1
|
Murphy RC. Lipid mass spectrometry: A path traveled for 50 years. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4492. [PMID: 31896171 DOI: 10.1002/jms.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
In the middle of the 1960s, I began graduate school and at the same time started on the path of using mass spectrometry to gain insight into various aspects of lipid biochemistry. This was not a straight path but one that went from organic geochemistry, to lunar sample analysis, to a pursuit of the structure of an elusive and very active, lipid mediator slow reacting substance of anaphylaxis (SRS-A). The discovery of the structure of SRS-A opened important questions about phospholipid biochemistry and the arachidonate cycle in cells. I have written this reflection to highlight the various advances in mass spectrometry that occurred during this time that had a great impact on our ability to study lipid biochemistry. I specifically applied these new advances to studies of leukotriene biosynthesis in vivo, leukotriene metabolism, and arachidonate-containing phospholipids that are essential in providing arachidonic acid for the 5-lipoxygenase pathway. Along the way, imaging mass spectrometry was shown to be a powerful tool to probe lipids as they exist in tissue slices. We found this as just one of the ways to use the emerging technology of lipidomics to study human pathophysiology. Our studies of neutral lipids and oxidized phospholipids were especially challenging due to the total number of molecular species that could be found in cells. Many challenges remain in using mass spectrometry for lipid studies, and a few are presented.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, Colorado, 80045
| |
Collapse
|
2
|
Honda M, Ishimaru T, Itabashi Y. Lipid Classes, Fatty Acid Composition, and Glycerolipid Molecular Species of the Red Alga Gracilaria vermiculophylla, a Prostaglandin-Producing Seaweed. J Oleo Sci 2017; 65:723-32. [PMID: 27581490 DOI: 10.5650/jos.ess16026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The red alga Gracilaria vermiculophylla is a well-known producer of prostaglandins, such as PGE2 and PGF2α. In this study, the characteristics of glycerolipids as substrates of prostaglandin production were clarified, and the lipid classes, fatty acid composition, and glycerolipid molecular species were investigated in detail. The major lipid classes were monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), as well as phosphatidylcholine (PC), which accounted for 43.0% of the total lipid profile. Arachidonic acid (20:4n-6), a prostaglandin precursor, and palmitic acid (16:0) were the predominant fatty acids in the total lipid profile. The 20:4n-6 content was significantly high in MGDG and PC (more than 60%), and the 16:0 content was significantly high in DGDG and SQDG (more than 50%). Chiral-phase high-performance liquid chromatography determined that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (56.5%) and PC (40.0%), and 20:4n-6/16:0 for DGDG (75.4%) and SQDG (58.4%). Thus, it was considered that the glycerolipid molecular species containing one or two 20:4n-6 were the major substrates for prostaglandin production in G. vermiculophylla.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Fisheries Sciences, Hokkaido University
| | | | | |
Collapse
|
3
|
O'Donnell VB. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:818-26. [PMID: 21835265 DOI: 10.1016/j.bbalip.2011.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/30/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
Oxidized phospholipids (OxPLs) are rapidly becoming recognized as important mediators of cellular and immune signaling. They are generated either enzymatically or non-enzymatically and 100s of structures exist of which only a small fraction have been analyzed to date. Pleiotropic activities, including regulation of adhesion molecule expression, pro-coagulant activity and inhibition of Toll-like receptor signaling have been observed and some are detected in models of human and animal disease, including atherosclerosis and infection. More recently, the acute generation of specific oxidized phospholipids by cellular enzymes in immune cells was reported. Assays for analysis and quantification of OxPLs were first developed approx 15years ago, primarily for hydro(pero)xy-species. Many were based on monitoring a single precursor ion with/without LC separation, based on the PL headgroup. Others combined LC with monitoring precursor to product transitions, but were unable to provide information regarding position of oxidation on unsaturated sn-2 fatty acid due to sensitivity issues. More recently, LC/MS/MS methods for specific OxPLs have been reported that enable high sensitivity quantitation in biological samples. In this review, widely used methods for detecting and quantifying various classes of OxPL will be summarized, along with practical advice for their use. In particular, the focus will be on LC/MS/MS, which today is almost universally the method of choice.
Collapse
|
4
|
Fuchs B, Bischoff A, Süß R, Teuber K, Schürenberg M, Suckau D, Schiller J. Phosphatidylcholines and -ethanolamines can be easily mistaken in phospholipid mixtures: a negative ion MALDI-TOF MS study with 9-aminoacridine as matrix and egg yolk as selected example. Anal Bioanal Chem 2009; 395:2479-87. [DOI: 10.1007/s00216-009-3032-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
5
|
Domingues MRM, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids 2008; 156:1-12. [PMID: 18671956 DOI: 10.1016/j.chemphyslip.2008.07.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/24/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
The evidence that oxidized phospholipids play a role in signaling, apoptotic events and in age-related diseases is responsible for the increasing interest for the study of this subject. Phospholipid changes induced by oxidative reactions yield a huge number of structurally different oxidation products which difficult their isolation and characterization. Mass spectrometry (MS), and tandem mass spectrometry (MS/MS) using the soft ionization methods (electrospray and matrix-assisted laser desorption ionization) is one of the finest approaches for the study of oxidized phospholipids. Product ions in tandem mass spectra of oxidized phospholipids, allow identifying changes in the fatty acyl chain and specific features such as presence of new functional groups in the molecule and their location along the fatty acyl chain. This review describes the work published on the use of mass spectrometry in identifying oxidized phospholipids from the different classes.
Collapse
Affiliation(s)
- M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Santiago, Aveiro, Portugal.
| | | | | |
Collapse
|
6
|
Bleijerveld OB, Houweling M, Thomas MJ, Cui Z. Metabolipidomics: Profiling metabolism of glycerophospholipid species by stable isotopic precursors and tandem mass spectrometry. Anal Biochem 2006; 352:1-14. [PMID: 16564484 DOI: 10.1016/j.ab.2006.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Onno B Bleijerveld
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
7
|
Antonopoulou S, Oikonomou A, Karantonis HC, Fragopoulou E, Pantazidou A. Isolation and structural elucidation of biologically active phospholipids from Scytonema julianum (cyanobacteria). Biochem J 2002; 367:287-93. [PMID: 12038967 PMCID: PMC1222851 DOI: 10.1042/bj20020146] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 05/27/2002] [Accepted: 05/31/2002] [Indexed: 11/17/2022]
Abstract
The role of platelet-activating factor (PAF) as a mediator appeared in rather primitive organisms like protozoans and was maintained in more evolved organisms. No reports exist for the presence of PAF or PAF analogues - or even compounds that exhibit PAF-like activity - in cyanobacteria, even though they belong to a a group of organisms at a low evolutionary level where the content of alkylacyl forms of ether lipids is expected to be high. In addition, cyanobacteria serve as a rich source of novel bioactive metabolites. In the present study the total lipids of a strain of Scytonema julianum, a filamentous cyanobacterium isolated from a Greek cave, were separated into neutral lipids and phospholipids, the latter being further fractionated by HPLC. Each phospholipid fraction was tested in vitro for its ability to inhibit PAF-, arachidonic acid- and ADP-induced washed-rabbit-platelet aggregation and/or to cause platelet aggregation. Two types of phospholipids causing platelet aggregation were detected and shown to be an acetylsphingomyelin and an acylacetylglycerol phosphoacetylated glycolipid. The existence of the sphingomyelin analogues is very important, since ceramides, cerebrosides and related lipids are intracellular second messengers. The identification of the phosphoglycoglycerolipid demonstrates a new type of lipid in cyanobacteria, namely one that exhibits a biological activity very similar to that of PAF. Its presence reinforces the concept that PAF is a member of a large family of lipid mediators, apparently having different physiological roles in prokaryotic and eukaryotic organisms. In addition, Scytonema julianum contains a phosphatidylcholine (C(16:0)/(18:2)), even though bacteria in general seldom contain choline-containing phosphoacylglycerols.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Department of Science of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Street, 17671 Athens, Greece.
| | | | | | | | | |
Collapse
|
8
|
Vernooij EAAM, Brouwers JFHM, Kettenes-Van den Bosch JJ, Crommelin DJA. RP-hPLC/ESI MS determination of acyl chain positions in phospholipids. J Sep Sci 2002. [DOI: 10.1002/1615-9314(20020401)25:5/6<285::aid-jssc285>3.0.co;2-u] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Domingues P, Domingues MR, Amado FM, Ferrer-Correia AJ. Characterization of sodiated glycerol phosphatidylcholine phospholipids by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:799-804. [PMID: 11344540 DOI: 10.1002/rcm.300] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.
Collapse
Affiliation(s)
- P Domingues
- Department of Chemistry, University of Aveiro, 3810 Aveiro, Portugal.
| | | | | | | |
Collapse
|
10
|
Geijtenbeek TB, Westerman J, Heerma W, Wirtz KW. Phosphatidylcholine transfer protein from bovine liver contains highly unsaturated phosphatidylcholine species. FEBS Lett 1996; 391:333-5. [PMID: 8765001 DOI: 10.1016/0014-5793(96)00770-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phosphatidylcholine transfer protein (PC-TP) from bovine liver contains one molecule of non-covalently bound PC. In order to gain more insight into the physiological function of PC-TP, PC was extracted from bovine liver PC-TP and its molecular species composition identified by fast atom bombardment mass spectrometry. The prevailing molecular species were C18:0/C18:1-, C18:0/C18:2-, C18:0/C20:4-, C18:0/20:5- and C18:0/C22:5-PC accounting for 85% of the PC species present. This molecular species composition is not representative for what is present in bovine liver where these species account for 43% of the total PC content [Montfoort et al. (1971) Biochim. Biophys. Acta 231, 335-342]. Another striking observation is that PC species carrying a palmitoyl chain at the sn-1 position are nearly absent, despite these species being abundantly present in bovine liver. This study suggests that PC-TP could play a role in the metabolism of highly unsaturated, stearoyl-containing PC species.
Collapse
Affiliation(s)
- T B Geijtenbeek
- Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
11
|
Ponchautcor S, Veitchaff K, Libertaff R, Van Hoofaff F, Hueaff L, de Hoffmann E. Analysis by fast-atom bombardment tandem mass spectrometry of phosphatidylcholine isolated from heart mitochondrial fractions: Evidence of incorporation of monohydroxylated fatty acyl moieties. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1996; 7:50-58. [PMID: 24202794 DOI: 10.1016/1044-0305(95)00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/1995] [Revised: 08/22/1995] [Accepted: 08/30/1995] [Indexed: 06/02/2023]
Abstract
Phosphatidylcholine (PC) is one of the main phospholipids present in mitochondrial membranes. According to current knowledge, the predominant fatty acyl moieties in this phospholipid are 16, 18, 20, or 22 carbon atoms long with chains that contain only carbon and hydrogen atoms. We have conducted a detailed analysis of the fatty acid substituents of the phospholipids present in mitochondrial fractions by using fast-atom bombardment tandem PC extracted from mitochondrial fractions of rat heart. The structure of one of these monohydroxylated fatty acids has been elucidated and corresponded to 12-hydroxy 9-octadecenoic acid. Indications that concern the structure of the five other monohydroxylated fatty acids are presented. These monohydroxylated fatty acyl groups are preferentially associated in the PC molecule with C-18 and C-20 fatty acyl moieties. We present arguments to suggest that the formation of these compounds is probably not due to a free-radical initiated mechanism. The potential implication of these monohydroxylated fatty acids in several physiological functions is suggested by the fact that free hydroxylated fatty acids that are identical or closely related to those found in the mitochondrial fractions possess various biological activities.
Collapse
Affiliation(s)
- S Ponchautcor
- Hormone and Metabolic Research Unit, Laboratory of Metabolic Diseases, International Institute of Cellular and Molecular Pathology, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Han X, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1995; 6:1202-10. [PMID: 24214071 DOI: 10.1016/1044-0305(95)00568-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/1995] [Revised: 06/26/1995] [Accepted: 07/08/1995] [Indexed: 05/21/2023]
Abstract
The remarkable sensitivity of electrospray ionization was exploited to achieve great increases in the sensitivity of tandem mass spectrometric analyses of phospholipids derived from both synthetic and biologic sources. Herein, we demonstrate that (1) product-ion spectra after electrospray ionization can be obtained easily by utilizing ≤ 5 pmol of phospholipid with a mass-selected window of less than 2 mass units, (2) the low energy inherent in the electrospray ionization method facilitates analysis of labile molecular ions that are not easily detected with the relatively high energy employed during fast-atom bombardment desorption, and (3) collision-induced dissociation of precursor ions generated from electrospray ionization often resulted in novel product-ion patterns. Collectively, these results underscore the utility of electrospray ionization tandem mass spectroscopy for the structural determination of diminutive amounts of phospholipids.
Collapse
Affiliation(s)
- X Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Departments of Medicine, Chemistry, and Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
13
|
Kuksis A, Myher JJ. Application of tandem mass spectrometry for the analysis of long-chain carboxylic acids. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 671:35-70. [PMID: 8520701 DOI: 10.1016/0378-4347(95)00212-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The application of MS-MS for the analysis of long-chain carboxylic acids and their esters has proved enormously successful but expensive. It is discussed mainly on basis of results obtained with different instruments with lesser attention to principles of the method, which have been adequately reviewed elsewhere. The use of electrospray ionization (ESI) has greatly increased the sensitivity of the method and has permitted assay of total lipid extracts. The combination of HPLC with electrospray and single quadrupole mass spectrometry, LC-ESI-CID-MS, rivals the triple quadrupole MS-MS application in many instances at considerably lower cost. However, LC-ESI-MS-MS remains the most desirable system at the present time for lipid ester analyses.
Collapse
Affiliation(s)
- A Kuksis
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | |
Collapse
|
14
|
Zhang JY, Nobes BJ, Wang J, Blair IA. Characterization of hydroxyeicosatetraenoic acids and hydroxyeicosatetraenoic acid phosphatidylcholines by liquid secondary ion tandem mass spectrometry. BIOLOGICAL MASS SPECTROMETRY 1994; 23:399-405. [PMID: 8068735 DOI: 10.1002/bms.1200230704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Arachidonic acid is oxidized to regioisomeric 5(S)-, 12(S)- and 15(S)-hydroxyeicosatetraenoic acids by the corresponding 5-, 12- and 15-lipoxygenases. These hydroxylated fatty acids can then be incorporated into cellular phospholipids. Negative liquid secondary ion tandem mass spectrometry using a high-energy collision regime in a tandem four-sector mass spectrometer was used to characterize regioisomeric hydroxyeicosatetraenoic acids and the corresponding hydroxyeicosatetraenoic phosphatidylcholine species. Collision-induced dissociation (CID) of the [M-H]- negative ion at m/z 319 from the hydroxyeicosatetraenoic acids regioisomers produced some similar product ions, such as m/z 301 [M-H-H2O]- and m/z 257 [M-H-(H2O + CO2)]-. In addition, product ions characteristic of the particular hydroxyeicosatetraenoic acid were formed from alpha-cleavages adjacent to the hydroxyl moieties. Negative liquid secondary ion mass spectrometry of purified hydroxyeicosatetraenoate phosphatidylcholine species gave an ion at m/z 810 [M-CH3]-. CID of the m/z 810 ion gave product ions at m/z 283 and m/z 319, corresponding to stearate at the sn-1 position and hydroxyeicosatetraenoate at the sn-2 position, respectively. From CID of the negative ion at m/z 319 and examination of the product ion spectra, the hydroxyeicosatetraenoate regioisomer present in the phosphatidylcholine could be identified.
Collapse
Affiliation(s)
- J Y Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | | | |
Collapse
|
15
|
Zirrolli JA, Wheelan P, Murphy RC. Analysis of long-chain fatty acyl coenzyme a thioesters by negative ion fast-atom bombardment mass spectrometry and tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1994; 5:416-424. [PMID: 24222596 DOI: 10.1016/1044-0305(94)85057-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/1993] [Revised: 12/20/1993] [Accepted: 12/21/1993] [Indexed: 06/02/2023]
Abstract
Long-chain acyl Coenzyme A (CoA) is essentially composed of three major chemical groups, fatty acyl-, phosphopantetheino-, and 3', 5',-adenosine diphospho-moieties. The negative ion fast-atom bombardment mass spectrometry spectra of long-chain acyl CoA thioesters were characterized by the formation of abundant [M - H](-) and two distinct classes of fragment ions, one class which retained the acyl group and another class which is related to CoA that contains the phosphopantethene and adenine. The ions which retained the acyl group in the spectrum of palmitoyl CoA appeared at m/z 675, 657, 595, and 577 and were found to decompose by loss of alkylketene observed at m/z 357 and 339. Those ions which retained the adenine group were observed at m/z 426 and 408. In contrast to these ions observed following fast-atom bombardment ionization, tandem mass spectrometry of the [M - H](-), from palmitoyl CoA (m/z 1004), yielded the adenine-containing ions as major products and the acyl-containing ions were of low abundance or not detected. These results suggested that the formation of many characteristic ions observed in direct FAB analysis occurred during the desorption process. The unique relationship between ions which involved the transition from acyl-containing ions to only CoA-containing ions by the loss of alkylketene allowed the development of tandem mass spectrometry protocols for the analysis of acyl CoA mixtures. Precursor scans of either m/z 357 or 339 yielded the identification of each species in a complex mixture. Identification of specific species was obtained with a neutral loss scan of the mass for a specific alkylketene.
Collapse
Affiliation(s)
- J A Zirrolli
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, 1400 Jackson Street, 80206, Denver, CO, USA
| | | | | |
Collapse
|