1
|
Hong KS, Khan MNA, Ghafoor U. Non-invasive transcranial electrical brain stimulation guided by functional near-infrared spectroscopy for targeted neuromodulation: A review. J Neural Eng 2022; 19. [PMID: 35905708 DOI: 10.1088/1741-2552/ac857d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
One of the primary goals in cognitive neuroscience is to understand the neural mechanisms on which cognition is based. Researchers are trying to find how cognitive mechanisms are related to oscillations generated due to brain activity. The research focused on this topic has been considerably aided by developing non-invasive brain stimulation techniques. The dynamics of brain networks and the resultant behavior can be affected by non-invasive brain stimulation techniques, which make their use a focus of interest in many experiments and clinical fields. One essential non-invasive brain stimulation technique is transcranial electrical stimulation (tES), subdivided into transcranial direct and alternating current stimulation. tES has recently become more well-known because of the effective results achieved in treating chronic conditions. In addition, there has been exceptional progress in the interpretation and feasibility of tES techniques. Summarizing the beneficial effects of tES, this article provides an updated depiction of what has been accomplished to date, brief history, and the open questions that need to be addressed in the future. An essential issue in the field of tES is stimulation duration. This review briefly covers the stimulation durations that have been utilized in the field while monitoring the brain using functional-near infrared spectroscopy-based brain imaging.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumgeong-gu, Busan, Busan, 609735, Korea (the Republic of)
| | - M N Afzal Khan
- Pusan National University, Department of Mechanical Engineering, Busan, 46241, Korea (the Republic of)
| | - Usman Ghafoor
- School of Mechanical Engineering, Pusan National University College of Engineering, room 204, Busan, 46241, Korea (the Republic of)
| |
Collapse
|
2
|
Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Opitz A, Mehta A, Pack CC, Krekelberg B, Berényi A, Parra LC, Melloni L, Devinsky O, Buzsáki G. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun 2018; 9:5092. [PMID: 30504921 PMCID: PMC6269428 DOI: 10.1038/s41467-018-07233-7] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022] Open
Abstract
Noninvasive brain stimulation techniques are used in experimental and clinical fields for their potential effects on brain network dynamics and behavior. Transcranial electrical stimulation (TES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), has gained popularity because of its convenience and potential as a chronic therapy. However, a mechanistic understanding of TES has lagged behind its widespread adoption. Here, we review data and modelling on the immediate neurophysiological effects of TES in vitro as well as in vivo in both humans and other animals. While it remains unclear how typical TES protocols affect neural activity, we propose that validated models of current flow should inform study design and artifacts should be carefully excluded during signal recording and analysis. Potential indirect effects of TES (e.g., peripheral stimulation) should be investigated in more detail and further explored in experimental designs. We also consider how novel technologies may stimulate the next generation of TES experiments and devices, thus enhancing validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Anli Liu
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA.
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA.
| | - Mihály Vöröslakos
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Faculty of Medicine, University of Szeged, 10 Dom sq., Szeged, H-6720, Hungary
- New York University Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA
| | - Greg Kronberg
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Simon Henin
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Yu Huang
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Alexander Opitz
- Department of Biomedical Engineering of Minnesota, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, 611 Northern Blvd, Great Neck, NY, 11021, USA
- Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Christopher C Pack
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Faculty of Medicine, University of Szeged, 10 Dom sq., Szeged, H-6720, Hungary
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Lucia Melloni
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
- Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt am Main, Germany
| | - Orrin Devinsky
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Concluding Studies on the Failures of Electrical Lancing of Whales. Anim Welf 2000. [DOI: 10.1017/s0962728600023010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractElectrocution of an animal is inhumane if it is not rendered instantaneously insensible by the application of sufficient current density within vital centres of the brain. Application of electric current which does not achieve this, is likely to cause severe pain. The humane aspects of electrical lancing have aroused widespread concern and debate.For an electrically lanced whale of the size of those currently hunted, previous research has indicated that the current densities produced in the heart and brain are unlikely to reliably render the animal insensible or stop its heart. This study supports these findings and demonstrates that the presence of salt water/immersion may further reduce current densities. Evidence for the failure of the electric lance includes the necessity for multiple and prolonged applications of electric current.Reasons for the failure of the electric lance include non-optimal current injection sites, insufficient current injected, the presence of salt water, and the trauma caused by the explosive harpoon. The efficacy of the electric lance may be falsely exaggerated for reasons associated with blood loss and misdiagnosis of death. All evidence clearly indicates that attempts to stop the heart by electrocution will cause severe pain to an already traumatized animal.We suggest that the use of the electric lance is clearly inhumane, and are pleased to announce that its use in Japanese whaling operations was reportedly discontinued as from 1997.
Collapse
|