1
|
Yao C, Song J, Sun J, Tang W, Chen L, Gu Y. Changing handedness after nerve reconstruction in brachial plexus birth palsy. Front Neurol 2024; 14:1284945. [PMID: 38259660 PMCID: PMC10800742 DOI: 10.3389/fneur.2023.1284945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose Right obstetric brachial plexus injuries (OBPI) often lead to left-handedness before limb function is restored post-surgery. A pertinent question arises about promoting a transition from left to right-handedness. We hypothesized that, with the decrease in neuroplasticity, handedness switching is not only difficult, but also reduces handedness-speech lateralization, impaired motor adaptability, and compromised language proficiency. Methods We retrospectively analyzed clinical data from January 1996 to January 2012 at our hospital. Participants were divided into intervention or control groups based on handedness switching. We compared handedness and computed lateral quotient (LQ) and lateralization index (LI) for handedness-speech center. Additionally, we assessed dominant hand's writing speed, language function, and IQ. Associations between absolute LI and LQ values, writing speed, language scores, and IQ were examined. Results Nineteen extended Erb's palsy participants were enrolled, eight in the intervention group, and 11 in the control. No right-handed individuals were found in either cohort. The intervention group had significantly lower LQ and LI values, and fewer achieved normal writing speed. Yet, no notable disparities in language scores or IQ emerged. Notably, we established correlations between motor finesse, handedness degree, and handedness-speech lateralization. Conclusion For right extended Erb's palsy, shifting handedness is nearly unfeasible, and such an endeavor could trigger a reduction in handedness-speech lateralization magnitude and diminished motor finesse.
Collapse
Affiliation(s)
- Chenglun Yao
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| | - Jie Song
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| | - Jiayu Sun
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| | - Yudong Gu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Akabalieva K. Eye dominance and minor physical anomalies in schizophrenia: relations between two biological markers of abnormal neurodevelopment. Front Psychiatry 2023; 14:1145578. [PMID: 37363180 PMCID: PMC10289404 DOI: 10.3389/fpsyt.2023.1145578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023] Open
Abstract
Background To investigate the frequency of left eye dominance and minor physical anomalies (MPAs) in schizophrenia patients and control subjects and determine the interrelations of these two biological markers of neuronal dysontogenesis in schizophrenia. Subjects and methods Three tests for eye dominance were administered as performance tasks, not preference questionnaires. Seven MPAs were examined. The sample consisted of 180 (98 schizophrenia patients and 82 control subjects). Several statistical methods for examining the eye tests separately and together were used to assess the difference in left-eyedness between schizophrenia patients and control subjects. Results Left eye dominance is significantly higher in schizophrenia subjects. Left-eyed subjects are more stigmatized with MPAs. There is a strong positive correlation between left-eyedness and stigmatization with MPAs in schizophrenia patients. Conclusion As hand dominance is under cultural pressure, eye dominance is culturally independent and is useful and reliable indicator of altered hemispheric lateralization. The significant positive correlations between left-eyedness and MPAs and the high concurrence of these biological markers in schizophrenia patients are a potent indicator of underlying aberrant neurodevelopment.
Collapse
|
3
|
Show me your best side: Lateralization of social and resting behaviors in feral horses. Behav Processes 2023; 206:104839. [PMID: 36736386 DOI: 10.1016/j.beproc.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Growing evidence shows a variety of sensorial and motor asymmetries in social and non-social interactions in various species, indicating a lateralized processing of information by the brain. Using digital video cameras on tripods and drones, this study investigated lateralization in frequency and duration of social behavior patterns, in affiliative, agonistic, and resting contexts, in a feral population of horses (Equus ferus caballus) in Northern Portugal, consisting of 37 individuals organized in eight harem groups. Affiliative interactions (including grooming) were more often performed, and lasted longer, when recipients were positioned to the right side. In recumbent resting (animals lying down) episodes on the left side lasted longer. Our results of an affiliative behavior having a right side tendency, provide partial support to the valence-specific hypothesis of Ahern and Schwartz (1979) - left hemisphere dominance for positive affect, affiliative behaviors. Longer recumbent resting episodes on the left side may be due to synchronization. However, in both instances it is discussed how lateralization may be context dependent. Investigating the position asymmetries of social behaviors in feral equids will contribute to a better understanding of differential lateralization and hemispheric specialization from the ecological and evolutionary perspectives.
Collapse
|
4
|
Does owner handedness influence paw preference in dogs? Anim Cogn 2023; 26:425-433. [PMID: 36057017 PMCID: PMC9950156 DOI: 10.1007/s10071-022-01673-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022]
Abstract
Handedness has proven to be the most effective and least intrusive measure of laterality in many species. Several studies have investigated paw preference in dogs (Canis familiaris) without considering the potential impact that owner's handedness may have on it, despite dogs being a domesticated species. The aim of this study was to investigate whether owner handedness influences paw preference in their dogs. Sixty-two dogs had their paw preference tested using a Paw Task and a Reach Task in their home over 10 days, recorded by their owners. Interestingly, it was found that left-handed owners were more likely to own a dog with a left paw bias, and right-handed owners were more likely to own a dog with a right paw bias. In the Paw Task, the hand presented to a dog did not significantly predict which paw the dog lifted in response. Furthermore, it was found that females displayed a right paw bias at all age groups. However, males had a left paw bias in puppyhood and right paw bias in older age groups. We conclude that owner handedness influences paw preference in dogs, and it should be considered when suitably pairing dogs to potential owners, especially in assistance work.
Collapse
|
5
|
Yin J, Yu G, Zhang J, Li J. Behavioral laterality is correlated with problem-solving performance in a songbird. Anim Cogn 2022; 26:837-848. [PMID: 36449141 DOI: 10.1007/s10071-022-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/15/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Cerebral lateralization, which is often reflected in an individual's behavioral laterality (e.g., handedness and footedness), may bring animals certain benefits such as enhanced cognitive performance. Although the lateralization-cognition relationship has been widely studied in humans and other animals, current evidence supporting their relationship is ambiguous and warrants additional insights from more studies. Moreover, the lateralization-cognition relationship in non-human animals has been mostly studied in human-reared populations, and investigations of wild populations are particularly scarce. Here, we test the footedness of wild-caught male yellow-bellied tits (Pardaliparus venustulus) and investigate its association with their performance in learning to solve a toothpick-pulling problem and a drawer-opening problem. The tested birds showed an overall trend to gradually spent less time solving the problems, implying that they learned to solve the problems. Left- and right-footed individuals showed no significant differences in the latency to explore the experimental apparatuses and in the proportions that completed and did not complete the tasks. However, the left-footed individuals learned faster than the right-footed individuals in the drawer-opening experiment, indicating a potential cognitive advantage associated with left-footedness. These results contribute to the understanding of the behavioral differences between differently footed individuals and, in particular, the relationship between lateralization and cognitive ability in wild animals.
Collapse
Affiliation(s)
- Jiangnan Yin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Gaoyang Yu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jinggang Zhang
- Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianqiang Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
Stieger B, Palme R, Kaiser S, Sachser N, Helene Richter S. When left is right: The effects of paw preference training on behaviour in mice. Behav Brain Res 2022; 430:113929. [PMID: 35595059 DOI: 10.1016/j.bbr.2022.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Spontaneous limb preferences exist in numerous species. To investigate the underlying mechanisms of these preferences, different methods, such as training, have been developed to shift preferences artificially. However, studies that systematically examine the effects of shifting preferences on behaviour and physiology are largely missing. Therefore, the aim of this study was to assess the impact of shifting paw preferences via training on spontaneous home cage behaviour, as well as anxiety-like behaviour and exploratory locomotion (Elevated plus maze test, Dark light test, Open field test, Free exploration test), learning performance (Labyrinth-maze) and stress hormones (fecal corticosterone metabolites) in laboratory mice (Mus musculus f. domestica). For this, we assessed spontaneous paw preferences of C57BL/6J females (Nambilateral = 23, Nleft = 23, Nright = 25). Subsequently, half of the individuals from each category were trained once a week for four weeks in a food-reaching task to use either their left or right paw, respectively, resulting in six groups: AL, AR, LL, LR, RL, RR. After training, a battery of behavioural tests was performed and spontaneous preferences were assessed again. Our results indicate that most mice were successfully trained and the effect of training was present days after training. However, a significant difference of preferences between RL and LL mice during training suggests a rather low training success of RL mice. Additionally, preferences of L mice differed from those of A and R mice after training, indicating differential long-term effects of training in these groups. Furthermore, left paw training led to higher levels of self-grooming, possibly as a displacement behaviour, and more time spent in the light compartment of the Dark light test. However, overall, there was no systematic influence of training on behavioural measures and stress hormones. Different explanations for this lack of influence, such as the link between training and hemispheric functioning or the intensity and ecological relevance of the training, are discussed.
Collapse
Affiliation(s)
- Binia Stieger
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG Research Training Group EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| |
Collapse
|
7
|
Soravia C, Bisazza A, Cecere JG, Rubolini D. Extra food provisioning does not affect behavioural lateralization in nestling lesser kestrels. Curr Zool 2022; 69:66-75. [PMID: 36974149 PMCID: PMC10039179 DOI: 10.1093/cz/zoac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Costs and benefits of brain lateralization may depend on environmental conditions. Growing evidence indicates that the development of brain functional asymmetries is adaptively shaped by the environmental conditions experienced during early life. Food availability early in life could act as a proxy of the environmental conditions encountered during adulthood, but its potential modulatory effect on lateralization has received little attention. We increased food supply from egg laying to early nestling rearing in a wild population of lesser kestrels Falco naumanni, a sexually dimorphic raptor, and quantified the lateralization of preening behaviour (head turning direction). As more lateralized individuals may perform better in highly competitive contexts, we expected that extra food provisioning, by reducing the level of intra-brood competition for food, would reduce the strength of lateralization. We found that extra food provisioning improved nestling growth, but it did not significantly affect the strength or direction of nestling lateralization. In addition, maternal body condition did not explain variation in nestling lateralization. Independently of extra food provisioning, the direction of lateralization differed between the sexes, with female nestlings turning more often towards their right. Our findings indicate that early food availability does not modulate behavioural lateralization in a motor task, suggesting limited phenotypic plasticity in this trait.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology (M092), University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, via Venezia 8, Padova, I-35131, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, Padova, I-35129, Italy
| | - Jacopo G Cecere
- ISPRA—The Italian Institute for Environmental Protection and Research, via Cà Fornacetta 9, Ozzano dell'Emilia (, BO, I-40064, Italy, )
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milano, I-20133, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19, Brugherio, MB, I-20861, Italy,
| |
Collapse
|
8
|
Karenina K, Giljov A. Lateralization in feeding is food type specific and impacts feeding success in wild birds. Ecol Evol 2022; 12:e8598. [PMID: 35154659 PMCID: PMC8820115 DOI: 10.1002/ece3.8598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
Current research suggests that hemispheric lateralization has significant fitness consequences. Foraging, as a basic survival function, is a perfect research model to test the fitness impact of lateralization. However, our understanding of lateralized feeding behavior is based predominantly on laboratory studies, while the evidence from wild animals in natural settings is limited. Here we studied visual lateralization in yellow-footed green pigeons (Treron phoenicoptera) feeding in the wild. We aimed to test whether different types of food objects requiring different searching strategies elicit different eye/hemisphere biases. When feeding on relatively large, uniformly colored food objects (mahua flowers) which can be present or absent in the viewed patch, the majority of pigeons relied mostly on the left eye-right hemisphere. In contrast, when feeding on smaller and more abundant food objects, with color cues signaling its ripeness (sacred figs), right-eye (left-hemisphere) preference prevailed. Our results demonstrate that oppositely directed visual biases previously found in different experimental tasks occur in natural feeding situations in the form of lateralized viewing strategies specific for different types of food. The results suggest that pigeons rely on the hemisphere providing more advantages for the consumption of the particular type of food objects, implying the relevance of brain lateralization as a plastic adaptation to ecological demands. We assessed the success of food discrimination and consumption to examine the link between lateralization and cognitive performance. The use of the preferred eye resulted in better discrimination of food items. Discrimination accuracy and feeding efficiency were significantly higher in lateralized individuals. The results showed that visual lateralization impacted pigeons' feeding success, implicating important fitness benefits associated with lateralization.
Collapse
Affiliation(s)
- Karina Karenina
- Department of Vertebrate Zoology Saint Petersburg State University Saint Petersburg Russia
| | - Andrey Giljov
- Department of Vertebrate Zoology Saint Petersburg State University Saint Petersburg Russia
| |
Collapse
|
9
|
Planidin NP, Reimchen TE. Behavioural responses of threespine stickleback with lateral line asymmetries to experimental mechanosensory stimuli. J Exp Biol 2021; 225:273859. [PMID: 34939652 DOI: 10.1242/jeb.243661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022]
Abstract
Behavioural asymmetry, typically referred to as laterality, is widespread among bilaterians and is often associated with asymmetry in brain structure. However, the influence of sensory receptor asymmetry on laterality has undergone limited investigation. Here we use threespine stickleback (Gasterosteus aculeatus) to investigate the influence of lateral line asymmetry on laterality during lab simulations of three mechanosensation-dependent behaviours: predator evasion, prey localization and rheotaxis. We recorded the response of stickleback to impacts at the water surface and water flow in photic conditions and low-frequency oscillations in the dark, across four repeat trials. We then compared individuals' laterality to asymmetry in the number of neuromasts on either side of their body. Stickleback hovered with their right side against the arena wall 57% of the time (P<0.001) in illuminated surface impact trials and 56% of the time in (P=0.085) dark low-frequency stimulation trials. Light regime modulated the effect of neuromast count on laterality, as fish with more neuromasts were more likely to hover with the wall on their right during illumination (P=0.007) but were less likely to do so in darkness (P=0.025). Population level laterality diminished in later trials across multiple behaviours and individuals did not show a consistent side bias in any behaviours. Our results demonstrate a complex relationship between sensory structure asymmetry and laterality, suggesting that laterality is modulated multiple sensory modalities and temporally dynamic.
Collapse
|
10
|
Lefeuvre M, Gouat P, Mulot B, Cornette R, Pouydebat E. Analogous laterality in trunk movements in captive African elephants: A pilot study. Laterality 2021; 27:101-126. [PMID: 34743652 DOI: 10.1080/1357650x.2021.1999253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lateralization of hand use in primates has been extensively studied in a variety of contexts, and starts to be investigated in other species and organs in order to understand the evolution of the laterality according to different tasks. In elephants, the orientation of the movements of the trunk has been observed mainly in feeding and social contexts, in free conditions. However, little is known about the influence of task complexity on trunk laterality. In this study, we compared the lateralization of the trunk in two conditions: standardized and free. We offered granules to six African elephants on each side of an opened trapdoor to create a constraining environment and reported the different behaviours employed and their orientation. In addition, we observed the same individuals in free conditions and noted the lateralization of the use of their trunk. We revealed a common right side preference in all our elephants, both in standardized and free conditions. This side bias was stronger in our constraining task, adding evidence for the task complexity theory. We finally described laterality in new behaviours in the literature on elephants, such as pinching, gathering or exploration with the trunk.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- UMR 7179 - MECADEV Adaptative Mechanisms and Evolution, CNRS/MNHN, Paris, France.,Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Patrick Gouat
- Laboratoire d'Éthologie Expérimentale et Comparée E.A. 4443, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Baptiste Mulot
- Zooparc de Beauval & Beauval Nature, Saint-Aignan, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Emmanuelle Pouydebat
- UMR 7179 - MECADEV Adaptative Mechanisms and Evolution, CNRS/MNHN, Paris, France
| |
Collapse
|
11
|
Cavelius M, Brunel T, Didier A. Lessons from behavioral lateralization in olfaction. Brain Struct Funct 2021; 227:685-696. [PMID: 34596756 PMCID: PMC8843900 DOI: 10.1007/s00429-021-02390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Sensory information, sampled by sensory organs positioned on each side of the body may play a crucial role in organizing brain lateralization. This question is of particular interest with regard to the growing evidence of alteration in lateralization in several psychiatric conditions. In this context, the olfactory system, an ancient, mostly ipsilateral and well-conserved system across phylogeny may prove an interesting model system to understand the behavioral significance of brain lateralization. Here, we focused on behavioral data in vertebrates and non-vertebrates, suggesting that the two hemispheres of the brain differentially processed olfactory cues to achieve diverse sensory operations, such as detection, discrimination, identification of behavioral valuable cues or learning. These include reports across different species on best performances with one nostril or the other or odorant active sampling by one nostril or the other, depending on odorants or contexts. In some species, hints from peripheral anatomical or functional asymmetry were proposed to explain these asymmetries in behavior. Instigations of brain activation or more rarely of brain connectivity evoked by odorants revealed a complex picture with regards to asymmetric patterns which is discussed with respect to behavioral data. Along the steps of the discussed literature, we propose avenues for future research.
Collapse
Affiliation(s)
- Matthias Cavelius
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France.,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France
| | - Théo Brunel
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France.,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France
| | - Anne Didier
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France. .,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France.
| |
Collapse
|
12
|
Pikalík M, Pipová N, Majláthová V, Connors VA, Majláth I. Lateralization at the individual and population levels of European green lizard in Slovak Karst. Acta Ethol 2021. [DOI: 10.1007/s10211-021-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zickert N, Geuze RH, Beking T, Groothuis TGG. Testing the Darwinian function of lateralization. Does separation of workload between brain hemispheres increase cognitive performance? Neuropsychologia 2021; 159:107884. [PMID: 34090868 DOI: 10.1016/j.neuropsychologia.2021.107884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Brain lateralization is a fundamental aspect of the organization of brain and behavior in the animal kingdom, begging the question about its Darwinian function. We tested the possibility that lateralization enhances cognitive performance in single- and dual-tasks. Previous studies reported mixed results on this topic and only a handful of studies have measured functional brain lateralization and performance independently and simultaneously. We therefore examined a possible positive effect of the strength and direction of lateralization on two demanding cognitive tasks: A visuospatial task (mental rotation MR), and a language task (word generation WG), executed either as a singletask or as dual-task. Participants (n = 72) performed these tasks while their single-task brain lateralization was assessed with functional Transcranial Doppler for both tasks. From these measurements we determined strength and direction of lateralization for both tasks and the individual pattern of lateralization (contralateral or ipsilateral) was derived. These factors, along with sex, were used in a GLM analysis to determine if they predicted the respective performance measure of the tasks. We found that for MR there was a significant medium effect of direction of lateralization on performance with better performance in left-lateralized (atypical) participants (partial eta squared 0.061; p = .039). After correction for outliers, there was a significant effect for strength (p = .049). For the dual-task, there was a significant positive medium effect of strength of lateralization on performance (partial eta squared 0.062; p = .038, respectively) No other association between direction or strength in either tests were found. We conclude that there is no evidence for hemispheric crowding, and that strength of lateralization may be a factor that contributes to the evolutionary selection of functional brain lateralization. Pattern of lateralization does not, explaining the large inter-individual variation in these traits.
Collapse
Affiliation(s)
- Nele Zickert
- University of Groningen, Faculty of Mathematics and Natural Sciences, GELIFES - Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands.
| | - Reint H Geuze
- University of Groningen, Faculty of Behavioural and Social Sciences, Department Clinical & Developmental Neuropsychology, Groningen, the Netherlands
| | - Tess Beking
- University of Groningen, Faculty of Behavioural and Social Sciences, Department Clinical & Developmental Neuropsychology, Groningen, the Netherlands
| | - Ton G G Groothuis
- University of Groningen, Faculty of Mathematics and Natural Sciences, GELIFES - Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| |
Collapse
|
14
|
Laverack K, Pike TW, Cooper JJ, Frasnelli E. The effect of sex and age on paw use within a large sample of dogs (Canis familiaris). Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Stieger B, Melotti L, Quante SM, Kaiser S, Sachser N, Richter SH. A step in the right direction: the effect of context, strain and sex on paw preference in mice. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Connelly AD, Ryan MJ. Phenotypic Variation in an Asexual-Sexual Fish System: Visual Lateralization. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.605943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual reproduction is nearly ubiquitous in the vertebrate world, yet its evolution and maintenance remain a conundrum due to the cost of males. Conversely, asexually reproducing species should enjoy a twofold population increase and thus replace sexual species all else being equal, but the prevalence of asexual species is rare. However, stable coexistence between asexuals and sexuals does occur and can shed light on the mechanisms asexuals may use in order to persist in this sex-dominated world. The asexual Amazon molly (Poecilia formosa) is required to live in sympatry with one of its sexual sperm hosts –sailfin molly (Poecilia latipinna) and Atlantic molly (Poecilia mexicana)—and are ecological equivalents to their host species in nearly every way except for reproductive method. Here, we compare the visual lateralization between Amazon mollies and sailfin mollies from San Marcos, Texas. Neither Amazon mollies nor sailfin mollies exhibited a significant eye bias. Additionally, Amazon mollies exhibited similar levels of variation in visual lateralization compared to the sailfin molly. Further investigation into the source of this variation –clonal lineages or plasticity—is needed to better understand the coexistence of this asexual-sexual system.
Collapse
|
17
|
Osuna-Mascaró AJ, Ortiz C, Stolz C, Musgrave S, Sanz CM, Morgan DB, Fragaszy DM. Dexterity and technique in termite fishing by chimpanzees (Pan troglodytes troglodytes) in the Goualougo Triangle, Republic of Congo. Am J Primatol 2020; 83:e23215. [PMID: 33196112 PMCID: PMC7816224 DOI: 10.1002/ajp.23215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Although the phenomenon of termite fishing by chimpanzees (Pan troglodytes) has historical and theoretical importance for primatology, we still have a limited understanding of how chimpanzees accomplish this activity, and in particular, about details of skilled actions and the nature of individual variation in fishing techniques. We examined movements, hand positions, grips, and other details from remote video footage of seven adult and subadult female chimpanzees using plant probes to extract Macrotermes muelleri termites from epigeal nests. Six chimpanzees used exclusively one hand (left or right) to grip the probe during termite fishing. All chimpanzees used the same repertoire of actions to insert, adjust, and withdraw the probe but differed in the frequency of use of particular actions. Chimpanzees have been described as eating termites in two ways—directly from the probe or by sweeping them from the probe with one hand. We describe a third technique: sliding the probe between the digits of one stationary hand as the probe is extracted from the nest. The sliding technique requires complementary bimanual coordination (extracting with one hand and grasping lightly with the other, at the same time). We highlight the importance of actions with two hands—one gripping, one assisting—in termite fishing and discuss how probing techniques are correlated with performance. Additional research on digital function and on environmental, organismic, and task constraints will further reveal manual dexterity in termite fishing. Using remote video footage from camera traps in Goualougo Triangle, Republic of Congo, we describe chimpanzees' manual actions, postures, and positions, and movements of the probe while they fished for termites in epigeal termite nests.
Chimpanzees used diverse grips, with and without the thumb, and two hands—one gripping, one assisting—to handle the probe delicately and to move it precisely.
We describe a new technique for recovering termites: sliding the probe between the digits of one stationary hand as the probe is extracted from the nest with the other hand, and a new action: oscillatory movements of the probe while it was inserted in the nest.
Collapse
Affiliation(s)
| | - Camila Ortiz
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Caroline Stolz
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Stephanie Musgrave
- Department of Anthropology, University of Miami, Coral Gables, Florida, USA
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, Saint Louis, Missouri, USA.,Congo Program, Wildlife Conservation Society, Brazzaville, Republic of Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | | |
Collapse
|
18
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
19
|
Abstract
Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
No evidence that footedness in pheasants influences cognitive performance in tasks assessing colour discrimination and spatial ability. Learn Behav 2020; 48:84-95. [PMID: 31916193 PMCID: PMC7082386 DOI: 10.3758/s13420-019-00402-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The differential specialization of each side of the brain facilitates the parallel processing of information and has been documented in a wide range of animals. Animals that are more lateralized as indicated by consistent preferential limb use are commonly reported to exhibit superior cognitive ability as well as other behavioural advantages. We assayed the lateralization of 135 young pheasants (Phasianus colchicus), indicated by their footedness in a spontaneous stepping task, and related this measure to individual performance in either 3 assays of visual or spatial learning and memory. We found no evidence that pronounced footedness enhances cognitive ability in any of the tasks. We also found no evidence that an intermediate footedness relates to better cognitive performance. This lack of relationship is surprising because previous work revealed that pheasants have a slight population bias towards right footedness, and when released into the wild, individuals with higher degrees of footedness were more likely to die. One explanation for why extreme lateralization is constrained was that it led to poorer cognitive performance, or that optimal cognitive performance was associated with some intermediate level of lateralization. This stabilizing selection could explain the pattern of moderate lateralization that is seen in most non-human species that have been studied. However, we found no evidence in this study to support this explanation.
Collapse
|
21
|
Loconsole M, Perovic S, Regolin L. A leftward bias negatively correlated with performance is selectively displayed by domestic chicks during rule reversal (not acquisition). Laterality 2020; 26:1-18. [DOI: 10.1080/1357650x.2020.1797077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maria Loconsole
- Department of General Psychology, University of Padua, Padua, Italy
| | - Sofija Perovic
- Department of General Psychology, University of Padua, Padua, Italy
| | - Lucia Regolin
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
22
|
Bandini E, Harrison RA. Innovation in chimpanzees. Biol Rev Camb Philos Soc 2020; 95:1167-1197. [DOI: 10.1111/brv.12604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Elisa Bandini
- Department for Early Prehistory and Quaternary Ecology The University of Tübingen Tübingen Germany
| | - Rachel A. Harrison
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
23
|
Individual, but not population asymmetries, are modulated by social environment and genotype in Drosophila melanogaster. Sci Rep 2020; 10:4480. [PMID: 32161330 PMCID: PMC7066193 DOI: 10.1038/s41598-020-61410-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Theory predicts that social interactions can induce an alignment of behavioral asymmetries between individuals (i.e., population-level lateralization), but evidence for this effect is mixed. To understand how interaction with other individuals affects behavioral asymmetries, we systematically manipulated the social environment of Drosophila melanogaster, testing individual flies and dyads (female-male, female-female and male-male pairs). In these social contexts we measured individual and population asymmetries in individual behaviors (circling asymmetry, wing use) and dyadic behaviors (relative position and orientation between two flies) in five different genotypes. We reasoned that if coordination between individuals drives alignment of behavioral asymmetries, greater alignment at the population-level should be observed in social contexts compared to solitary individuals. We observed that the presence of other individuals influenced the behavior and position of flies but had unexpected effects on individual and population asymmetries: individual-level asymmetries were strong and modulated by the social context but population-level asymmetries were mild or absent. Moreover, the strength of individual-level asymmetries differed between strains, but this was not the case for population-level asymmetries. These findings suggest that the degree of social interaction found in Drosophila is insufficient to drive population-level behavioral asymmetries.
Collapse
|
24
|
Schnell AK, Jozet-Alves C, Hall KC, Radday L, Hanlon RT. Fighting and mating success in giant Australian cuttlefish is influenced by behavioural lateralization. Proc Biol Sci 2020; 286:20182507. [PMID: 30862306 DOI: 10.1098/rspb.2018.2507] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioural lateralization is widespread. Yet, a fundamental question remains, how can lateralization be evolutionary stable when individuals lateralized in one direction often significantly outnumber individuals lateralized in the opposite direction? A recently developed game theory model predicts that fitness consequences which occur during intraspecific interactions may be driving population-level lateralization as an evolutionary stable strategy. This model predicts that: (i) minority-type individuals exist because they are more likely to adopt unpredictable fighting behaviours during competitive interactions (e.g. fighting); and (ii) majority-type individuals exist because there is a fitness advantage in having their biases synchronized with other conspecifics during interactions that require coordination (e.g. mating). We tested these predictions by investigating biases in giant Australian cuttlefish during fighting and mating interactions. During fighting, most male cuttlefish favoured the left eye and these males showed higher contest escalation; but minority-type individuals with a right-eye bias achieved higher fighting success. During mating interactions, most male cuttlefish favoured the left eye to inspect females. Furthermore, most male cuttlefish approached the female's right side during a mating attempt and these males achieved higher mating success. Our data support the hypothesis that population-level biases are an evolutionary consequence of the fitness advantages involved in intraspecific interactions.
Collapse
Affiliation(s)
- Alexandra K Schnell
- 1 Normandie Université, UNICAEN, University of Rennes, CNRS , UMR EthoS 6552, Caen , France
| | - Christelle Jozet-Alves
- 1 Normandie Université, UNICAEN, University of Rennes, CNRS , UMR EthoS 6552, Caen , France
| | - Karina C Hall
- 2 National Marine Science Centre, Southern Cross University and NSW Department of Primary Industries , Coffs Harbour , Australia
| | - Léa Radday
- 1 Normandie Université, UNICAEN, University of Rennes, CNRS , UMR EthoS 6552, Caen , France
| | - Roger T Hanlon
- 3 Marine Biological Laboratory , Woods Hole, MA 02543 , USA
| |
Collapse
|
25
|
Leaver LA, Ford S, Miller CW, Yeo MK, Fawcett TW. Learning is negatively associated with strength of left/right paw preference in wild grey squirrels (Sciurus carolinensis). Learn Behav 2020; 48:96-103. [PMID: 31965461 PMCID: PMC7082376 DOI: 10.3758/s13420-019-00408-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cerebral laterality, via hemispheric specialisation, has been evidenced across the animal kingdom and linked to cognitive performance in a number of species. Previously it has been suggested that cognitive processing is more efficient in brains with stronger hemispheric differences in processing, which may be the key fitness benefit driving the evolution of laterality. However, evidence supporting a positive association between cognitive performance and lateralization is mixed: data from studies of fish and birds show a positive relationship whereas more limited data from studies of mammals suggest a weak or even negative relationship, suggesting the intriguing possibility of a mammal/non-mammal divide in the nature of this relationship. Here, we report an empirical test examining the relationship between lateralization and cognitive performance in wild grey squirrels (Sciurus carolinensis) by measuring left/right paw preference as a behavioural assay of cerebral lateralization and learning speed as an assay of cognitive efficiency. We carried out a motor-based laterality test using a reaching paradigm and measured learning speed on a problem-solving task. In accordance with the suggestion of a mammal/non-mammal divide, we found a negative relationship between strength of paw preference and performance on the learning task. We discuss this finding in light of niche-specific adaptations, task-specific demands and cognitive flexibility.
Collapse
Affiliation(s)
- Lisa A Leaver
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK.
| | - Steph Ford
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Christopher W Miller
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Matilda K Yeo
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Tim W Fawcett
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| |
Collapse
|
26
|
Vallortigara G, Rogers LJ. A function for the bicameral mind. Cortex 2019; 124:274-285. [PMID: 32058074 DOI: 10.1016/j.cortex.2019.11.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023]
Abstract
Why do the left and right sides of the brain have different functions? Having a lateralized brain, in which each hemisphere processes sensory inputs differently and carries out different functions, is common in vertebrates, and it has now been reported for invertebrates too. Experiments with several animal species have shown that having a lateralized brain can enhance the capacity to perform two tasks at the same time. Thus, the different specializations of the left and right sides of the brain seem to increase brain efficiency. Other advantages may involve control of action that, in Bilateria, may be confounded by separate and independent sensory processing and motor outputs on the left and right sides. Also, the opportunity for increased perceptual training associated with preferential use of only one sensory or motoric organ may result in a time advantage for the dominant side. Although brain efficiency of individuals can be achieved without the need for alignment of lateralization in the population, lateral biases (such as preferences in the use of a laterally-placed eye) usually occur at the population level, with most individuals showing a similar direction of bias. Why is this the case? Not only humans, but also most non-human animals, show a similar pattern of population bias (i.e., directional asymmetry). For instance, in several vertebrate species (from fish to mammals) most individuals react faster when a predator approaches from their left side, although some individuals (a minority usually ranging from 10 to 35%) escape faster from predators arriving from their right side. Invoking individual efficiency (lateralization may increase fitness), evolutionary chance or simply genetic inheritance cannot explain this widespread pattern. Using mathematical theory of games, it has been argued that the population structure of lateralization (with either antisymmetry or directional asymmetry) may result from the type of interactions asymmetric organisms face with each other.
Collapse
Affiliation(s)
| | - Lesley J Rogers
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
27
|
The Impact of Brain Lateralization and Anxiety-Like Behaviour in an Extensive Operant Conditioning Task in Zebrafish (Danio rerio). Symmetry (Basel) 2019. [DOI: 10.3390/sym11111395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies in mammals, birds, and fish have documented better cognitive abilities associated with an asymmetrical distribution of cognitive functions in the two halves of the brain, also known as ‘functional brain lateralization’. However, the role of brain lateralization in learning abilities is still unclear. In addition, although recent studies suggest a link between some personality traits and accuracy in cognitive tasks, the relation between anxiety and learning skills in Skinner boxes needs to be clarified. In the present study, we tested the impact of brain lateralization and anxiety-like behaviour in the performance of an extensive operant conditioning task. Zebrafish tested in a Skinner box underwent 500 trials in a colour discrimination task (red vs. yellow and green vs. blue). To assess the degree of lateralization, fish were observed in a detour test in the presence of a dummy predator, and anxiety-like behaviour was studied by observing scototaxis response in an experimental tank divided into light and dark compartments. Although the low performance in the colour discrimination task did not permit the drawing of firm conclusions, no correlation was found between the accuracy in the colour discrimination task and the behaviour in the detour and scototaxis tests. This suggests that neither different degrees of asymmetries in brain lateralization nor anxiety may significantly impact the learning skills of zebrafish.
Collapse
|
28
|
Bridgeman JM, Tattersall GJ. Tortoises develop and overcome position biases in a reversal learning task. Anim Cogn 2019; 22:265-275. [PMID: 30707365 DOI: 10.1007/s10071-019-01243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
Abstract
The capability of animals to alter their behaviour in response to novel or familiar stimuli, or behavioural flexibility, is strongly associated with their ability to learn in novel environments. Reptiles are capable of learning complex tasks and offer a unique opportunity to study the relationship between visual proficiency and behavioural flexibility. The focus of this study was to investigate the behavioural flexibility of red-footed tortoises and their ability to perform reversal learning. Reversal learning involves learning a particular discrimination task, after which the previously rewarded cue is reversed and then subjects perform the task with new reward contingencies. Red-footed tortoises were required to learn to recognise and approach visual cues within a Y-maze. Once subjects learned the visual discrimination, tortoises were required to successfully learn four reversals. Tortoises required significantly more trials to reach criterion (80% correct) in the first reversal, indicating the difficulty of unlearning the positive stimulus presented during training. Nevertheless, subsequent reversals required a similar number of sessions to the training stage, demonstrating that reversal learning improved up to a point. All subjects tested developed a position bias within the Y-maze that was absent prior to training, but most were able to exhibit reversal learning. Red-footed tortoises primarily adopted a win-stay choice strategy while learning the discrimination without much evidence for a lose-shift choice strategy, which may explain limits to their behavioural flexibility. However, improving performance across reversals while simultaneously overcoming a position bias provides insights into the cognitive abilities of tortoises.
Collapse
Affiliation(s)
- Justin M Bridgeman
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
29
|
McManus C. Half a century of handedness research: Myths, truths; fictions, facts; backwards, but mostly forwards. Brain Neurosci Adv 2019; 3:2398212818820513. [PMID: 32166178 PMCID: PMC7058267 DOI: 10.1177/2398212818820513] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Although most people are right-handed and have language in their left cerebral hemisphere, why that is so, and in particular why about ten per cent of people are left-handed, is far from clear. Multiple theories have been proposed, often with little in the way of empirical support, and sometimes indeed with strong evidence against them, and yet despite that have become modern urban myths, probably due to the symbolic power of right and left. One thinks in particular of ideas of being right-brained or left-brained, of suggestions that left-handedness is due to perinatal brain damage, of claims that left-handers die seven years earlier than right-handers, and of the unfalsifiable ramifications of the byzantine Geschwind-Behan-Galaburda theory. This article looks back over the past fifty years of research on brain asymmetries, exploring the different themes and approaches, sometimes in relation to the author's own work. Taking all of the work together it is probable that cerebral asymmetries are under genetic control, probably with multiple genetic loci, only a few of which are now beginning to be found thanks to very large databases that are becoming available. Other progress is also seen in proper meta-analyses, the use of fMRI for studying multiple functional lateralisations in large number of individuals, fetal ultra-sound for assessing handedness before birth, and fascinating studies of lateralisation in an ever widening range of animal species. With luck the next fifty years will make more progress and show fewer false directions than had much of the work in the previous fifty years.
Collapse
Affiliation(s)
- Chris McManus
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
30
|
Prieur J, Lemasson A, Barbu S, Blois‐Heulin C. History, development and current advances concerning the evolutionary roots of human right‐handedness and language: Brain lateralisation and manual laterality in non‐human primates. Ethology 2018. [DOI: 10.1111/eth.12827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Prieur
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Alban Lemasson
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Stéphanie Barbu
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Catherine Blois‐Heulin
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| |
Collapse
|
31
|
Abstract
Lateralization, i.e., the different functional roles played by the left and right sides of the brain, is expressed in two main ways: (1) in single individuals, regardless of a common direction (bias) in the population (aka individual-level lateralization); or (2) in single individuals and in the same direction in most of them, so that the population is biased (aka population-level lateralization). Indeed, lateralization often occurs at the population-level, with 60–90% of individuals showing the same direction (right or left) of bias, depending on species and tasks. It is usually maintained that lateralization can increase the brain’s efficiency. However, this may explain individual-level lateralization, but not population-level lateralization, for individual brain efficiency is unrelated to the direction of the asymmetry in other individuals. From a theoretical point of view, a possible explanation for population-level lateralization is that it may reflect an evolutionarily stable strategy (ESS) that can develop when individually asymmetrical organisms are under specific selective pressures to coordinate their behavior with that of other asymmetrical organisms. This prediction has been sometimes misunderstood as it is equated with the idea that population-level lateralization should only be present in social species. However, population-level asymmetries have been observed in aggressive and mating displays in so-called “solitary” insects, suggesting that engagement in specific inter-individual interactions rather than “sociality” per se may promote population-level lateralization. Here, we clarify that the nature of inter-individuals interaction can generate evolutionarily stable strategies of lateralization at the individual- or population-level, depending on ecological contexts, showing that individual-level and population-level lateralization should be considered as two aspects of the same continuum.
Collapse
|
32
|
Low survival of strongly footed pheasants may explain constraints on lateralization. Sci Rep 2018; 8:13791. [PMID: 30214056 PMCID: PMC6137170 DOI: 10.1038/s41598-018-32066-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022] Open
Abstract
Brain lateralization is considered adaptive because it leads to behavioral biases and specializations that bring fitness benefits. Across species, strongly lateralized individuals perform better in specific behaviors likely to improve survival. What constrains continued exaggerated lateralization? We measured survival of pheasants, finding that individuals with stronger bias in their footedness had shorter life expectancies compared to individuals with weak biases. Consequently, weak, or no footedness provided the highest fitness benefits. If, as suggested, footedness is indicative of more general brain lateralization, this could explain why continued brain lateralization is constrained even though it may improve performance in specific behaviors.
Collapse
|
33
|
de Andrade AC, de Sousa AB. Hand preferences and differences in extractive foraging in seven capuchin monkey species. Am J Primatol 2018; 80:e22901. [DOI: 10.1002/ajp.22901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Antonio C. de Andrade
- Universidade Federal da Paraiba, Centro de Ciencias Aplicadas e Educacao; Departamento de Engenharia e Meio Ambiente; Rio Tinto Paraíba Brazil
| | - Allana B. de Sousa
- Universidade Federal da Paraiba, Centro de Ciencias Aplicadas e Educacao; Departamento de Engenharia e Meio Ambiente; Rio Tinto Paraíba Brazil
| |
Collapse
|
34
|
Schofield DP, McGrew WC, Takahashi A, Hirata S. Cumulative culture in nonhumans: overlooked findings from Japanese monkeys? Primates 2017; 59:113-122. [PMID: 29282581 PMCID: PMC5843669 DOI: 10.1007/s10329-017-0642-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/02/2017] [Indexed: 11/30/2022]
Abstract
Cumulative culture, generally known as the increasing complexity or efficiency of cultural behaviors additively transmitted over successive generations, has been emphasized as a hallmark of human evolution. Recently, reviews of candidates for cumulative culture in nonhuman species have claimed that only humans have cumulative culture. Here, we aim to scrutinize this claim, using current criteria for cumulative culture to re-evaluate overlooked qualitative but longitudinal data from a nonhuman primate, the Japanese monkey (Macaca fuscata). We review over 60 years of Japanese ethnography of Koshima monkeys, which indicate that food-washing behaviors (e.g., of sweet potato tubers and wheat grains) seem to have increased in complexity and efficiency over time. Our reassessment of the Koshima ethnography is preliminary and nonquantitative, but it raises the possibility that cumulative culture, at least in a simple form, occurs spontaneously and adaptively in other primates and nonhumans in nature.
Collapse
Affiliation(s)
- Daniel P Schofield
- Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, OX2 6PE, UK.
| | - William C McGrew
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, KY15 9JH, UK
| | - Akiko Takahashi
- National Museum of Emerging Science and Innovation, 2-3-6 Aomi, Koto-ku, Tokyo, Japan
| | - Satoshi Hirata
- Wildlife Research Center, Kyoto University, Kyoto, 606-3201, Japan
| |
Collapse
|
35
|
Steyn C, Soley JT, Crole MR. Osteology and Radiological Anatomy of the Thoracic Limbs of Temminck's Ground Pangolin (Smutsia temminckii
). Anat Rec (Hoboken) 2017; 301:624-635. [DOI: 10.1002/ar.23733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/14/2017] [Accepted: 08/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Christine Steyn
- Department of Anatomy and Physiology, Faculty of Veterinary Science; University of Pretoria; Onderstepoort South Africa
| | - John T. Soley
- Department of Anatomy and Physiology, Faculty of Veterinary Science; University of Pretoria; Onderstepoort South Africa
| | - Martina R. Crole
- Department of Anatomy and Physiology, Faculty of Veterinary Science; University of Pretoria; Onderstepoort South Africa
| |
Collapse
|
36
|
Prieur J, Pika S, Barbu S, Blois-Heulin C. A multifactorial investigation of captive gorillas’ intraspecific gestural laterality. Laterality 2017; 23:538-575. [DOI: 10.1080/1357650x.2017.1410167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jacques Prieur
- CNRS UMR 6552, EthoS “Ethologie Animale et Humaine”, Université de Rennes 1, Paimpont, France
| | - Simone Pika
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Stéphanie Barbu
- CNRS UMR 6552, EthoS “Ethologie Animale et Humaine”, Université de Rennes 1, Paimpont, France
| | - Catherine Blois-Heulin
- CNRS UMR 6552, EthoS “Ethologie Animale et Humaine”, Université de Rennes 1, Paimpont, France
| |
Collapse
|
37
|
Osiurak F. Cognitive Paleoanthropology and Technology: Toward a Parsimonious Theory (PATH). REVIEW OF GENERAL PSYCHOLOGY 2017. [DOI: 10.1037/gpr0000129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tool use in humans and hominins (i.e., extant relatives to humans) is unique in several respects. To date, no attempt has been made to review the main patterns of tool behavior specific to these species as well as to integrate them into a coherent framework. The aim here is to fill this gap by (a) identifying these behavioral specificities and (b) trying to explain the greatest number of these specificities with the lowest number of cognitive mechanisms. Based on this approach, this article provides a potential solution, namely, the PArsimonious THeory of hominin technology (PATH), aiming to account for the cognitive origins of 4 behavioral characteristics: transfer, complex tool use, secondary tool use, and tool saving. A key hypothesis is that the emergence of 2 breaking mechanisms—technical reasoning and semantic reasoning—could have boosted hominin technology. PATH offers an original framework for understanding the most archaic, human cognitive traits, thereby providing a good starting point for future investigation about the cognitive evolution of technology in the genus Homo.
Collapse
|
38
|
Lateralized scale-eating behaviour of cichlid is acquired by learning to use the naturally stronger side. Sci Rep 2017; 7:8984. [PMID: 28827740 PMCID: PMC5567130 DOI: 10.1038/s41598-017-09342-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/25/2017] [Indexed: 11/17/2022] Open
Abstract
The scale-eating cichlid Perissodus microlepis exhibits significant lateralised predation behaviour using an asymmetric mouth. But how the acquisition of the behavioural laterality depends, if at all, on experience during development remains obscure. Here, naïve juveniles were tested in a series of predation sessions. Initially, they attacked both sides of the prey, but during subsequent sessions, attack direction gradually lateralised to the skewed mouth (dominant) side. Attack side preference of juveniles that had accumulated scale-eating experience during successive sessions was significantly higher than that of naïve juveniles at the same age and naïve adults. Thus, the lateralised behaviour was a learned experience, and did not develop with age. Surprisingly, however, both maximum amplitude and angular velocity of body flexion during attack of naïve fish was dominant on one side. Therefore, scale-eating fish have a naturally stronger side for attacking prey fish, and they learn to use the dominant side through experience.
Collapse
|
39
|
Hanson NKI, Thorpe SKS, Chappell J. Arboreal Postures Elicit Hand Preference when Accessing a Hard-to-Reach Foraging Device in Captive Bonobos (Pan paniscus). INT J PRIMATOL 2017. [DOI: 10.1007/s10764-017-9976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Bargalló A, Mosquera M, Lozano S. In pursuit of our ancestors' hand laterality. J Hum Evol 2017; 111:18-32. [PMID: 28874271 DOI: 10.1016/j.jhevol.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 11/16/2022]
Abstract
The aim of this paper is to apply a previously published method (Bargalló and Mosquera, 2014) to the archaeological record, allowing us to identify the hand laterality of our ancestors and determine when and how this feature, which is exhibited most strongly in humans, appeared in our evolutionary history. The method focuses on identifying handedness by looking at the technical features of the flakes produced by a single knapper, and discovering how many flakes are required to ascertain their hand preference. This method can potentially be applied to the majority of archaeological sites, since flakes are the most abundant stone tools, and stone tools are the most widespread and widely-preserved remains from prehistory. For our study, we selected two Spanish sites: Gran Dolina-TD10.1 (Atapuerca) and Abric Romaní (Barcelona), which were occupied by pre-Neanderthal and Neanderthal populations, respectively. Our analyses indicate that a minimum number of eight flakes produced by the same knapper is required to ascertain their hand preference. Even though this figure is relatively low, it is quite difficult to obtain from many archaeological sites. In addition, there is no single technical feature that provides information about handedness, instead there is a combination of eight technical features, localised on the striking platforms and ventral surfaces. The raw material is not relevant where good quality rocks are used, in this case quartzite and flint, since most of them retain the technical features required for the analysis. Expertise is not an issue either, since the technical features analysed here only correlate with handedness (Bargalló and Mosquera, 2014). Our results allow us to tentatively identify one right-handed knapper among the pre-Neanderthals of level TD10.1 at Gran Dolina (Atapuerca), while four of the five Neanderthals analysed from Abric Romaní were right-handed. The hand preference of the fifth knapper from that location (AR5) remains unclear.
Collapse
Affiliation(s)
- Amèlia Bargalló
- University College London, Institute Archaeology, London, Great Britain, UK.
| | - Marina Mosquera
- Area de Prehistoria, Universitat Rovira i Virgili (URV), Tarragona, Spain; IPHES, Institut Català de Paleoecologia Humana i Evolució Social, Tarragona, Spain
| | - Sergi Lozano
- IPHES, Institut Català de Paleoecologia Humana i Evolució Social, Tarragona, Spain; Area de Prehistoria, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
41
|
Gaillard M, Scriba MF, Roulin A. Melanism is related to behavioural lateralization in nestling barn owls. Behav Processes 2017; 140:139-143. [PMID: 28483429 DOI: 10.1016/j.beproc.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022]
Abstract
Behavioural laterality is a commonly observed phenomenon in many species suggesting there might be an advantage of using dominantly one side over the other for certain tasks. Indeed, lateralized individuals were often shown to be more successful in cognitive tasks compared to non-lateralized conspecifics. However, stressed individuals are also often, but not always, more strongly lateralized. Because barn owl (Tyto alba) females displaying larger black spots on the tip of their ventral feathers produce offspring that are more resistant to a variety of environmental stressful factors, we examined whether laterality is associated with melanin-based coloration. We recorded whether nestlings use more often the right or left foot to scratch their body and whether they preen more often one side of the body or the other using their bills. We found that the strength of lateralization of preening and scratching was less pronounced in individuals born from heavily spotted mothers. This result might be explained by plumage-related variation in the ability to resist stressful rearing conditions.
Collapse
Affiliation(s)
| | - Madeleine F Scriba
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
|
43
|
Güntürkün O, Ocklenburg S. Ontogenesis of Lateralization. Neuron 2017; 94:249-263. [DOI: 10.1016/j.neuron.2017.02.045] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
|
44
|
Wiper ML. Evolutionary and mechanistic drivers of laterality: A review and new synthesis. Laterality 2017; 22:740-770. [DOI: 10.1080/1357650x.2017.1291658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mallory L. Wiper
- Department of Biological Sciences, University of Windsor, Windsor, Canada
| |
Collapse
|
45
|
Hopkins WD, Meguerditchian A, Coulon O, Misiura M, Pope S, Mareno MC, Schapiro SJ. Motor skill for tool-use is associated with asymmetries in Broca's area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes). Behav Brain Res 2017; 318:71-81. [PMID: 27816558 PMCID: PMC5459306 DOI: 10.1016/j.bbr.2016.10.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30029, United States.
| | - Adrien Meguerditchian
- Laboratory of Cognitive Psychology, UMR 7290, Aix-Marseille University, CNRS, Marseille, France
| | - Olivier Coulon
- Aix-Marseille Université, LSIS, UMR CNRS 7296, Marseille, France
| | - Maria Misiura
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Sarah Pope
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Mary Catherine Mareno
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| | - Steven J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| |
Collapse
|
46
|
Alcorn MR, Callander DC, López-Santos A, Torres Cleuren YN, Birsoy B, Joshi PM, Santure AW, Rothman JH. Heterotaxy in Caenorhabditis: widespread natural variation in left-right arrangement of the major organs. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150404. [PMID: 27821534 PMCID: PMC5104504 DOI: 10.1098/rstb.2015.0404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
Although the arrangement of internal organs in most metazoans is profoundly left-right (L/R) asymmetric with a predominant handedness, rare individuals show full (mirror-symmetric) or partial (heterotaxy) reversals. While the nematode Caenorhabditis elegans is known for its highly determinate development, including stereotyped L/R organ handedness, we found that L/R asymmetry of the major organs, the gut and gonad, varies among natural isolates of the species in both males and hermaphrodites. In hermaphrodites, heterotaxy can involve one or both bilaterally asymmetric gonad arms. Male heterotaxy is probably not attributable to relaxed selection in this hermaphroditic species, as it is also seen in gonochoristic Caenorhabditis species. Heterotaxy increases in many isolates at elevated temperature, with one showing a pregastrulation temperature-sensitive period, suggesting a very early embryonic or germline effect on this much later developmental outcome. A genome-wide association study of 100 isolates showed that male heterotaxy is associated with three genomic regions. Analysis of recombinant inbred lines suggests that a small number of loci are responsible for the observed variation. These findings reveal that heterotaxy is a widely varying quantitative trait in an animal with an otherwise highly stereotyped anatomy, demonstrating unexpected plasticity in an L/R arrangement of the major organs even in a simple animal.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Melissa R Alcorn
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Davon C Callander
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | | - Yamila N Torres Cleuren
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bilge Birsoy
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Department of MCD Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Schnell AK, Hanlon RT, Benkada A, Jozet-Alves C. Lateralization of Eye Use in Cuttlefish: Opposite Direction for Anti-Predatory and Predatory Behaviors. Front Physiol 2016; 7:620. [PMID: 28018245 PMCID: PMC5149545 DOI: 10.3389/fphys.2016.00620] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022] Open
Abstract
Vertebrates with laterally placed eyes typically exhibit preferential eye use for ecological activities such as scanning for predators or prey. Processing visual information predominately through the left or right visual field has been associated with specialized function of the left and right brain. Lateralized vertebrates often share a general pattern of lateralized brain function at the population level, whereby the left hemisphere controls routine behaviors and the right hemisphere controls emergency responses. Recent studies have shown evidence of preferential eye use in some invertebrates, but whether the visual fields are predominately associated with specific ecological activities remains untested. We used the European common cuttlefish, Sepia officinalis, to investigate whether the visual field they use is the same, or different, during anti-predatory, and predatory behavior. To test for lateralization of anti-predatory behavior, individual cuttlefish were placed in a new environment with opaque walls, thereby obliging them to choose which eye to orient away from the opaque wall to scan for potential predators (i.e., vigilant scanning). To test for lateralization of predatory behavior, individual cuttlefish were placed in the apex of an isosceles triangular arena and presented with two shrimp in opposite vertexes, thus requiring the cuttlefish to choose between attacking a prey item to the left or to the right of them. Cuttlefish were significantly more likely to favor the left visual field to scan for potential predators and the right visual field for prey attack. Moreover, individual cuttlefish that were leftward directed for vigilant scanning were predominately rightward directed for prey attack. Lateralized individuals also showed faster decision-making when presented with prey simultaneously. Cuttlefish appear to have opposite directions of lateralization for anti-predatory and predatory behavior, suggesting that there is functional specialization of each optic lobe (i.e., brain structures implicated in visual processing). These results are discussed in relation to the role of lateralized brain function and the evolution of population level lateralization.
Collapse
Affiliation(s)
| | - Roger T Hanlon
- Program in Sensory Physiology and Behavior, Marine Biological Laboratory (MBL) Woods Hole, MA, USA
| | | | | |
Collapse
|
48
|
Bell ATA, Niven JE. Strength of forelimb lateralization predicts motor errors in an insect. Biol Lett 2016; 12:20160547. [PMID: 27651534 PMCID: PMC5046935 DOI: 10.1098/rsbl.2016.0547] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/23/2016] [Indexed: 11/12/2022] Open
Abstract
Lateralized behaviours are widespread in both vertebrates and invertebrates, suggesting that lateralization is advantageous. Yet evidence demonstrating proximate or ultimate advantages remains scarce, particularly in invertebrates or in species with individual-level lateralization. Desert locusts (Schistocerca gregaria) are biased in the forelimb they use to perform targeted reaching across a gap. The forelimb and strength of this bias differed among individuals, indicative of individual-level lateralization. Here we show that strongly biased locusts perform better during gap-crossing, making fewer errors with their preferred forelimb. The number of targeting errors locusts make negatively correlates with the strength of forelimb lateralization. This provides evidence that stronger lateralization confers an advantage in terms of improved motor control in an invertebrate with individual-level lateralization.
Collapse
Affiliation(s)
- Adrian T A Bell
- School of Life Sciences and Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Jeremy E Niven
- School of Life Sciences and Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
49
|
Early visual experience influences behavioral lateralization in the guppy. Anim Cogn 2016; 19:949-58. [PMID: 27215573 DOI: 10.1007/s10071-016-0995-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Individual differences in lateralization of cognitive functions characterize both humans and non-human species. Genetic factors can account for only a fraction of the variance observed and the source of individual variation in laterality remains in large part elusive. Various environmental factors have been suggested to modulate the development of lateralization, including asymmetrical stimulation of the sensory system during ontogeny. In this study, we raised newborn guppies in an asymmetric environment to test the hypothesis that early left-right asymmetries in visual input may affect the development of cerebral asymmetries. Each fish was raised in an impoverished environment but could voluntarily observe a complex scene in a nearby compartment containing a group of conspecifics. Using asymmetric structures, we allowed some subjects to observe the complex scene with the right eye, others with the left eye, and control fish with both eyes. Among asymmetrically stimulated fish, the mirror test revealed eye dominance congruent with the direction of asymmetric stimulation, while controls showed no left-right laterality bias. Interestingly, asymmetric exposure to social stimuli also affected another aspect of visual lateralization-eye preference for scrutinizing a potential predator-but did not influence a measure of motor asymmetry. As the natural environment of guppies is fundamentally asymmetrical, we suggest that unequal left-right stimulation is a common occurrence in developing guppies and may represent a primary source of individual variation in lateralization as well as an efficient mechanism for producing laterality phenotypes that are adapted to local environmental conditions.
Collapse
|
50
|
|