies for over a century. In middle ear pathologies,
the inability to avail high-resolution structural and/or molecular
imaging is particularly glaring, leading to a complicated and erratic
decision analysis. Here, we propose a novel multiwavelength fluorescence-based
video-rate imaging strategy that combines readily available optical
elements and software components to create a novel otoscopic device.
This modified otoscope enables low-cost, detailed and objective diagnosis
of common middle ear pathological conditions. Using the detection
of congenital cholesteatoma as a specific example, we demonstrate
the feasibility of fluorescence imaging to differentiate this proliferative
lesion from uninvolved middle ear tissue based on the characteristic
autofluorescence signals. Availability of real-time, wide-field chemical
information should enable more complete removal of cholesteatoma,
allowing for better hearing preservation and substantially reducing
the well-documented risks, costs and psychological effects of repeated
surgical procedures.
Collapse
Affiliation(s)
- Tulio A Valdez
- Otolaryngology - Head and Neck Surgery, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Engelhardt A, Kanawade R, Knipfer C, Schmid M, Stelzle F, Adler W. Comparing classification methods for diffuse reflectance spectra to improve tissue specific laser surgery. BMC Med Res Methodol 2014; 14:91. [PMID: 25030085 PMCID: PMC4136948 DOI: 10.1186/1471-2288-14-91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/09/2014] [Indexed: 11/21/2022] Open
Abstract
Background In the field of oral and maxillofacial surgery, newly developed laser scalpels have multiple advantages over traditional metal scalpels. However, they lack haptic feedback. This is dangerous near e.g. nerve tissue, which has to be preserved during surgery. One solution to this problem is to train an algorithm that analyzes the reflected light spectra during surgery and can classify these spectra into different tissue types, in order to ultimately send a warning or temporarily switch off the laser when critical tissue is about to be ablated. Various machine learning algorithms are available for this task, but a detailed analysis is needed to assess the most appropriate algorithm. Methods In this study, a small data set is used to simulate many larger data sets according to a multivariate Gaussian distribution. Various machine learning algorithms are then trained and evaluated on these data sets. The algorithms’ performance is subsequently evaluated and compared by averaged confusion matrices and ultimately by boxplots of misclassification rates. The results are validated on the smaller, experimental data set. Results Most classifiers have a median misclassification rate below 0.25 in the simulated data. The most notable performance was observed for the Penalized Discriminant Analysis, with a misclassifiaction rate of 0.00 in the simulated data, and an average misclassification rate of 0.02 in a 10-fold cross validation on the original data. Conclusion The results suggest a Penalized Discriminant Analysis is the most promising approach, most probably because it considers the functional, correlated nature of the reflectance spectra. The results of this study improve the accuracy of real-time tissue discrimination and are an essential step towards improving the safety of oral laser surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Waldstrasse 6, 91054 Erlangen, Germany.
| |
Collapse
|
18
|
Spliethoff JW, Evers DJ, Jaspers JE, Hendriks BHW, Rottenberg S, Ruers TJM. Monitoring of tumor response to Cisplatin using optical spectroscopy. Transl Oncol 2014; 7:230-9. [PMID: 24726234 PMCID: PMC4101345 DOI: 10.1016/j.tranon.2014.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/07/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.
Collapse
Affiliation(s)
- Jarich W Spliethoff
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Daniel J Evers
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Janneke E Jaspers
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benno H W Hendriks
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Theo J M Ruers
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands; MIRA Institute, Technical University Twente, Enschede, The Netherlands
| |
Collapse
|
19
|
Krishna CM, Kurien J, Mathew S, Rao L, Maheedhar K, Kumar KK, Chowdary MVP. Raman spectroscopy of breast tissues. Expert Rev Mol Diagn 2014; 8:149-66. [DOI: 10.1586/14737159.8.2.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Fluorescence spectroscopic characterization of salivary metabolites of oral cancer patients. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:153-60. [PMID: 24333763 DOI: 10.1016/j.jphotobiol.2013.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 02/05/2023]
Abstract
A pilot study has been carried out using human saliva in differentiating the normal subjects from that of oral squamous cell carcinoma (OSCC) patients, using the autofluorescence spectroscopy at 405nm excitation. A markable difference in the spectral signatures between the saliva of normal subjects and that of oral cancer patients has been noticed. The possible reasons for the altered spectral signature may be due to the presence of endogenous porphyrin, NAD(P)H and FAD in the exfoliated cells from saliva. The elevated level of porphyrin in saliva of OSCC patients may be attributed to the disturbances in the amino acid degradation pathway and heme biosynthetic pathway, during the transformation of normal into malignant cells. The integrated area under the curve of fluorescence emission spectrum at 405nm excitation and also fluorescence excitation spectrum for 625nm emission were compared for the saliva of normal and oral cancer patients. The area under the curve for the emission spectrum provides 85.7% sensitivity and 93.3% specificity, where as the fluorescence excitation spectrum discriminates the same with 84.1% sensitivity and 93.2% specificity.
Collapse
|
21
|
Spliethoff JW, Evers DJ, Klomp HM, van Sandick JW, Wouters MW, Nachabe R, Lucassen GW, Hendriks BH, Wesseling J, Ruers TJ. Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy. Lung Cancer 2013; 80:165-71. [DOI: 10.1016/j.lungcan.2013.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 12/20/2022]
|
22
|
Watson JM, Marion SL, Rice PF, Utzinger U, Brewer MA, Hoyer PB, Barton JK. Two-photon excited fluorescence imaging of endogenous contrast in a mouse model of ovarian cancer. Lasers Surg Med 2013; 45:155-66. [PMID: 23362124 DOI: 10.1002/lsm.22115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Ovarian cancer has an extremely high mortality rate resulting from poor understanding of the disease. In order to aid understanding of disease etiology and progression, we identify the endogenous fluorophores present in a mouse model of ovarian cancer and describe changes in fluorophore abundance and distribution with age and disease. STUDY DESIGN/MATERIALS AND METHODS A mouse model of ovarian cancer was created by dosing with 4-vinylcyclohexene diepoxide, which induces follicular apoptosis (simulating menopause), and 7,12-dimethylbenz[a]anthracene, a known carcinogen. Imaging of ovarian tissue was completed ex vivo with a multiphoton microscope using excitation wavelength of 780 nm and emission collection from 405 to 505 nm. Two-photon excited fluorescence images and corresponding histologic sections with selective stains were used to identify endogenous fluorophores. RESULTS The majority of collected fluorescence emission was attributed to NADH and lipofuscin, with additional contributions from collagen and elastin. Dim cellular fluorescence from NADH did not show observable changes with age. Changes in ovarian morphology with disease development frequently caused increased fluorescence contributions from collagen and adipose tissue-associated NADH. Lipofuscin fluorescence was much brighter than NADH fluorescence and increased as a function of both age and disease. CONCLUSIONS Our finding of NADH fluorescence patterns similar to that seen previously in human ovary, combined with the observation of lipofuscin accumulation with age and disease also seen in human organs, suggests that the findings from this model may be relevant to human ovarian disease. Increased lipofuscin fluorescence might be used as an indicator of disease in the ovary and this finding warrants further study.
Collapse
|
23
|
Evers D, Nachabé R, Hompes D, van Coevorden F, Lucassen G, Hendriks B, van Velthuysen ML, Wesseling J, Ruers T. Optical sensing for tumor detection in the liver. Eur J Surg Oncol 2013; 39:68-75. [DOI: 10.1016/j.ejso.2012.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/25/2012] [Accepted: 08/13/2012] [Indexed: 12/14/2022] Open
|
24
|
Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci U S A 2012; 110:471-6. [PMID: 23267090 DOI: 10.1073/pnas.1215473110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microcalcifications geographically target the location of abnormalities within the breast and are of critical importance in breast cancer diagnosis. However, despite stereotactic guidance, core needle biopsy fails to retrieve microcalcifications in up to 15% of patients. Here, we introduce an approach based on diffuse reflectance spectroscopy for detection of microcalcifications that focuses on variations in optical absorption stemming from the calcified clusters and the associated cross-linking molecules. In this study, diffuse reflectance spectra are acquired ex vivo from 203 sites in fresh biopsy tissue cores from 23 patients undergoing stereotactic breast needle biopsies. By correlating the spectra with the corresponding radiographic and histologic assessment, we have developed a support vector machine-derived decision algorithm, which shows high diagnostic power (positive predictive value and negative predictive value of 97% and 88%, respectively) for diagnosis of lesions with microcalcifications. We further show that these results are robust and not due to any spurious correlations. We attribute our findings to the presence of proteins (such as elastin), and desmosine and isodesmosine cross-linkers in the microcalcifications. It is important to note that the performance of the diffuse reflectance decision algorithm is comparable to one derived from the corresponding Raman spectra, and the considerably higher intensity of the reflectance signal enables the detection of the targeted lesions in a fraction of the spectral acquisition time. Our findings create a unique landscape for spectroscopic validation of breast core needle biopsy for detection of microcalcifications that can substantially improve the likelihood of an adequate, diagnostic biopsy in the first attempt.
Collapse
|
25
|
Bydlon TM, Barry WT, Kennedy SA, Brown JQ, Gallagher JE, Wilke LG, Geradts J, Ramanujam N. Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast. PLoS One 2012; 7:e51418. [PMID: 23251526 PMCID: PMC3519619 DOI: 10.1371/journal.pone.0051418] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/01/2012] [Indexed: 11/30/2022] Open
Abstract
Breast conserving surgery (BCS) is a recommended treatment for breast cancer patients where the goal is to remove the tumor and a surrounding rim of normal tissue. Unfortunately, a high percentage of patients return for additional surgeries to remove all of the cancer. Post-operative pathology is the gold standard for evaluating BCS margins but is limited due to the amount of tissue that can be sampled. Frozen section analysis and touch-preparation cytology have been proposed to address the surgical needs but also have sampling limitations. These issues represent an unmet clinical need for guidance in resecting malignant tissue intra-operatively and for pathological sampling. We have developed a quantitative spectral imaging device to examine margins intra-operatively. The context in which this technology is applied (intra-operative or post-operative setting) is influenced by time after excision and surgical factors including cautery and the presence of patent blue dye (specifically Lymphazurin™, used for sentinel lymph node mapping). Optical endpoints of hemoglobin ([THb]), fat ([β-carotene]), and fibroglandular content via light scattering (<µs’>) measurements were quantified from diffuse reflectance spectra of lumpectomy and mastectomy specimens using a Monte Carlo model. A linear longitudinal mixed-effects model was used to fit the optical endpoints for the cautery and kinetics studies. Monte Carlo simulations and tissue mimicking phantoms were used for the patent blue dye experiments. [THb], [β-carotene], and <µs’> were affected by <3.3% error with <80 µM of patent blue dye. The percent change in [β-carotene], <µs’>, and [β-carotene]/<µs’> was <14% in 30 minutes, while percent change in [THb] was >40%. [β-carotene] and [β-carotene]/<µs’> were the only parameters not affected by cautery. This work demonstrates the importance of understanding the post-excision kinetics of ex-vivo tissue and the presence of cautery and patent blue dye for breast tumor margin assessment, to accurately interpret data and exploit underling sources of contrast.
Collapse
Affiliation(s)
- Torre M. Bydlon
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - William T. Barry
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Stephanie A. Kennedy
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - J. Quincy Brown
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Zenalux, Research Triangle Park, North Carolina, United States of America
| | - Jennifer E. Gallagher
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lee G. Wilke
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Joseph Geradts
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Zenalux, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Evers DJ, Nachabe R, Vranken Peeters MJ, van der Hage JA, Oldenburg HS, Rutgers EJ, Lucassen GW, Hendriks BHW, Wesseling J, Ruers TJM. Diffuse reflectance spectroscopy: towards clinical application in breast cancer. Breast Cancer Res Treat 2012; 137:155-65. [PMID: 23225143 DOI: 10.1007/s10549-012-2350-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
Abstract
Diffuse reflectance spectroscopy (DRS) is a promising new technique for breast cancer diagnosis. However, inter-patient variation due to breast tissue heterogeneity may interfere with the accuracy of this technique. To tackle this issue, we aim to determine the diagnostic accuracy of DRS in individual patients. With this approach, DRS measurements of normal breast tissue in every individual patient are directly compared with measurements of the suspected malignant tissue. Breast tissue from 47 female patients was analysed ex vivo by DRS. A total of 1,073 optical spectra were collected. These spectra were analyzed for each patient individually as well as for all patients collectively and results were compared to the pathology analyses. Collective patient data analysis for discrimination between normal and malignant breast tissue resulted in a sensitivity of 90 %, a specificity of 88 %, and an overall accuracy of 89 %. In the individual analyses all measurements per patient were categorized as either benign or malignant. The discriminative accuracy of these individual analyses was nearly 100 %. The diagnosis was classified as uncertain in only one patient. Based on the results presented in this study, we conclude that the analysis of optical characteristics of different tissue classes within the breast of a single patient is superior to an analysis using the results of a cohort data analysis. When integrated into a biopsy device, our results demonstrate that DRS may have the potential to improve the diagnostic workflow in breast cancer.
Collapse
Affiliation(s)
- Daniel J Evers
- Department of Surgery, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Evers D, Hendriks B, Lucassen G, Ruers T. Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy. Future Oncol 2012; 8:307-20. [PMID: 22409466 DOI: 10.2217/fon.12.15] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optical spectroscopy (OS) is a tissue-sensing technique that could enhance cancer diagnosis and treatment in the near future. With OS, tissue is illuminated with a selected light spectrum. Different tissue types can be distinguished from each other based on specific changes in the reflected light spectrum that are a result of differences on a molecular level between compared tissues. Therefore, OS has the potential to become an important optical tool for cancer diagnosis and treatment monitoring. In recent years, significant progress has been made in the discriminating abilities of OS techniques between normal and cancer tissues of multiple human tissue types. This article provides an overview of the advances made with diffuse reflectance, fluorescence and Raman spectroscopy techniques in the field of clinical oncology, and focuses on the different clinical applications that OS could enhance.
Collapse
Affiliation(s)
- Dj Evers
- Department of Surgery, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Renkoski TE, Hatch KD, Utzinger U. Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:036003. [PMID: 22502561 PMCID: PMC3380934 DOI: 10.1117/1.jbo.17.3.036003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With no sufficient screening test for ovarian cancer, a method to evaluate the ovarian disease state quickly and nondestructively is needed. The authors have applied a wide-field spectral imager to freshly resected ovaries of 30 human patients in a study believed to be the first of its magnitude. Endogenous fluorescence was excited with 365-nm light and imaged in eight emission bands collectively covering the 400- to 640-nm range. Linear discriminant analysis was used to classify all image pixels and generate diagnostic maps of the ovaries. Training the classifier with previously collected single-point autofluorescence measurements of a spectroscopic probe enabled this novel classification. The process by which probe-collected spectra were transformed for comparison with imager spectra is described. Sensitivity of 100% and specificity of 51% were obtained in classifying normal and cancerous ovaries using autofluorescence data alone. Specificity increased to 69% when autofluorescence data were divided by green reflectance data to correct for spatial variation in tissue absorption properties. Benign neoplasm ovaries were also found to classify as nonmalignant using the same algorithm. Although applied ex vivo, the method described here appears useful for quick assessment of cancer presence in the human ovary.
Collapse
Affiliation(s)
- Timothy E. Renkoski
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721
| | - Kenneth D. Hatch
- University of Arizona, Arizona Health Sciences Center, Department of Obstetrics and Gynecology, North Campbell Avenue, Tucson, Arizona 85724
| | - Urs Utzinger
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721
- University of Arizona, Arizona Health Sciences Center, Department of Obstetrics and Gynecology, North Campbell Avenue, Tucson, Arizona 85724
- University of Arizona, Department of Biomedical Engineering, 1127 East James E. Rogers Way, Tucson, Arizona 85721
- Address all correspondence to: Urs Utzinger, University of Arizona, Department of Biomedical Engineering, 1127 East James E. Rogers Way, Tucson, Arizona 85721; Tel: 520-621-5420; E-mail:
| |
Collapse
|
29
|
Singh Y, Gao D, Gu Z, Li S, Stein S, Sinko PJ. Noninvasive detection of passively targeted poly(ethylene glycol) nanocarriers in tumors. Mol Pharm 2011; 9:144-55. [PMID: 22077582 DOI: 10.1021/mp2003913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present studies noninvasively investigate the passive tumor distribution potential of a series of poly(ethylene glycol) (PEG) nanocarriers using a SkinSkan spectrofluorometer and an In Vivo Imaging System (IVIS) 100. Fluorescein conjugated PEG nanocarriers of varying molecular weights (10, 20, 30, 40, and 60 kDa) were prepared and characterized. The nanocarriers were administered intravenously to female balb/c mice bearing subcutaneous 4T1 tumors. Passive distribution was measured in vivo (λ(exc), 480 nm; λ(em), 515-520 nm) from the tumor and a contralateral skin site (i.e., control site). The signal intensity from the tumor was always significantly higher than that from the contralateral site. Trends in results between the two methods were consistent with tumor distribution increasing in a molecular weight-dependent manner (10 < 20 < 30 ≪ 40 ≪ 60 kDa). The 10 kDa nanocarrier was not detected in tumors at 24 h, whereas 40-60 kDa nanocarriers were detected in tumors for up to 96 h. The 30, 40, and 60 kDa nanocarriers showed 2.1, 5.3, and 4.1 times higher passive distribution in tumors at 24 h, respectively, as compared to the 20 kDa nanocarrier. The 60 kDa nanocarrier exhibited 1.5 times higher tumor distribution than 40 kDa nanocarrier at 96 h. Thus, PEG nanocarriers (40 and 60 kDa) with molecular weights close to or above the renal exclusion limit, which for globular proteins is ≥45 kDa, showed significantly higher tumor distribution than those below it. The hydrodynamic radii of PEG polymers, measured using dynamic light scattering (DLS), showed that nanocarriers obtained from polymers with hydrodynamic radii ≥8 nm exhibited higher tumor distribution. Ex vivo mass balance studies revealed that nanocarrier tissue distribution followed the rank order tumor > lung > spleen > liver > kidney > muscle > heart, thus validating the in vivo studies. The results of the current studies suggest that noninvasive dermal imaging of tumors provides a reliable and rapid method for the initial screening of nanocarrier tumor distribution pharmacokinetics.
Collapse
Affiliation(s)
- Yashveer Singh
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | | | | | | | | | | |
Collapse
|
30
|
Vishwanath K, Chang K, Klein D, Deng YF, Chang V, Phelps JE, Ramanujam N. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties. APPLIED SPECTROSCOPY 2011; 62:206-215. [PMID: 21499501 PMCID: PMC3074566 DOI: 10.1366/10-06052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Collapse
|
31
|
Laughney AM, Krishnaswamy V, Garcia-Allende PB, Conde OM, Wells WA, Paulsen KD, Pogue BW. Automated classification of breast pathology using local measures of broadband reflectance. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:066019. [PMID: 21198193 PMCID: PMC3032233 DOI: 10.1117/1.3516594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate that morphological features pertinent to a tissue's pathology may be ascertained from localized measures of broadband reflectance, with a mesoscopic resolution (100-μm lateral spot size) that permits scanning of an entire margin for residual disease. The technical aspects and optimization of a k-nearest neighbor classifier for automated diagnosis of pathologies are presented, and its efficacy is validated in 29 breast tissue specimens. When discriminating between benign and malignant pathologies, a sensitivity and specificity of 91 and 77% was achieved. Furthermore, detailed subtissue-type analysis was performed to consider how diverse pathologies influence scattering response and overall classification efficacy. The increased sensitivity of this technique may render it useful to guide the surgeon or pathologist where to sample pathology for microscopic assessment.
Collapse
Affiliation(s)
- Ashley M Laughney
- Dartmouth College, Thayer School of Engineering, Hanover, NH 03755, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim A, Roy M, Dadani FN, Wilson BC. Topographic mapping of subsurface fluorescent structures in tissue using multiwavelength excitation. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:066026. [PMID: 21198200 PMCID: PMC3022586 DOI: 10.1117/1.3523369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Different colors of visible light penetrate to varying depths in tissue due to the wavelength dependence of tissue optical absorption and elastic scattering. We exploit this to map the contour of the closest surface of a buried fluorescent object. This uses a novel algorithm based on the diffusion theory description of light propagation in tissue at each excitation wavelength to derive metrics that define the depth of the top surface of the object. The algorithm was validated using a tissue-simulating phantom. It was then demonstrated in vivo by subsurface brain tumor topography in a rodent model, using the fluorescence signal from protoporphyrin IX that is preferentially synthesized within malignant cells following systemic application of aminolevulinic acid. Comparisons to histomorphometry in the brain post mortem show the spatial accuracy of the technique. This method has potential for fluorescence image-guided tumor surgery, as well as other biomedical and nonbiological applications in subsurface sensing.
Collapse
Affiliation(s)
- Anthony Kim
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Koschwanez H, Reichert W, Klitzman B. Intravital microscopy evaluation of angiogenesis and its effects on glucose sensor performance. J Biomed Mater Res A 2010; 93:1348-57. [PMID: 19911378 PMCID: PMC2916729 DOI: 10.1002/jbm.a.32630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An optical window model for the rodent dorsum was used to perform chronic and quantitative intravital microscopy and laser Doppler flowmetry of microvascular networks adjacent to functional and non-functional glucose sensors. The one-sided configuration afforded direct, real-time observation of the tissue response to bare (unmodified, smooth surface) sensors and sensors coated with porous poly-L-lactic acid (PLLA). Microvessel length density and red blood cell flux (blood perfusion) within 1 mm of the sensors were measured bi-weekly over 2 weeks. When non-functional sensors were fully implanted beneath the windows, the porous coated sensors had two-fold more vasculature and significantly higher blood perfusion than bare sensors on Day 14. When functional sensors were implanted percutaneously, as in clinical use, no differences in baseline current, neovascularization, or tissue perfusion were observed between bare and porous coated sensors. However, percutaneously implanted bare sensors had two-fold more vascularity than fully implanted bare sensors by Day 14, indicating the other factors, such as micromotion, might be stimulating angiogenesis. Despite increased angiogenesis adjacent to percutaneous sensors, modest sensor current attenuation occurred over 14 days, suggesting that factors other than angiogenesis may play a dominant role in determining sensor function.
Collapse
Affiliation(s)
- H.E. Koschwanez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - W.M. Reichert
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - B. Klitzman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
- Kenan Plastic Surgery Research Labs, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
34
|
Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, Ramanujam N. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res 2010; 70:4759-66. [PMID: 20460512 DOI: 10.1158/0008-5472.can-09-2572] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autofluorescence spectroscopy is a powerful imaging technique that exploits endogenous fluorophores. The endogenous fluorophores NADH and flavin adenine dinucleotide (FAD) are two of the principal electron donors and acceptors in cellular metabolism, respectively. The optical oxidation-reduction (redox) ratio is a measure of cellular metabolism and can be determined by the ratio of NADH/FAD. We hypothesized that there would be a significant difference in the optical redox ratio of normal mammary epithelial cells compared with breast tumor cell lines and that estrogen receptor (ER)-positive cells would have a higher redox ratio than ER-negative cells. To test our hypothesis, the optical redox ratio was determined by collecting the fluorescence emission for NADH and FAD via confocal microscopy. We observed a statistically significant increase in the optical redox ratio of cancer compared with normal cell lines (P < 0.05). Additionally, we observed a statistically significant increase in the optical redox ratio of ER(+) breast cancer cell lines. The level of ESR1 expression, determined by real-time PCR, directly correlated with the optical redox ratio (Pearson's correlation coefficient = 0.8122, P = 0.0024). Furthermore, treatment with tamoxifen and ICI 182,870 statistically decreased the optical redox ratio of only ER(+) breast cancer cell lines. The results of this study raise the important possibility that fluorescence spectroscopy can be used to identify subtypes of breast cancer based on receptor status, monitor response to therapy, or potentially predict response to therapy. This source of optical contrast could be a potentially useful tool for drug screening in preclinical models.
Collapse
Affiliation(s)
- Julie Hanson Ostrander
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center and Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Keller MD, Majumder SK, Kelley MC, Meszoely IM, Boulos FI, Olivares GM, Mahadevan-Jansen A. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg Med 2010; 42:15-23. [DOI: 10.1002/lsm.20865] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Ge J, Erickson SJ, Godavarty A. Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies. APPLIED OPTICS 2009; 48:6408-16. [PMID: 19935959 PMCID: PMC2975031 DOI: 10.1364/ao.48.006408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Handheld-probe-based optical imagers are a popular approach toward breast imaging because of their potential portability and maximum patient comfort. A novel handheld-probe-based optical imager has been developed and its feasibility for three-dimensional fluorescence tomographic imaging demonstrated. Extensive tomography studies were performed on large slab phantoms (650 ml) to assess the performance limits of the handheld imager. Experiments were performed by using different target volumes (0.1-0.45 cm3), target depths (1-3 cm), and fluorescence (Indocyanine Green) absorption contrast ratios in a nonfluorescing (1:0) and constant fluorescing backgrounds (1000:1 to 5:1). The estimated sensitivity and specificity of the handheld imager are 43% and 95%, respectively.
Collapse
|
37
|
Jayanthi JL, Mallia RJ, Shiny ST, Baiju KV, Mathews A, Kumar R, Sebastian P, Madhavan J, Aparna GN, Subhash N. Discriminant analysis of autofluorescence spectra for classification of oral lesions in vivo. Lasers Surg Med 2009; 41:345-52. [PMID: 19533763 DOI: 10.1002/lsm.20771] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Low survival rate of individuals with oral cancer emphasize the significance of early detection and treatment. Optical spectroscopic techniques are under various stages of development for diagnosis of epithelial neoplasm. This study evaluates the potential of a multivariate statistical algorithm to classify oral mucosa from autofluorescence spectral features recorded in vivo. STUDY DESIGN/METHODS Autofluorescence spectra were recorded in a clinical trial from 15 healthy volunteers and 34 patients with diode laser excitation (404 nm) and pre-processed by normalization, mean-scaling and its combination. Linear discriminant analysis (LDA) based on leave-one-out (LOO) method of cross validation was performed on spectral data for tissue characterization. The sensitivity and specificity were determined for different lesion pairs from the scatter plot of discriminant function scores. RESULTS Autofluorescence spectra of healthy volunteers consists of a broad emission at 500 nm that is characteristic of endogenous fluorophores, whereas in malignant lesions three additional peaks are observed at 635, 685, and 705 nm due to the accumulation of porphyrins in oral lesions. It was observed that classification design based on discriminant function scores obtained by LDA-LOO method was able to differentiate pre-malignant dysplasia from squamous cell carcinoma (SCC), benign hyperplasia from dysplasia and hyperplasia from normal with overall sensitivities of 86%, 78%, and 92%, and specificities of 90%, 100%, and 100%, respectively. CONCLUSIONS The application of LDA-LOO method on the autofluorescence spectra recorded during a clinical trial in patients was found suitable to discriminate oral mucosal alterations during tissue transformation towards malignancy with improved diagnostic accuracies.
Collapse
Affiliation(s)
- J L Jayanthi
- Biophotonics Laboratory, Centre for Earth Science Studies, Kerala, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bender JE, Vishwanath K, Moore LK, Brown JQ, Chang V, Palmer GM, Ramanujam N. A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo. IEEE Trans Biomed Eng 2009; 56:960-8. [PMID: 19423425 DOI: 10.1109/tbme.2008.2005994] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have a toolbox to quantify tissue optical properties that is composed of specialized fiberoptic probes for UV-visible diffuse reflectance spectroscopy and a fast, scalable inverse Monte Carlo (MC) model. In this paper, we assess the robustness of the toolbox for quantifying physiologically relevant parameters from turbid tissue-like media. In particular, we consider the effects of using different instruments, fiberoptic probes, and instrument-specific settings for a wide range of optical properties. Additionally, we test the quantitative accuracy of the inverse MC model for extracting the biologically relevant parameters of hemoglobin saturation and total hemoglobin concentration. We also test the effect of double-absorber phantoms (hemoglobin and crocin to model the absorption of hemoglobin and beta carotene, respectively, in the breast) for a range of absorption and scattering properties. We include an assessment on which reference phantom serves as the best calibration standard to enable accurate extraction of the absorption and scattering properties of the target sample. We found the best reference-target phantom combinations to be ones with similar scattering levels. The results from these phantom studies provide a set of guidelines for extracting optical parameters from clinical studies.
Collapse
Affiliation(s)
- Janelle E Bender
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bogomolny E, Mordechai S, Zwielly A, Huleihel M. Early detection of premalignant changes in cell cultures using light-induced fluorescence spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:971-80. [DOI: 10.1007/s00249-009-0488-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 11/25/2022]
|
40
|
Péry E, Blondel WCPM, Thomas C, Guillemin F. Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:024048. [PMID: 19405776 DOI: 10.1117/1.3122368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work is first a description of a statistical simulation algorithm developed for simulating the spectral absorption and emission of several fluorophores in an absorbing and diffusing multilayer model. Second, a detailed experimental validation of the simulation program is conducted on two sets of liquid and solid multilayer phantoms, containing one, two, or three fluorophores, within absorbing and scattering media. Experimental spatially resolved reflectance spectra are acquired in the wavelength band 400 to 800 nm and compared to corresponding simulated spectra. The degree of similarity between experimentation and simulation data is quantified. The results obtained underline good correlations with mean errors varying from 2 to 10%, depending on the number of layers and on the complexity of the phantom's composition.
Collapse
Affiliation(s)
- Emilie Péry
- Nancy University, Automatic Control Research Centre (CRAN), Joint Research Unit (UMR) 7039 Nancy University, National Center for Scientific Research (CNRS), F-54516 Vandoeuvre-les-Nancy, France.
| | | | | | | |
Collapse
|
41
|
Amouroux M, Díaz-Ayil G, Blondel WCPM, Bourg-Heckly G, Leroux A, Guillemin F. Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:014011. [PMID: 19256699 DOI: 10.1117/1.3077194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Histopathological analysis and in vivo optical spectroscopy were used to discriminate several histological stages of UV-irradiated mouse skin. At different times throughout the 30-week irradiation, autofluorescence (AF) and diffuse reflectance (DR) spectra were acquired in a bimodal approach. Then skin was sampled and processed to be classified, according to morphological criteria, into four histological categories: normal, and three types of hyperplasia (compensatory, atypical, and dysplastic). After extracting spectral characteristics, principal component analysis (data reduction) and the k-nearest neighbor classifying method were applied to compare diagnostic performances of monoexcitation AF (based on each of the seven excitation wavelengths: 360, 368, 390, 400, 410, 420, and 430 nm), multiexcitation AF (combining the seven excitation wavelengths), DR, and bimodal spectroscopies. Visible wavelengths are the most sensitive ones to discriminate compensatory from precancerous (atypical and dysplastic) states. Multiexcitation AF provides an average 6-percentage-point increased sensitivity compared to the best scores obtained with monoexcitation AF for all pairs of tissue categories. Bimodality results in a 4-percentage-point increase of specificity when discriminating the three types of hyperplasia. Thus, bimodal spectroscopy appears to be a promising tool to discriminate benign from precancerous stages; clinical investigations should be carried out to confirm these results.
Collapse
Affiliation(s)
- Marine Amouroux
- Nancy-University, Centre de Recherche en Automatique de Nancy, CRAN UMR 7039 CNRS, 2 avenue de la Foreet de Haye, 54516 Vandoeuvre-les-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Rocha R, Villaverde AB, Silveira L, Brugnera A, Alves LP, Munin E, Rodrigues KC, Pasqualucci CA, Pacheco MTT. Fluorescence and Reflectance Spectroscopy for Identification of Atherosclerosis in Human Carotid Arteries Using Principal Components Analysis. Photomed Laser Surg 2008; 26:329-35. [DOI: 10.1089/pho.2007.2208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rick Rocha
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | - Antonio Balbin Villaverde
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | - Landulfo Silveira
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | - Aldo Brugnera
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | - Leandro Procópio Alves
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | - Egberto Munin
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | - Kátia Calligaris Rodrigues
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | | | - Marcos Tadeu Tavares Pacheco
- Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| |
Collapse
|
43
|
Weingarten MS, Papazoglou ES, Zubkov L, Zhu L, Neidrauer M, Savir G, Peace K, Newby JG, Pourrezaei K. Correlation of near infrared absorption and diffuse reflectance spectroscopy scattering with tissue neovascularization and collagen concentration in a diabetic rat wound healing model. Wound Repair Regen 2008; 16:234-42. [PMID: 18318809 DOI: 10.1111/j.1524-475x.2008.00364.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this paper was to correlate optical changes of tissue during wound healing measured by near infrared (NIR) and diffuse reflectance spectroscopy (DRS) with histologic changes in an animal model. Amplitude and phase of scattered light were obtained in a diabetic rat and control model and biopsies were taken for blood vessel ingrowth and collagen concentration. NIR absorption coefficient correlated with blood vessel ingrowth over time, in both the control and diabetic animals. DRS data correlated with collagen concentration. Previous publications by this group documented only the NIR changes during the wound healing process but this is the first reported correlation with histology data. The ability to correlate DRS scattering with collagen concentration during healing is another important and novel finding. This technology may play an important role clinically in assessing the efficacy of wound healing agents in diabetics.
Collapse
|
44
|
Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, Nazemi J, Dasari RR, Feld MS. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:024012. [PMID: 18465975 DOI: 10.1117/1.2909672] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy, we have developed an algorithm that successfully classifies normal breast tissue, fibrocystic change, fibroadenoma, and infiltrating ductal carcinoma in terms of physically meaningful parameters. We acquire 202 spectra from 104 sites in freshly excised breast biopsies from 17 patients within 30 min of surgical excision. The broadband diffuse reflectance and fluorescence spectra are collected via a portable clinical spectrometer and specially designed optical fiber probe. The diffuse reflectance spectra are fit using modified diffusion theory to extract absorption and scattering tissue parameters. Intrinsic fluorescence spectra are extracted from the combined fluorescence and diffuse reflectance spectra and analyzed using multivariate curve resolution. Spectroscopy results are compared to pathology diagnoses, and diagnostic algorithms are developed based on parameters obtained via logistic regression with cross-validation. The sensitivity, specificity, positive predictive value, negative predictive value, and overall diagnostic accuracy (total efficiency) of the algorithm are 100, 96, 69, 100, and 91%, respectively. All invasive breast cancer specimens are correctly diagnosed. The combination of diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy yields promising results for discrimination of breast cancer from benign breast lesions and warrants a prospective clinical study.
Collapse
Affiliation(s)
- Zoya Volynskaya
- Massachusetts Institute of Technology, Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, 77 Massachusetts Avenue, 6-218M, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matchette LS, Agrawal A, Pfefer TJ. Fluoroquinolone antibiotics having the potential to interfere with fluorescence-based diagnosis. Photochem Photobiol 2008; 83:1386-93. [PMID: 18028213 DOI: 10.1111/j.1751-1097.2007.00175.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence, both intrinsic and exogenously induced, is being used for diagnosis of abnormal tissue. Excitation wavelengths used by these methods range from 320 to 450 nm. The presence of absorbing or fluorescing drugs is rarely taken into account by practitioners of fluorescence diagnosis and has the potential to yield false-positive or false-negative results. Our aim is to quantify this potential by (1) comparing the quantum yield of fluoroquinolone antibiotics to those of known tissue fluorophores and (2) taking into account drug concentrations in the tissue during treatment. Quantum yields are determined relative to a working standard of Rhodamine 6G in ethanol. The working standard was calibrated against a fluorescein standard. We concentrated our initial efforts on (1) the fluoroquinolone antibiotics, ciprofloxacin, norfloxacin and ofloxacin and (2) the intrinsic tissue fluorophores, NADH, FAD and protoporphyrin IX. When ciprofloxacin, norfloxacin and ofloxacin were excited at wavelengths 310-390 nm, emission occurred from 350 to 650 nm with quantum yields ranging from 0.03 to 0.3. Quantum yields for intrinsic fluorophores excited at their peak absorption wavelengths were 0.02 (NADH, 340 nm), 0.035 (FAD, 450 nm) and 0.087 (protoporphyrin IX, 408 nm). A review of the literature shows that these fluoroquinolones have a large volume of distribution and can be found in high concentrations in almost every organ during a treatment regimen. The product of the drug tissue concentration and quantum yield, which we term the fluorescence effective concentration, is such that it is likely these fluoroquinolones will interfere during fluorescence diagnosis techniques.
Collapse
|
46
|
Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence. OPTICAL COHERENCE TOMOGRAPHY 2008. [DOI: 10.1007/978-3-540-77550-8_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Crowell E, Wang G, Cox J, Platz CP, Geng L. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection. Anal Chem 2007; 77:1368-75. [PMID: 15732920 DOI: 10.1021/ac049074+] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Correlation coefficient mapping has been applied to intrinsic fluorescence spectra of colonic tissue for the purpose of cancer diagnosis. Fluorescence emission spectra were collected of 57 colonic tissue sites in a range of 4 physiological conditions: normal (29), hyperplastic (2), adenomatous (5), and cancerous tissues (21). The sample-sample correlation was used to examine the ability of correlation coefficient mapping to determine tissue disease state. The correlation coefficient map indicates two main categories of samples. These categories were found to relate to disease states of the tissue. Sensitivity, selectivity, predictive value positive, and predictive value negative for differentiation between normal tissue and all other categories were all above 92%. This was found to be similar to, or higher than, tissue classification using existing methods of data reduction. Wavelength-wavelength correlation among the samples highlights areas of importance for tissue classification. The two-dimensional correlation map reveals absorption by NADH and hemoglobin in the samples as negative correlation, an effect not obvious from the one-dimensional fluorescence spectra alone. The integrity of tissue was examined in a time series of spectra of a single tissue sample taken after tissue resection. The wavelength-wavelength correlation coefficient map shows the areas of significance for each fluorophore and their relation to each other. NADH displays negative correlation to collagen and FAD, from the absorption of emission or fluorescence resonance energy transfer. The wavelength-wavelength correlation map for the decay set also clearly shows that there are only three fluorophores of importance in the samples, by the well-defined pattern of the map. The sample-sample correlation coefficient map reveals the changes over time and their impact on tissue classification. Correlation coefficient mapping proves to be an effective method for sample classification and cancer detection.
Collapse
Affiliation(s)
- Ed Crowell
- Department of Chemistry, the Optical Science and Technology Center, and the Center for Biocatalysis and Bioprocessing, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
48
|
Levitt JM, Baldwin A, Papadakis A, Puri S, Xylas J, Münger K, Georgakoudi I. Intrinsic fluorescence and redox changes associated with apoptosis of primary human epithelial cells. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:064012. [PMID: 17212535 DOI: 10.1117/1.2401149] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Apoptosis plays a key role in the development and maintenance of human tissues. This process has been studied traditionally in cells that are stained with exogenous fluorophores. These approaches affect cell viability, and thus are ill-suited for in vivo applications. We present an imaging approach that can identify apoptotic cells in living cell populations based on detection and quantification of distinct changes in the intensity and localization of cellular autofluorescence. Specifically, we acquire NAD(P)H, FAD, and redox ratio autofluorescence images of primary keratinocytes following 1, 9, 14, and 18 h of treatment with cisplatin, a known apoptosis-inducing chemotherapy agent. We find that intense autofluorescence combined with a low redox fluorescence ratio is progressively confined to a gradually smaller perinuclear cytoplasmic region with cisplatin treatment. Studies with exogenous nuclear fluorophores demonstrate that these autofluorescence changes occur at early stages of apoptosis. Additional costaining experiments suggest that this strongly autofluorescent, highly metabolically active perinuclear ring represents a subpopulation of mitochondria that are mobilized in response to the apoptotic stimulus and may provide the energy required to execute the final apoptotic steps. Thus, autofluorescence localization changes could serve as a sensitive, noninvasive indicator of early apoptosis in vivo.
Collapse
Affiliation(s)
- Jonathan M Levitt
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chung A, Karlan S, Lindsley E, Wachsmann-Hogiu S, Farkas DL. In vivo cytometry: a spectrum of possibilities. Cytometry A 2006; 69:142-6. [PMID: 16479602 DOI: 10.1002/cyto.a.20220] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND We investigate whether optical imaging can reliably detect abnormalities in tissue, in a range of specimens (live cells in vitro; fixed, fresh ex-vivo and in vivo tissue), without the use of added contrast agents, and review our promising spectral methods for achieving quantitative, real-time, high resolution intrasurgical optical diagnostics. METHODS We use reflectance, fluorescence, two-photon, and Mie scattering imaging, performed with instrumentation we developed or modified, to detect intrinsic tissue signatures. Emphasis is on spectral/hyperspectral imaging approaches allowing the equivalent of in vivo pathology. RESULTS With experimental focus on unstained specimens, we demonstrate the ability to segment tissue images for cancer detection. Spectral reflectance imaging, coupled with advanced analysis, typically yields 90% specificity and sensitivity. Autofluorescence is also shown to be diagnostically useful, with lymph nodes results highlighted here. Elastic scattering hyperspectral imaging endoscopy, using a new instrument we designed and built, shows promise in bronchoscopic detection of dysplasia and early cancer in patients. CONCLUSIONS The results demonstrate that advanced optical imaging can detect and localize cellular signatures of cancer in real-time, in vivo, without the use of contrast agents, in animals and humans. This is an important step towards tight spatio-temporal coupling between such detection and clinical intervention.
Collapse
Affiliation(s)
- Alice Chung
- Minimally Invasive Surgical Technologies Institute and Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
50
|
Bard MPL, Amelink A, Skurichina M, Noordhoek Hegt V, Duin RPW, Sterenborg HJCM, Hoogsteden HC, Aerts JGJV. Optical Spectroscopy for the Classification of Malignant Lesions of the Bronchial Tree. Chest 2006; 129:995-1001. [PMID: 16608949 DOI: 10.1378/chest.129.4.995] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Optical spectroscopy may be used for in vivo, noninvasive distinction of malignant from normal tissue. The aim of our study was to analyze the accuracy of various optical spectroscopic techniques for the classification of cancerous lesions of the bronchial tree. We developed a fiberoptic instrument allowing the measurement of autofluorescence spectroscopy (AFS), diffuse reflectance spectroscopy (DRS), and differential path length spectroscopy (DPS) during bronchoscopy. Spectroscopic measurements were obtained from 191 different endobronchial lesions (63 malignant and 128 nonmalignant) in 107 patients. AFS, DRS, and DPS sensitivity/specificity for the distinction between malignant and nonmalignant bronchial lesions were 73%/82%, 86%/81%, and 81%/88%, respectively. All three optical spectroscopic modalities facilitate an increase of the positive predictive value of autofluorescence bronchoscopy for the detection of endobronchial tumors. Even better results were obtained when the three spectroscopic techniques were combined.
Collapse
Affiliation(s)
- Martin P L Bard
- Department of Respiratory Diseases, Sint Franciscus Hospital, Kleiweg 500, 3045 PM, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|