1
|
Caizzi R, Moschetti R, Piacentini L, Fanti L, Marsano RM, Dimitri P. Comparative Genomic Analyses Provide New Insights into the Evolutionary Dynamics of Heterochromatin in Drosophila. PLoS Genet 2016; 12:e1006212. [PMID: 27513559 PMCID: PMC4981424 DOI: 10.1371/journal.pgen.1006212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 07/02/2016] [Indexed: 12/21/2022] Open
Abstract
The term heterochromatin has been long considered synonymous with gene silencing, but it is now clear that the presence of transcribed genes embedded in pericentromeric heterochromatin is a conserved feature in the evolution of eukaryotic genomes. Several studies have addressed the epigenetic changes that enable the expression of genes in pericentric heterochromatin, yet little is known about the evolutionary processes through which this has occurred. By combining genome annotation analysis and high-resolution cytology, we have identified and mapped 53 orthologs of D. melanogaster heterochromatic genes in the genomes of two evolutionarily distant species, D. pseudoobscura and D. virilis. Our results show that the orthologs of the D. melanogaster heterochromatic genes are clustered at three main genomic regions in D. virilis and D. pseudoobscura. In D. virilis, the clusters lie in the middle of euchromatin, while those in D. pseudoobscura are located in the proximal portion of the chromosome arms. Some orthologs map to the corresponding Muller C element in D. pseudoobscura and D. virilis, while others localize on the Muller B element, suggesting that chromosomal rearrangements that have been instrumental in the fusion of two separate elements involved the progenitors of genes currently located in D. melanogaster heterochromatin. These results demonstrate an evolutionary repositioning of gene clusters from ancestral locations in euchromatin to the pericentromeric heterochromatin of descendent D. melanogaster chromosomes. Remarkably, in both D. virilis and D. pseudoobscura the gene clusters show a conserved association with the HP1a protein, one of the most highly evolutionarily conserved epigenetic marks. In light of these results, we suggest a new scenario whereby ancestral HP1-like proteins (and possibly other epigenetic marks) may have contributed to the evolutionary repositioning of gene clusters into heterochromatin.
Collapse
Affiliation(s)
- Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari, Bari, Italy
- * E-mail: (RC); (PD)
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari, Bari, Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie ‘‘Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Laura Fanti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie ‘‘Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | | | - Patrizio Dimitri
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie ‘‘Charles Darwin”, Sapienza Università di Roma, Roma, Italy
- * E-mail: (RC); (PD)
| |
Collapse
|
2
|
DNA replication in nurse cell polytene chromosomes of Drosophila melanogaster otu mutants. Chromosoma 2014; 124:95-106. [PMID: 25256561 DOI: 10.1007/s00412-014-0487-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Drosophila cell lines are used extensively to study replication timing, yet data about DNA replication in larval and adult tissues are extremely limited. To address this gap, we traced DNA replication in polytene chromosomes from nurse cells of Drosophila melanogaster otu mutants using bromodeoxyuridine incorporation. Importantly, nurse cells are of female germline origin, unlike the classical larval salivary glands, that are somatic. In contrast to salivary gland polytene chromosomes, where replication begins simultaneously across all puffs and interbands, replication in nurse cells is first observed at several specific chromosomal regions. For instance, in the chromosome 2L, these include the regions 31B-E and 37E and proximal parts of 34B and 35B, with the rest of the decondensed chromosomal regions joining replication process a little later. We observed that replication timing of pericentric heterochromatin in nurse cells was shifted from late S phase to early and mid stages. Curiously, chromosome 4 may represent a special domain of the genome, as it replicates on its own schedule which is uncoupled from the rest of the chromosomes. Finally, we report that SUUR protein, an established marker of late replication in salivary gland polytene chromosomes, does not always colocalize with late-replicating regions in nurse cells.
Collapse
|
3
|
Andreyeva EN, Kolesnikova TD, Demakova OV, Mendez-Lago M, Pokholkova GV, Belyaeva ES, Rossi F, Dimitri P, Villasante A, Zhimulev IF. High-resolution analysis of Drosophila heterochromatin organization using SuUR Su(var)3-9 double mutants. Proc Natl Acad Sci U S A 2007; 104:12819-24. [PMID: 17640911 PMCID: PMC1937550 DOI: 10.1073/pnas.0704690104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural and functional analyses of heterochromatin are essential to understanding how heterochromatic genes are regulated and how centromeric chromatin is formed. Because the repetitive nature of heterochromatin hampers its genome analysis, new approaches need to be developed. Here, we describe how, in double mutants for Su(var)3-9 and SuUR genes encoding two structural proteins of heterochromatin, new banded heterochromatic segments appear in all polytene chromosomes due to the strong suppression of under-replication in pericentric regions. FISH on salivary gland polytene chromosomes from these double mutant larvae allows high resolution of heterochromatin mapping. In addition, immunostaining experiments with a set of antibodies against euchromatic and heterochromatic proteins reveal their unusual combinations in the newly appeared segments: binding patterns for HP1 and HP2 are coincident, but both are distinct from H3diMetK9 and H4triMetK20. In several regions, partial overlapping staining is observed for the proteins characteristic of active chromatin RNA Pol II, H3triMetK4, Z4, and JIL1, the boundary protein BEAF, and the heterochromatin-enriched proteins HP1, HP2, and SU(VAR)3-7. The exact cytological position of the centromere of chromosome 3 was visualized on salivary gland polytene chromosomes by using the centromeric dodeca satellite and the centromeric protein CID. This region is enriched in H3diMetK9 and H4triMetK20 but is devoid of other proteins analyzed.
Collapse
Affiliation(s)
- Eugenia N. Andreyeva
- *Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Tatyana D. Kolesnikova
- *Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga V. Demakova
- *Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Maria Mendez-Lago
- Centro de Biología Molecular “Severo Ochoa,” Universidad Autonóma de Madrid, Cantoblanco, 28049 Madrid, Spain; and
| | - Galina V. Pokholkova
- *Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena S. Belyaeva
- *Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Fabrizio Rossi
- Istituto Pasteur–Fondazione Cenci Bolognetti and Dipartimento di Genetica e Biologia Molecolare, Università “La Sapienza,” Via dei Sardi, 70, 00185 Rome, Italy
| | - Patrizio Dimitri
- Istituto Pasteur–Fondazione Cenci Bolognetti and Dipartimento di Genetica e Biologia Molecolare, Università “La Sapienza,” Via dei Sardi, 70, 00185 Rome, Italy
| | - Alfredo Villasante
- Centro de Biología Molecular “Severo Ochoa,” Universidad Autonóma de Madrid, Cantoblanco, 28049 Madrid, Spain; and
| | - Igor F. Zhimulev
- *Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- To whom correspondence should be addressed at:
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 10, Novosibirsk 630090, Russia. E-mail:
| |
Collapse
|
4
|
Rossi F, Moschetti R, Caizzi R, Corradini N, Dimitri P. Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster. Genetics 2006; 175:595-607. [PMID: 17110485 PMCID: PMC1800633 DOI: 10.1534/genetics.106.065441] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the past decade, genome-sequencing projects have yielded a great amount of information on DNA sequences in several organisms. The release of the Drosophila melanogaster heterochromatin sequence by the Drosophila Heterochromatin Genome Project (DHGP) has greatly facilitated studies of mapping, molecular organization, and function of genes located in pericentromeric heterochromatin. Surprisingly, genome annotation has predicted at least 450 heterochromatic gene models, a figure 10-fold above that defined by genetic analysis. To gain further insight into the locations and functions of D. melanogaster heterochromatic genes and genome organization, we have FISH mapped 41 gene models relative to the stained bands of mitotic chromosomes and the proximal divisions of polytene chromosomes. These genes are contained in eight large scaffolds, which together account for approximately 1.4 Mb of heterochromatic DNA sequence. Moreover, developmental Northern analysis showed that the expression of 15 heterochromatic gene models tested is similar to that of the vital heterochromatic gene Nipped-A, in that it is not limited to specific stages, but is present throughout all development, despite its location in a supposedly "silent" region of the genome. This result is consistent with the idea that genes resident in heterochromatin can encode essential functions.
Collapse
Affiliation(s)
- Fabrizio Rossi
- Laboratorio di Genomica Funzionale e Proteomica di Sistemi complessi, Dipartimento di Genetica e Biologia Molecolare Charles Darwin, Università La Sapienza, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
5
|
Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova OV, Pokholkova GV, Andreyeva EN. Polytene Chromosomes: 70 Years of Genetic Research. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:203-75. [PMID: 15548421 DOI: 10.1016/s0074-7696(04)41004-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polytene chromosomes were described in 1881 and since 1934 they have served as an outstanding model for a variety of genetic experiments. Using the polytene chromosomes, numerous biological phenomena were discovered. First the polytene chromosomes served as a model of the interphase chromosomes in general. In polytene chromosomes, condensed (bands), decondensed (interbands), genetically active (puffs), and silent (pericentric and intercalary heterochromatin as well as regions subject to position effect variegation) regions were found and their features were described in detail. Analysis of the general organization of replication and transcription at the cytological level has become possible using polytene chromosomes. In studies of sequential puff formation it was found for the first time that the steroid hormone (ecdysone) exerts its action through gene activation, and that the process of gene activation upon ecdysone proceeds as a cascade. Namely on the polytene chromosomes a new phenomenon of cellular stress response (heat shock) was discovered. Subsequently chromatin boundaries (insulators) were discovered to flank the heat shock puffs. Major progress in solving the problems of dosage compensation and position effect variegation phenomena was mainly related to studies on polytene chromosomes. This review summarizes the current status of studies of polytene chromosomes and of various phenomena described using this successful model.
Collapse
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Corradini N, Rossi F, Vernì F, Dimitri P. FISH analysis of Drosophila melanogaster heterochromatin using BACs and P elements. Chromosoma 2003; 112:26-37. [PMID: 12827380 DOI: 10.1007/s00412-003-0241-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 04/08/2003] [Accepted: 04/23/2003] [Indexed: 11/28/2022]
Abstract
The heterochromatin of chromosomes 2 and 3 of Drosophila melanogaster contains about 30 essential genes defined by genetic analysis. In the last decade only a few of these genes have been molecularly characterized and found to correspond to protein-coding genes involved in important cellular functions. Moreover, several predicted genes have been identified by annotation of genomic sequence that are associated with polytene chromosome divisions 40, 41 and 80 but their locations on the cytogenetic map of the heterochromatin are still uncertain. To expand our current knowledge of the genetic functions located in heterochromatin, we have performed fluorescence in situ hybridization (FISH) mapping to mitotic chromosomes of nine bacterial artificial chromosomes (BACs) carrying several predicted genes and of 13 P element insertions assigned to the proximal regions of 2R and 3L. We found that 22 predicted genes map to the h46 region of 2R and eight map to the h47 regions of 3L. This amounts to at least 30 predicted genes located in these heterochromatic regions, whereas previous studies detected only seven vital genes. Finally, another 58 genes localize either in the euchromatin-heterochromatin transition regions or in the proximal euchromatin of 2R and 3L.
Collapse
Affiliation(s)
- Nicoletta Corradini
- Dipartimento di Genetica e Biologia Molecolare, Università "La Sapienza", Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|
7
|
Koryakov DE, Domanitskaya EV, Belyakin SN, Zhimulev IF. Abnormal tissue-dependent polytenization of a block of chromosome 3 pericentric heterochromatin in Drosophila melanogaster. J Cell Sci 2003; 116:1035-44. [PMID: 12584247 DOI: 10.1242/jcs.00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterochromatic DNA sequences in the polytene chromosomes of Drosophila melanogaster salivary glands are under-replicated in wild-type strains. In salivary glands of SuUR and in the nurse cells of otu mutants, under-replication is partly suppressed and a banded structure appears within the centric heterochromatin of chromosome 3. This novel banded structure in salivary gland chromosomes was called Plato Atlantis. In order to characterize the heterochromatic component of Plato Atlantis, we constructed a fine-scale cytogenetic map of deletions with break points within centric heterochromatin (Df(3L)1-16, Df(3L)2-66, Df(3R)10-65, Df(3R)4-75 and Df(3L)6B-29 + Df(3R)6B-29). Salivary gland chromosomes show that Df(3L)1-16 removes the complete Plato Atlantis, while Df(3L)2-66 deletes the most proximal 3L regions. These deletions therefore show a substantial cytological overlap. However, in the chromosomes of nurse cells, the same deficiencies remove distinct heterochromatic blocks, with the region of overlap being almost invisible. Satellite (AATAACATAG, AAGAG) and dodecasatellite DNAs mapped in a narrow interval in salivary glands but were found in three clearly distinguishable blocks in nurse cells. The 1.688 satellite was found at a single site in salivary glands but at two sites in nurse cells. We show that newly polytenized heterochromatic structures include blocks h47-h50d of mitotic heterochromatin in salivary glands, but the additional blocks h50p, h53 and h57 are also included in nurse cell chromosomes. Tissue specificity of the patterns of abnormal heterochromatic polytenization implies differential control of DNA replication in somatic and germline cells.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
8
|
Belyaeva ES, Zhimulev IF, Volkova EI, Alekseyenko AA, Moshkin YM, Koryakov DE. Su(UR)ES: a gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. Proc Natl Acad Sci U S A 1998; 95:7532-7. [PMID: 9636184 PMCID: PMC22673 DOI: 10.1073/pnas.95.13.7532] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 03/22/1998] [Indexed: 02/07/2023] Open
Abstract
A genetic locus suppressing DNA underreplication in intercalary heterochromatin (IH) and pericentric heterochromatin (PH) of the polytene chromosomes of Drosophila melanogaster salivary glands, has been described. Found in the In(1)scV2 strain, the mutation, designated as Su(UR)ES, was located on chromosome 3L at position 34. 8 and cytologically mapped to region 68A3-B4. A cytological phenotype was observed in the salivary gland chromosomes of larvae homozygous and hemizygous for Su(UR)ES: (i) in the IH regions, that normally are incompletely polytenized and so they often break to form "weak points," underreplication is suppressed, breaks and ectopic contacts disappear; (ii) the degree of polytenization in PH grows higher. That is why the regions in chromosome arm basements, normally beta-heterochromatic, acquire a distinct banding pattern, i. e., become euchromatic by morphological criteria; (iii) an additional bulk of polytenized material arises between the arms of chromosome 3 to form a fragment with a typical banding pattern. Chromosome 2 PH reveals additional alpha-heterochromatin. Su(UR)ES does not affect the viability, fertility, or morphological characters of the imago, and has semidominant expression in the heterozygote and distinct maternal effect. The results obtained provide evidence that the processes leading to DNA underreplication in IH and PH are affected by the same genetic mechanism.
Collapse
Affiliation(s)
- E S Belyaeva
- Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|