1
|
Schmidt JA, Danielson KG, Duffner ER, Radecki SG, Walker GT, Shelton A, Wang T, Knepper JE. Regulation of the oncogenic phenotype by the nuclear body protein ZC3H8. BMC Cancer 2018; 18:759. [PMID: 30041613 PMCID: PMC6057032 DOI: 10.1186/s12885-018-4674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Zc3h8 gene encodes a protein with three zinc finger motifs in the C-terminal region. The protein has been identified as a component of the Little Elongation Complex, involved in transcription of small nuclear RNAs. ZC3H8 is overexpressed in a number of human and mouse breast cancer cell lines, and elevated mRNA levels are associated with a poorer prognosis for women with breast cancer. METHODS We used RNA silencing to decrease levels of expression in mouse mammary tumor cells and overexpression of ZC3H8 in cells derived from the normal mouse mammary gland. We measured characteristics of cell behavior in vitro, including proliferation, migration, invasion, growth in soft agar, and spheroid growth. We assessed the ability of these cells to form tumors in syngeneic BALB/c mice. ZC3H8 protein was visualized in cells using confocal microscopy. RESULTS Tumor cells with lower ZC3H8 expression exhibited decreased proliferation rates, slower migration, reduced ability to invade through a basement membrane, and decreased anchorage independent growth in vitro. Cells with lower ZC3H8 levels formed fewer and smaller tumors in animals. Overexpression of ZC3H8 in non-tumorigenic COMMA-D cells led to an opposite effect. ZC3H8 protein localized to both PML bodies and Cajal bodies within the nucleus. ZC3H8 has a casein kinase 2 (CK2) phosphorylation site near the N-terminus, and a CK2 inhibitor caused the numerous PML bodies and ZC3H8 to coalesce to a few larger bodies. Removal of the inhibitor restored PML bodies to their original state. A mutant ZC3H8 lacking the predicted CK2 phosphorylation site showed localization and numbers of ZC3H8/PML bodies similar to wild type. In contrast, a mutant constructed with a glutamic acid in place of the phosphorylatable threonine showed dramatically increased numbers of smaller nuclear foci. CONCLUSIONS These experiments demonstrate that Zc3h8 expression contributes to aggressive tumor cell behavior in vitro and in vivo. Our studies show that ZC3H8 integrity is key to maintenance of PML bodies. The work provides a link between the Little Elongation Complex, PML bodies, and the cancer cell phenotype.
Collapse
Affiliation(s)
- John A. Schmidt
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Keith G. Danielson
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Emily R. Duffner
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Sara G. Radecki
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Gerard T. Walker
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Amber Shelton
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Tianjiao Wang
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Janice E. Knepper
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| |
Collapse
|
2
|
Mapes J, Anandan L, Li Q, Neff A, Clevenger CV, Bagchi IC, Bagchi MK. Aberrantly high expression of the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) in mammary epithelium leads to breast tumorigenesis. J Biol Chem 2018; 293:2850-2864. [PMID: 29321207 DOI: 10.1074/jbc.ra117.000162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
The peptide hormone prolactin (PRL) and certain members of the epidermal growth factor (EGF) family play central roles in mammary gland development and physiology, and their dysregulation has been implicated in mammary tumorigenesis. Our recent studies have revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) is a critical factor for PRL-mediated activation of the transcription factor STAT5 in mouse mammary epithelium. Of note, CUZD1 controls production of a specific subset of the EGF family growth factors and consequent activation of their receptors. Here, we found that consistent with this finding, CUZD1 overexpression in non-transformed mammary epithelial HC11 cells increases their proliferation and induces tumorigenic characteristics in these cells. When introduced orthotopically in mouse mammary glands, these cells formed adenocarcinomas, exhibiting elevated levels of STAT5 phosphorylation and activation of the EGF signaling pathway. Selective blockade of STAT5 phosphorylation by pimozide, a small-molecule inhibitor, markedly reduced the production of the EGF family growth factors and inhibited PRL-induced tumor cell proliferation in vitro Pimozide administration to mice also suppressed CUZD1-driven mammary tumorigenesis in vivo Analysis of human MCF7 breast cancer cells indicated that CUZD1 controls the production of the same subset of EGF family members in these cells as in the mouse. Moreover, pimozide treatment reduced the proliferation of these cancer cells. Collectively, these findings indicate that overexpression of CUZD1, a regulator of growth factor pathways controlled by PRL and STAT5, promotes mammary tumorigenesis. Blockade of the STAT5 signaling pathway downstream of CUZD1 may offer a therapeutic strategy for managing these breast tumors.
Collapse
Affiliation(s)
| | | | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Alison Neff
- Department of Molecular and Integrative Physiology
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | | |
Collapse
|
3
|
Mapes J, Li Q, Kannan A, Anandan L, Laws M, Lydon JP, Bagchi IC, Bagchi MK. CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. PLoS Genet 2017; 13:e1006654. [PMID: 28278176 PMCID: PMC5363987 DOI: 10.1371/journal.pgen.1006654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/23/2017] [Accepted: 02/26/2017] [Indexed: 01/17/2023] Open
Abstract
In the mammary gland, genetic circuits controlled by estrogen, progesterone, and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. However, the precise mechanisms underlying the crosstalk between the hormonal and growth factor pathways remain poorly understood. We have identified the CUB and zona pellucida-like domain-containing protein 1 (CUZD1), expressed in mammary ductal and alveolar epithelium, as a novel mediator of mammary gland proliferation and differentiation during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in mammary ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Gene expression profiling of mammary epithelium revealed that CUZD1 regulates the expression of a subset of the EGF family growth factors, epiregulin, neuregulin-1, and epigen, which act in an autocrine fashion to activate ErbB1 and ErbB4 receptors. Proteomic studies further revealed that CUZD1 interacts with a complex containing JAK1/JAK2 and STAT5, downstream transducers of prolactin signaling in the mammary gland. In the absence of CUZD1, STAT5 phosphorylation in the mammary epithelium during alveologenesis was abolished. Conversely, elevated expression of Cuzd1 in mammary epithelial cells stimulated prolactin-induced phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation confirmed co-occupancy of phosphorylated STAT5 and CUZD1 in the regulatory regions of epiregulin, a potential regulator of epithelial proliferation, and whey acidic protein, a marker of epithelial differentiation. Collectively, these findings suggest that CUZD1 plays a critical role in prolactin-induced JAK/STAT5 signaling that controls the expression of key STAT5 target genes involved in mammary epithelial proliferation and differentiation during alveolar development. In the mammary gland, genetic circuits controlled by the hormones, estrogen, progesterone and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. We have identified CUZD1 as a novel mediator of prolactin signaling in the steroid hormone-primed mouse mammary gland during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Administration of prolactin failed to induce proliferation of the mammary epithelium in Cuzd1-null mice. Protein binding studies revealed that CUZD1 interacts with downstream transducers of prolactin signaling, JAK1/JAK2 and STAT5. Additionally, elevated expression of Cuzd1 in mammary epithelial cells stimulated phosphorylation and nuclear translocation of STAT5. CUZD1, therefore, is a critical mediator of prolactin that controls mammary alveolar development.
Collapse
Affiliation(s)
- Janelle Mapes
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Lavanya Anandan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| | - Milan K. Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| |
Collapse
|
4
|
Walker DM, Patrick O'Neill J, Tyson FL, Walker VE. The stress response resolution assay. I. Quantitative assessment of environmental agent/condition effects on cellular stress resolution outcomes in epithelium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:268-280. [PMID: 23554083 DOI: 10.1002/em.21772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The events or factors that lead from normal cell function to conditions and diseases such as aging or cancer reflect complex interactions between cells and their environment. Cellular stress responses, a group of processes involved in homeostasis and adaptation to environmental change, contribute to cell survival under stress and can be resolved with damage avoidance or damage tolerance outcomes. To investigate the impact of environmental agents/conditions upon cellular stress response outcomes in epithelium, a novel quantitative assay, the "stress response resolution" (SRR) assay, was developed. The SRR assay consists of pretreatment with a test agent or vehicle followed later by a calibrated stress conditions exposure step (here, using 6-thioguanine). Pilot studies conducted with a spontaneously-immortalized murine mammary epithelial cell line pretreated with vehicle or 20 µg N-ethyl-N-nitrososurea/ml medium for 1 hr, or two hTERT-immortalized human bronchial epithelial cell lines pretreated with vehicle or 100 µM zidovudine/lamivudine for 12 days, found minimal alterations in cell morphology, survival, or cell function through 2 weeks post-exposure. However, when these pretreatments were followed 2 weeks later by exposure to calibrated stress conditions of limited duration (for 4 days), significant alterations in stress resolution were observed in pretreated cells compared with vehicle-treated control cells, with decreased damage avoidance survival outcomes in all cell lines and increased damage tolerance outcomes in two of three cell lines. These pilot study results suggest that sub-cytotoxic pretreatments with chemical mutagens have long-term adverse impact upon the ability of cells to resolve subsequent exposure to environmental stressors.
Collapse
Affiliation(s)
- Dale M Walker
- Experimental Pathology Laboratories, Inc., Herndon, VA, USA
| | | | | | | |
Collapse
|
5
|
Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc Natl Acad Sci U S A 2013; 110:7123-30. [PMID: 23580620 DOI: 10.1073/pnas.1303919110] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The partial purification of mouse mammary gland stem cells (MaSCs) using combinatorial cell surface markers (Lin(-)CD24(+)CD29(h)CD49f(h)) has improved our understanding of their role in normal development and breast tumorigenesis. Despite the significant improvement in MaSC enrichment, there is presently no methodology that adequately isolates pure MaSCs. Seeking new markers of MaSCs, we characterized the stem-like properties and expression signature of label-retaining cells from the mammary gland of mice expressing a controllable H2b-GFP transgene. In this system, the transgene expression can be repressed in a doxycycline-dependent fashion, allowing isolation of slowly dividing cells with retained nuclear GFP signal. Here, we show that H2b-GFP(h) cells reside within the predicted MaSC compartment and display greater mammary reconstitution unit frequency compared with H2b-GFP(neg) MaSCs. According to their transcriptome profile, H2b-GFP(h) MaSCs are enriched for pathways thought to play important roles in adult stem cells. We found Cd1d, a glycoprotein expressed on the surface of antigen-presenting cells, to be highly expressed by H2b-GFP(h) MaSCs, and isolation of Cd1d(+) MaSCs further improved the mammary reconstitution unit enrichment frequency to nearly a single-cell level. Additionally, we functionally characterized a set of MaSC-enriched genes, discovering factors controlling MaSC survival. Collectively, our data provide tools for isolating a more precisely defined population of MaSCs and point to potentially critical factors for MaSC maintenance.
Collapse
|
6
|
Zhang XG, Mason PW, Dubovi EJ, Xu X, Bourne N, Renshaw RW, Block TM, Birk AV. Antiviral activity of geneticin against dengue virus. Antiviral Res 2009; 83:21-7. [PMID: 19501253 PMCID: PMC2694137 DOI: 10.1016/j.antiviral.2009.02.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/23/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
The aminoglycoside, geneticin (G418), was recently shown to have antiviral activity against bovine viral diarrhea virus (BVDV). Since BVDV, dengue virus (DENV) and yellow fever virus (YFV) all belong to the Flaviviridae family, it seemed possible that a common step in their life cycle might be affected by this aminoglycoside. Here it is shown that geneticin prevented the cytopathic effect (CPE) resulting from DENV-2 infection of BHK cells, in a dose-dependent manner with an 50% effective concentration (EC(50)) value of 3+/-0.4microg/ml. Geneticin had no detectable effect on CPE caused by YFV in BHK cells. Geneticin also inhibited DENV-2 viral yield with an EC(50) value of 2+/-0.1microg/ml and an EC(90) value of 20+/-2microg/ml. With a CC(50) value of 165+/-5microg/ml, the selectivity index of anti-DENV activity of geneticin in BHK cells was established to be 66. Furthermore, 25microg/ml of geneticin nearly completely blocked plaque formation induced by DENV-2, but not YFV. In addition, geneticin, inhibited DENV-2 viral RNA replication and viral translation. Gentamicin, kanamycin, and the guanidinylated geneticin showed no anti-DENV activity. Neomycin and paromomycin demonstrated weak antiviral activity at high concentrations. Finally, aminoglycoside-3'-phosphotransferase activity of neomycin-resistant gene abolished antiviral activity of geneticin.
Collapse
Affiliation(s)
- Xianchao G. Zhang
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| | - Peter W. Mason
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX
| | - Edward J. Dubovi
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Xiaodong Xu
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| | - Nigel Bourne
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX
| | - Randall W. Renshaw
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Timothy M. Block
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| | - Alexander V. Birk
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| |
Collapse
|
7
|
Birk AV, Dubovi EJ, Zhang X, Szeto HH. Antiviral activity of geneticin against bovine viral diarrhoea virus. Antivir Chem Chemother 2008; 19:33-40. [PMID: 18610556 DOI: 10.1177/095632020801900105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aminoglycoside G418 is commonly used to generate stable replicons for RNA viruses, such as hepatitis C virus, West Nile virus, and bovine viral diarrhoea virus (BVDV). This precludes testing 6418's own antiviral activities against those viruses. Here, we report antiviral activity of 6418 against BVDV. METHODS Cell viability and virus yield reduction assays were used to investigate antiviral effects of G418 against BVDV. The expression of viral proteins and RNA were determined by western blot and real-time quantitive PCR, respectively. RESULTS We demonstrated that G418 (50% cytotoxicity concentration of 400 microg/ml) improved cell viability of Madin-Darby bovine kidney cells infected with a cytopathic strain of BVDV (NADL) in a dose-dependent manner with 50% effective concentration of 4 microg/ml. Interestingly, close structural analogues with known properties as translation inhibitors similar to G418 - kanamycin and gentamicin - had no antiviral activity against BVDV. In addition, 6418 inhibits virus yield of two different strains of BVDV (NADL and NY-1) without affecting viral RNA replication and translation or viral NS3 protein processing. CONCLUSION Our data indicate that antiviral activity of G418 could result from interference with either the assembly or release of active virus, rather than the regulation of viral translation and replication. Thus, we propose the use of chemical analogues of G418 as antiviral therapeutics for treatment of viral diseases associated with the Flaviviridae family, such as hepatitis C virus, dengue virus, yellow fever virus, West Nile virus and others.
Collapse
Affiliation(s)
- Alexander V Birk
- Institute of Hepatitis and Viral Research, Doylestown, PA 18902, USA.
| | | | | | | |
Collapse
|
8
|
Sumantran VN, Lee DS, Woods Ignatoski KM, Ethier SP, Wicha MS. A bcl-xS adenovirus selectively induces apoptosis in transformed cells compared to normal mammary cells. Neoplasia 2000; 2:251-60. [PMID: 10935511 PMCID: PMC1507566 DOI: 10.1038/sj.neo.7900084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oncogenes which drive the cell cycle, such as c-myc, can sensitize cells to apoptosis. This suggests the possibility that the expression of genes such as bcl-2 or bcl-xL is required to inhibit apoptosis induced by oncogene expression. We hypothesized that inhibition of Bcl-2/Bcl-xL by the pro-apoptotic Bcl-xS protein, would result in selective induction of apoptosis in mammary carcinoma cells compared to their nontransformed counterparts. Therefore, we compared the effects of Bcl-xS expression delivered by a bcl-xS adenovirus (bcl-xS-Adv) vector, on viability and apoptosis of nontransformed versus transformed mammary epithelial cells. We report that c-myc-transformed murine mammary cells are extremely sensitive to apoptosis induced by the bcl-xS adenovirus (bcl-xS-Adv) vector, whereas immortalized, nontransformed murine mammary cells are relatively resistant to apoptosis induced by this vector. Likewise, human mammary epithelial cells transduced with c-erbB-2 were more sensitive to apoptosis induced by the bcl-xS vector than the nontransformed parental cells. Similar results were obtained when we tested the effects of bcl-xS adenoviral infection on primary normal human mammary epithelial cells and SUM-190 PT cells, (a c-erbB-2 over-expressing human mammary carcinoma cell line) grown on Matrigel. These data are consistent with the hypothesis that inhibition of Bcl-2/Bcl-xL can result in selective killing of cancer cells compared to their nontransformed counterparts.
Collapse
Affiliation(s)
- V N Sumantran
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor 48109-0942, USA
| | | | | | | | | |
Collapse
|
9
|
Hayward SW, Haughney PC, Lopes ES, Danielpour D, Cunha GR. The rat prostatic epithelial cell line NRP-152 can differentiate in vivo in response to its stromal environment. Prostate 1999; 39:205-12. [PMID: 10334110 DOI: 10.1002/(sici)1097-0045(19990515)39:3<205::aid-pros9>3.0.co;2-m] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The clonally derived rat prostatic epithelial cell line NRP-152 was examined to determine its ability to differentiate in a tissue recombination model. METHODS NRP-152 cells alone, or combined with urogenital mesenchyme (UGM) or 10T1/2 fibroblasts, were grafted beneath the renal capsule of athymic rodent hosts. After 1 and 3 months, grafts were examined grossly and immunohistochemically. RESULTS NRP-152 cells grafted alone formed small (10-25 mg) grafts without recognizable architecture. NRP-152 cells recombined with UGM formed larger grafts (50-100 mg after 28 days) containing glandular epithelium. Columnar luminal cells expressed cytokeratins 8 and 18 and rat prostatic secretory markers (DP-1 and DP-2). The epithelial ducts were surrounded by well-differentiated smooth muscle. The glandular epithelial cells were shown to be of rat origin. NRP-152 + 10T1/2 tissue recombinants formed small grafts (10-40 mg wet weight) after 1 month. The epithelial component of these grafts formed solid unbranched cords expressing cytokeratins 5 and 14; no glandular epithelial structures were observed. The stromal matrix was densely packed with a few cells expressing alpha-actin. CONCLUSIONS A clonally derived prostatic epithelial cell line can form structurally and functionally normal prostatic tissue. This suggests that prostatic basal and luminal epithelial cells can be derived from a common progenitor.
Collapse
Affiliation(s)
- S W Hayward
- Department of Urology, School of Medicine, University of California at San Francisco, 94115-0738, USA.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Pierre S, Jolivet G, Devinoy E, Théron MC, Maliénou-N'Gassa R, Puissant C, Houdebine LM. A distal region enhances the prolactin induced promoter activity of the rabbit alpha s1-casein gene. Mol Cell Endocrinol 1992; 87:147-56. [PMID: 1446787 DOI: 10.1016/0303-7207(92)90243-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Casein gene expression is induced in the rabbit mammary gland by prolactin (PRL). alpha s1-casein is the major casein secreted into milk. In order to define the position of the DNA sequences involved in the control of rabbit alpha s1-casein gene regulation by PRL, chimeric genes were constructed between upstream regions of the rabbit alpha s1-casein gene and the chloramphenicol acetyl transferase (CAT) reporter gene. A series of 5'-deleted fusion genes was obtained by nuclease digestion of the alpha s1-casein gene upstream region. These gene constructs were transfected into rabbit primary mammary cells, or cotransfected in CHO cells with the plasmid coding for the rabbit mammary receptor (PRL-R). A regulatory region has been located between nt -3768 and -3155. This region enhances the prolactin induced promoter activity of the alpha s1-casein gene. It might possess or cooperate with prolactin responsive elements located further downstream in the alpha s1-casein gene.
Collapse
Affiliation(s)
- S Pierre
- Unité de Différenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Partial phenotypic suppression of a peroxisome-deficient animal cell mutant treated with aminoglycoside G418. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42193-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Steiner MR. Localization and characterization of phospholipase A2 in mouse mammary gland-derived cells. Arch Biochem Biophys 1991; 286:293-9. [PMID: 1910288 DOI: 10.1016/0003-9861(91)90043-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phospholipase A2 (PLA2) can participate in the regulation of eicosanoid biosynthesis via PLA2-mediated control of the release of arachidonic acid from phospholipids. Arachidonoyl-hydrolyzing PLA2s were examined in cells from normal mouse mammary glands and mammary carcinomas. Tumor-derived cells exhibited significant PLA2 activity(ies) with arachidonoyl containing phosphatidylcholine and phosphatidylethanolamine as substrates in cell-free assays. In contrast, arachidonoyl containing phosphatidylinositol was a poor substrate. When phosphatidylcholines with varying sn-2 fatty acyl groups were tested as substrates, activity was highest with the arachidonoyl containing lipid. The pH profiles for hydrolysis of phosphatidylcholine and phosphatidylethanolamine differed; all other aspects of PLA2-mediated hydrolysis of these two substrates were similar including a Ca2+ requirement for activity. Moreover, Ca2+ affected the subcellular localization of the enzyme activity. Activity was predominately in the supernatant fraction when cells were harvested in an EGTA (ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid) containing buffer and largely in the particulate fraction when cells were harvested in a buffer containing free Ca2+. The localization of activity could be modulated from the supernatant fraction to the particulate fraction by recentrifugation in the presence of Ca2+. Normal gland-derived cells contained a PLA2 activity with properties similar to those of the tumor-derived cells. There was a significant difference in the level of activity in the normal versus tumor cells, the normal gland-derived cells had less than half the PLA2 activity of the carcinoma-derived cells.
Collapse
Affiliation(s)
- M R Steiner
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536
| |
Collapse
|