1
|
Wang B, Yang X, Wang Y, Xie Y, Zhou X. Tomato Yellow Leaf Curl Virus V2 Interacts with Host Histone Deacetylase 6 To Suppress Methylation-Mediated Transcriptional Gene Silencing in Plants. J Virol 2018; 92:e00036-18. [PMID: 29950418 PMCID: PMC6146709 DOI: 10.1128/jvi.00036-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cytosine DNA methylation is a conserved epigenetic silencing mechanism that defends against biotic stresses such as geminivirus infection. As a countermeasure, geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Previous studies showed that V2 protein of Tomato yellow leaf curl virus (TYLCV) functions as a TGS suppressor. However, how V2 mediates TGS suppression remains unknown. Here we show that V2 interacts directly with a Nicotiana benthamiana histone deacetylase 6 (NbHDA6), a homolog of Arabidopsis HDA6 (AtHDA6), known to be involved in gene silencing in cooperation with methyltransferase 1 (MET1). NbHDA6 genetically complemented a late-flowering phenotype and restored histone deacetylation of an AtHDA6 mutant. Furthermore, our investigation showed that NbHDA6 displayed histone deacetylase enzymatic activity, which was not inhibited by V2. Genetic analysis revealed that silencing of NbHDA6 expression resulted in enhanced susceptibility to TYLCV infection. In addition, methylation-sensitive PCR and bisulfite sequencing analysis showed that silencing of NbHDA6 expression caused reduced DNA methylation of the viral genome in infected plants. HDA6 was previously shown to recruit and physically interact with MET1 to function in gene silencing. Using competitive pulldown and coimmunoprecipitation assays, we demonstrated that V2 did not interact but competed with NbMET1 for direct binding to NbHDA6. These findings suggest that V2 interacts with host HDA6 and interferes with the recruitment of MET1 by HDA6, resulting in decreased methylation of the viral DNA genome by TGS with a concomitant increase in host susceptibility to TYLCV infection.IMPORTANCE Plants employ repressive viral genome methylation as an epigenetic defense against geminiviruses. In turn, geminiviruses encode proteins that inhibit methylation by TGS. Previous studies showed that TYLCV V2 can efficiently suppress TGS, but the mechanism remains unknown. We showed that V2 interacted with NbHDA6 but did not inhibit its enzymatic activity. As HDA6 is known to be involved in gene silencing in cooperation with MET1, we explored the relationship between V2, NbMET1, and NbHDA6. Our investigation showed that V2 did not interact but competed with NbMET1 for direct binding to NbHDA6. To our knowledge, this is the first report that viral proteins inhibit TGS by interacting with histone deacetylase but not by blocking the methyl cycle. This work provides an additional mechanism for TGS suppression by geminiviruses.
Collapse
Affiliation(s)
- Bi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Rizwani W, Chellappan SP. In vitro replication assay with mammalian cell extracts. Methods Mol Biol 2015; 1288:349-62. [PMID: 25827890 DOI: 10.1007/978-1-4939-2474-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Regulatory mechanisms are crucial to control DNA replication during cell cycle in eukaryotic cells. Cell-free in vitro replication assay (IVRA) is one of the widely used assays to understand the complex mammalian replication system. IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.
Collapse
Affiliation(s)
- Wasia Rizwani
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500 007, India,
| | | |
Collapse
|
3
|
Fang CY, Shen CH, Wang M, Chen PL, Chan MW, Hsu PH, Chang D. Global profiling of histone modifications in the polyomavirus BK virion minichromosome. Virology 2015; 483:1-12. [DOI: 10.1016/j.virol.2015.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/05/2015] [Accepted: 04/08/2015] [Indexed: 01/05/2023]
|
4
|
Kundu LR, Seki M, Watanabe N, Murofushi H, Furukohri A, Waga S, Score AJ, Blow JJ, Horikoshi M, Enomoto T, Tada S. Biphasic chromatin binding of histone chaperone FACT during eukaryotic chromatin DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1129-36. [PMID: 21232560 DOI: 10.1016/j.bbamcr.2011.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/13/2010] [Accepted: 01/03/2011] [Indexed: 11/17/2022]
Abstract
The facilitates chromatin transcription (FACT) complex affects nuclear DNA transactions in a chromatin context. Though the involvement of FACT in eukaryotic DNA replication has been revealed, a clear understanding of its biochemical behavior during DNA replication still remains elusive. Here, we analyzed the chromatin-binding dynamics of FACT using Xenopus egg extract cell-free system. We found that FACT has at least two distinct chromatin-binding phases: (1) a rapid chromatin-binding phase at the onset of DNA replication that did not involve origin licensing and (2) a second phase of chromatin binding that initiated after origin licensing. Intriguingly, early-binding FACT dissociated from chromatin when DNA replication was blocked by the addition of Cdc6 in the licensed state before origin firing. Cdc6-induced removal of FACT was blocked by the inhibition of origin licensing with geminin, but not by suppressing the activity of DNA polymerases, CDK, or Cdc7. Furthermore, chromatin transfer experiments revealed that impairing the later binding of FACT severely compromises DNA replication activity. Taken together, we propose that even though FACT has rapid chromatin-binding activity, the binding pattern of FACT on chromatin changes after origin licensing, which may contribute to the establishment of its functional link to the DNA replication machinery.
Collapse
Affiliation(s)
- Lena R Kundu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Balakrishnan L, Stewart J, Polaczek P, Campbell JL, Bambara RA. Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates. J Biol Chem 2009; 285:4398-404. [PMID: 20019387 DOI: 10.1074/jbc.m109.086397] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Flap endonuclease 1 (FEN1) and Dna2 endonuclease/helicase (Dna2) sequentially coordinate their nuclease activities for efficient resolution of flap structures that are created during the maturation of Okazaki fragments and repair of DNA damage. Acetylation of FEN1 by p300 inhibits its endonuclease activity, impairing flap cleavage, a seemingly undesirable effect. We now show that p300 also acetylates Dna2, stimulating its 5'-3' endonuclease, the 5'-3' helicase, and DNA-dependent ATPase activities. Furthermore, acetylated Dna2 binds its DNA substrates with higher affinity. Differential regulation of the activities of the two endonucleases by p300 indicates a mechanism in which the acetylase promotes formation of longer flaps in the cell at the same time as ensuring correct processing. Intentional formation of longer flaps mediated by p300 in an active chromatin environment would increase the resynthesis patch size, providing increased opportunity for incorrect nucleotide removal during DNA replication and damaged nucleotide removal during DNA repair. For example, altering the ratio between short and long flap Okazaki fragment processing would be a mechanism for better correction of the error-prone synthesis catalyzed by DNA polymerase alpha.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Regulatory mechanisms for DNA replication are crucial to the control of the cell cycle in eukaryotic cells. One of the widely used assays to understand the complex mammalian replication system is the cell-free in vitro replication assay (IVRA). IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.
Collapse
Affiliation(s)
- Wasia Rizwani
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
7
|
Hadnagy A, Beaulieu R, Balicki D. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics. Mol Cancer Ther 2008; 7:740-8. [PMID: 18413789 DOI: 10.1158/1535-7163.mct-07-2284] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the past few years, the histone deacetylase (HDAC) inhibitors have occupied an important place in the effort to develop novel, but less toxic, anticancer therapy. HDAC inhibitors block HDACs, which are the enzymes responsible for histone deacetylation, and therefore they modulate gene expression. The cellular effects of HDAC inhibitors include growth arrest and the induction of differentiation. Early successes in cancer therapeutics obtained using these drugs alone or in combination with other anticancer drugs emphasize the important place of posttranslational modifications of histones in cancer therapy. Histone tail modifications along with DNA methylation are the most studied epigenetic events related to cancer progression. Moreover, extranuclear functions of histones have also been described. Because HDAC inhibitors block HDACs and thereby increase histone acetylation, we propose a model wherein exogenous acetylated histones or other related acetylated proteins that are introduced into the nucleus become HDAC substrates and thereby compete with endogenous histones for HDACs. This competition may lead to the increased acetylation of the endogenous histones, as in the case of HDAC inhibitor therapy. Moreover, other mechanisms of action, such as binding to chromatin and modulating gene expression, are also possible for exogenously introduced histones.
Collapse
Affiliation(s)
- Annamaria Hadnagy
- Research Centre and Department of Medicine, Hôtel-Dieu du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
8
|
Shadan FF. A circadian model for viral persistence. Med Hypotheses 2006; 68:546-53. [PMID: 17030450 DOI: 10.1016/j.mehy.2006.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/11/2006] [Indexed: 01/20/2023]
Abstract
Persistently infecting DNA viruses depend heavily on host cell DNA synthesis machinery. Replication of cellular and viral DNA is inhibited by mutagenic stress. It is hypothesized that diurnal regulation of viral DNA replication may occur at the level of cell cycle checkpoints and DNA repair, to protect DNA from exposure to UV light or other mutagens. This highly conserved mechanism is traced back to viruses that persist in prokaryotes and eukaryotes. Inhibition of viral DNA replication and the cell cycle in response to UV light may represent a functional building block in the evolution of circadian-gated DNA replication. Viral DNA replication appears to be closely linked to the circadian clock by interaction of viral promoters, early viral proteins and transcription factors. It is proposed here that under certain conditions viral oncogene expression is phase-shifted relative to that of tumor suppressor and DNA repair genes. The resulting desynchrony of checkpoint controls and DNA repair from diurnal genotoxic exposure produces cyclic periods of suboptimal response to DNA damage. This temporal vulnerability to genotoxic stress produces a "mutator phenotype" with inherent genome instability. The proposed model delineates areas of research with implications for viral pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Farhad F Shadan
- The Scripps Research Institute and Scripps Clinic, 10666 N. Torrey Pines Road, 403C, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
10
|
Gómez EB, Espinosa JM, Forsburg SL. Schizosaccharomyces pombe mst2+ encodes a MYST family histone acetyltransferase that negatively regulates telomere silencing. Mol Cell Biol 2005; 25:8887-903. [PMID: 16199868 PMCID: PMC1265769 DOI: 10.1128/mcb.25.20.8887-8903.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone acetylation and deacetylation are associated with transcriptional activity and the formation of constitutively silent heterochromatin. Increasingly, histone acetylation is also implicated in other chromosome transactions, including replication and segregation. We have cloned the only Schizosaccharomyces pombe MYST family histone acetyltransferase genes, mst1(+) and mst2(+). Mst1p, but not Mst2p, is essential for viability. Both proteins are localized to the nucleus and bound to chromatin throughout the cell cycle. Deltamst2 genetically interacts with mutants that affect heterochromatin, cohesion, and telomere structure. Mst2p is a negative regulator of silencing at the telomere but does not affect silencing in the centromere or mating type region. We generated a census of proteins and histone modifications at wild-type telomeres. A histone acetylation gradient at the telomeres is lost in Deltamst2 cells without affecting the distribution of Taz1p, Swi6p, Rad21p, or Sir2p. We propose that the increased telomeric silencing is caused by histone hypoacetylation and/or an increase in the ratio of methylated to acetylated histones. Although telomere length is normal, meiosis is aberrant in Deltamst2 diploid homozygote mutants, suggesting that telomeric histone acetylation contributes to normal meiotic progression.
Collapse
Affiliation(s)
- Eliana B Gómez
- Molecular & Computational Biology Section, University of Southern California, Los Angeles, 90089-2910, USA
| | | | | |
Collapse
|
11
|
Kemp MG, Ghosh M, Liu G, Leffak M. The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res 2005; 33:325-36. [PMID: 15653633 PMCID: PMC546162 DOI: 10.1093/nar/gki177] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites.
Collapse
Affiliation(s)
| | | | | | - Michael Leffak
- To whom correspondence should be addressed. Tel: +1 937 775 3125; Fax: +1 937 775 3730;
| |
Collapse
|
12
|
Zhou Y, Wang TSF. A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication. Mol Cell Biol 2004; 24:9568-79. [PMID: 15485923 PMCID: PMC522230 DOI: 10.1128/mcb.24.21.9568-9579.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA replication depends critically upon chromatin structure. Little is known about how the replication complex overcomes the nucleosome packages in chromatin during DNA replication. To address this question, we investigate factors that interact in vivo with the principal initiation DNA polymerase, DNA polymerase alpha (Polalpha). The catalytic subunit of budding yeast Polalpha (Pol1p) has been shown to associate in vitro with the Spt16p-Pob3p complex, a component of the nucleosome reorganization system required for both replication and transcription, and with a sister chromatid cohesion factor, Ctf4p. Here, we show that an N-terminal region of Polalpha (Pol1p) that is evolutionarily conserved among different species interacts with Spt16p-Pob3p and Ctf4p in vivo. A mutation in a glycine residue in this N-terminal region of POL1 compromises the ability of Pol1p to associate with Spt16p and alters the temporal ordered association of Ctf4p with Pol1p. The compromised association between the chromatin-reorganizing factor Spt16p and the initiating DNA polymerase Pol1p delays the Pol1p assembling onto and disassembling from the late-replicating origins and causes a slowdown of S-phase progression. Our results thus suggest that a coordinated temporal and spatial interplay between the conserved N-terminal region of the Polalpha protein and factors that are involved in reorganization of nucleosomes and promoting establishment of sister chromatin cohesion is required to facilitate S-phase progression.
Collapse
Affiliation(s)
- Yanjiao Zhou
- Department of Pathology, Edwards Building, Room R270, Stanford University Medical Center, 300 Pasteur Dr., Stanford, CA 94305-5324, USA
| | | |
Collapse
|
13
|
Abstract
While regulated transcription requires acetylation of histone N-terminal tails to promote an open chromatin conformation, a similar role for histone acetylation in DNA replication and/or repair remains to be established. Cells lacking the NuA4 subunit Yng2 are viable but critically deficient for genome-wide nucleosomal histone H4 acetylation. We found that yng2 mutants are specifically sensitized to DNA damage in S phase induced by cdc8 or cdc9 mutations, hydroxyurea, camptothecin, or methylmethane sulfonate (MMS). In yng2, MMS treatment causes a persistent Mec1-dependent intra-S-phase checkpoint delay characterized by slow DNA repair. Restoring H4 acetylation with the histone deacetylase inhibitor trichostatin A promotes checkpoint recovery. In turn, mutants lacking the histone H3-specific acetyltransferase GCN5 are similarly sensitive to intra-S-phase DNA damage. The inviability of gcn5 yng2 double mutants suggests overlapping roles for H3 and H4 acetylation in DNA replication and repair. Paradoxically, haploid yng2 mutants do not tolerate mutations in genes important for nonhomologous end joining repair yet remain proficient for homologous recombination. Our results implicate nucleosomal histone acetylation in maintaining genomic integrity during chromosomal replication.
Collapse
Affiliation(s)
- John S Choy
- Department of Molecular Genetics and Cell Biology. Center for Molecular Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
14
|
Abstract
When tethered in cis to DNA, the transcriptional corepressor mSin3B inhibits polyomavirus (Py) ori-dependent DNA replication in vivo. Histone deacetylases (HDACs) appear not to be involved, since tethering class I and class II HDACs in cis does not inhibit replication and treating the cells with trichostatin A does not specifically relieve inhibition by mSin3B. However, the mSin3B L59P mutation that impairs mSin3B interaction with N-CoR/SMRT abrogates inhibition of replication, suggesting the involvement of N-CoR/SMRT. Py large T antigen interacts with mSin3B, suggesting an HDAC-independent mechanism by which mSin3B inhibits DNA replication.
Collapse
Affiliation(s)
- An-Yong Xie
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | |
Collapse
|
15
|
Xie AY, Bermudez VP, Folk WR. Stimulation of DNA replication from the polyomavirus origin by PCAF and GCN5 acetyltransferases: acetylation of large T antigen. Mol Cell Biol 2002; 22:7907-18. [PMID: 12391158 PMCID: PMC134729 DOI: 10.1128/mcb.22.22.7907-7918.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PCAF and GCN5 acetyltransferases, but not p300 or CBP, stimulate DNA replication when tethered near the polyomavirus origin. Replication stimulation by PCAF and GCN5 is blocked by mutational inactivation of their acetyltransferase domains but not by deletion of sequences that bind p300 or CBP. Acetylation of histones near the polyomavirus origin assembled into chromatin in vivo is not detectably altered by expression of these acetyltransferases. PCAF and GCN5 interact with polyomavirus large T antigen in vivo, PCAF acetylates large T antigen in vitro, and large T-antigen acetylation in vivo is dependent upon the integrity of the PCAF acetyltransferase domain. These data suggest replication stimulation occurs through recruitment of large T antigen to the origin and acetylation by PCAF or GCN5.
Collapse
Affiliation(s)
- An-Yong Xie
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
16
|
Abstract
Small DNA tumor viruses such as simian virus 40 (SV40) and polyomavirus (Py) take advantage of host cell proteins to transcribe and replicate their DNA. Interactions between the viral T antigens and host proteins result in cell transformation and tumor induction. Large T antigen of SV40 interacts with p53, pRb/p107/p130 family members, and the cyclic AMP-responsive element-binding protein (CREB)-binding protein (CBP)/p300. Py large T antigen is known to interact only with pRb and p300 among these proteins. Here we report that Py large T binds to CBP in vivo and in vitro. In co-transfection assays, Py large T inhibits the co-activation functions of CBP/p300 in CREB-mediated transactivation but not in NF-kappa B-mediated transactivation. p53 appears not to be involved in the functions of CREB-mediated transactivation and is not essential for large T:CBP interaction. Mutations introduced into a region of Py large T with homology to adenovirus E1A and SV40 large T prevent binding to the co-activators. These mutant large T antigens fail to inhibit CREB-mediated transactivation. The CBP/p300-binding Py mutants are able to transform established rat embryo fibroblasts but are restricted in their ability to induce tumors in the newborn mouse, indicating that interaction of large T with the co-activators may be essential for virus replication and spread in the intact host.
Collapse
Affiliation(s)
- S Cho
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
17
|
Burke TW, Cook JG, Asano M, Nevins JR. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 2001; 276:15397-408. [PMID: 11278932 DOI: 10.1074/jbc.m011556200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minichromosome maintenance (MCM) proteins, together with the origin recognition complex (ORC) proteins and Cdc6, play an essential role in eukaryotic DNA replication through the formation of a pre-replication complex at origins of replication. We used a yeast two-hybrid screen to identify MCM2-interacting proteins. One of the proteins we identified is identical to the ORC1-interacting protein termed HBO1. HBO1 belongs to the MYST family, characterized by a highly conserved C2HC zinc finger and a putative histone acetyltransferase domain. Biochemical studies confirmed the interaction between MCM2 and HBO1 in vitro and in vivo. An N-terminal domain of MCM2 is necessary for binding to HBO1, and a C2HC zinc finger of HBO1 is essential for binding to MCM2. A reverse yeast two-hybrid selection was performed to isolate an allele of MCM2 that is defective for interaction with HBO1; this allele was then used to isolate a suppressor mutant of HBO1 that restores the interaction with the mutant MCM2. This suppressor mutation was located in the HBO1 zinc finger. Taken together, these findings strongly suggest that the interaction between MCM2 and HBO1 is direct and mediated by the C2HC zinc finger of HBO1. The biochemical and genetic interactions of MYST family protein HBO1 with two components of the replication apparatus, MCM2 and ORC1, suggest that HBO1-associated HAT activity may play a direct role in the process of DNA replication.
Collapse
Affiliation(s)
- T W Burke
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The packaging of eukaryotic DNA into nucleosomes is a critical regulator of nuclear events. To address the interplay between chromatin and replication initiation, we have assessed the determinants and function of the nucleosomal configuration of S. cerevisiae replication origins. Using in vitro and in vivo assays, we demonstrate that the yeast initiator, the origin recognition complex (ORC), is required to maintain the nucleosomal configuration adjacent to origins. Disruption of the ORC-directed nucleosomal arrangement at an origin interferes with initiation of replication, but does not alter the association of ORC with the origin. Instead, the nucleosomes positioned by ORC are important for prereplicative complex formation. These findings suggest that origin-proximal nucleosomes facilitate replication initiation, and that local chromatin structure affects origin function.
Collapse
Affiliation(s)
- J R Lipford
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
19
|
Lee D, Lee B, Kim J, Kim DW, Choe J. cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 2000; 275:7045-51. [PMID: 10702269 DOI: 10.1074/jbc.275.10.7045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP response element-binding protein-binding protein (CBP) is a eucaryotic transcriptional co-activator that contains multiple protein-protein interaction domains for association with various transcription factors, components of the basal transcriptional apparatus, and other co-activator proteins. Here, we report that CBP is also a co-activator of the human papillomavirus (HPV) E2 protein, which is a sequence-specific transcription/replication factor. We provide biochemical, genetic, and functional evidence that CBP binds directly to HPV E2 in vivo and in vitro and activates E2-dependent transcription. Mutations in an amphipathic helix within HPV-18 E2 abolish its transcriptional activation properties and its ability to bind to CBP. Furthermore, the binding of CBP to E2 was shown to be necessary for E2-dependent transcription. Interestingly, the histone acetyltransferase activity of CBP plays a role in CBP activation of E2-dependent transcription.
Collapse
Affiliation(s)
- D Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | |
Collapse
|
20
|
Halmer L, Vestner B, Gruss C. Involvement of topoisomerases in the initiation of simian virus 40 minichromosome replication. J Biol Chem 1998; 273:34792-8. [PMID: 9857004 DOI: 10.1074/jbc.273.52.34792] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerases provide the unlinking activity necessary for replication fork movement during DNA replication. It is uncertain, however, whether topoisomerases are also required for the initiation of replication. To investigate this point, we have performed pulse-chase experiments with SV40 minichromosomes as template to distinguish between the initiation and the elongation of replication. Using an unfractionated cytosolic extract as a source of replication functions, we found that the addition of topoisomerases at the initiation step significantly increased the number of active chromatin templates, whereas addition of topoisomerases at the elongation step had only minor effects. Minichromosomes with an extended chromatin structure as well as protein-free DNA required less topoisomerase for effective replication initiation. We could exclude the possibility that topoisomerases enhance the origin binding of T antigen, the SV40 replication initiator, and propose instead that the arrangement of nucleosomes influences the diffusion of supercoils during initial DNA unwinding. Efficient initiation therefore requires a high local concentration of topoisomerases to relax the torsional stress.
Collapse
Affiliation(s)
- L Halmer
- University of Konstanz, Department of Biology, Universitätsstr. 10, 78457 Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|
21
|
Alexiadis V, Varga-Weisz PD, Bonte E, Becker PB, Gruss C. In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication. EMBO J 1998; 17:3428-38. [PMID: 9628878 PMCID: PMC1170679 DOI: 10.1093/emboj/17.12.3428] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA replication is initiated by binding of initiation factors to the origin of replication. Nucleosomes are known to inhibit the access of the replication machinery to origin sequences. Recently, nucleosome remodelling factors have been identified that increase the accessibility of nucleosomal DNA to transcription regulators. To test whether the initiation of DNA replication from an origin covered by nucleosomes would also benefit from the action of nucleosome remodelling factors, we reconstituted SV40 DNA into chromatin in Drosophila embryo extracts. In the presence of T-antigen and ATP, a chromatin-associated cofactor allowed efficient replication from a nucleosomal origin in vitro. In search of the energy-dependent cofactor responsible we found that purified 'chromatin accessibility complex' (CHRAC) was able to alter the nucleosomal structure at the origin allowing the binding of T-antigen and efficient initiation of replication. These experiments provide evidence for the involvement of a nucleosome remodelling machine in structural changes at the SV40 origin of DNA replication in vitro.
Collapse
Affiliation(s)
- V Alexiadis
- University of Konstanz, Division of Biology, Konstanz, Germany
| | | | | | | | | |
Collapse
|
22
|
Vestner B, Bustin M, Gruss C. Stimulation of replication efficiency of a chromatin template by chromosomal protein HMG-17. J Biol Chem 1998; 273:9409-14. [PMID: 9545265 DOI: 10.1074/jbc.273.16.9409] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of chromosomal protein HMG-17 on the replication of a chromatin template was studied with minichromosomes containing the SV40 origin of replication. The minichromosomes were assembled from M13 DNA in Xenopus egg extracts in either the absence or presence of HMG-17. Structural data show that HMG-17 was efficiently incorporated into the chromatin and induced an extended chromatin structure. Using an in vitro SV40 replication system, we find that minichromosomes containing HMG-17 replicate with higher efficiency than minichromosomes deficient of HMG-17. The replicational potential of chromatin was enhanced only when HMG-17 was incorporated into the template during, but not after, chromatin assembly. HMG-17 stimulated replication only from a chromatin template, but not from protein-free DNA. Thus, HMG-17 protein enhances the rate of replication of a chromatin template by unfolding the higher order chromatin structure and increasing the accessibility of target sequences to components of the replication machinery.
Collapse
Affiliation(s)
- B Vestner
- University of Konstanz, Division of Biology, Universitätsstr.10, 78457 Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|