1
|
Joshi PS, Modur V, Cheng J, Robinson K, Rao K. Characterization of immortalized human mammary epithelial cell line HMEC 2.6. Tumour Biol 2017; 39:1010428317724283. [PMID: 29022488 DOI: 10.1177/1010428317724283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.
Collapse
Affiliation(s)
- Pooja S Joshi
- 1 Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vishnu Modur
- 2 Department of Pediatrics and Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - JiMing Cheng
- 3 For You Dentistry, 477 Union Ave., Bridgewater, NJ
| | - Kathy Robinson
- 4 Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University School of Medicine, USA.,5 Simmons Cancer Institute at Southern Illinois University, Springfield, IL, USA
| | - Krishna Rao
- 1 Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.,4 Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University School of Medicine, USA.,5 Simmons Cancer Institute at Southern Illinois University, Springfield, IL, USA
| |
Collapse
|
2
|
Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 2005; 7:190-7. [PMID: 16168137 PMCID: PMC1242144 DOI: 10.1186/bcr1286] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mammary gland consists of an extensively branched ductal network contained within a distinctive basement membrane and encompassed by a stromal compartment. During lactation, production of milk depends on the action of the two epithelial cell types that make up the ductal network: luminal cells, which secrete the milk components into the ductal lumen; and myoepithelial cells, which contract to aid in the ejection of milk. There is increasing evidence that the myoepithelial cells also play a key role in the organizational development of the mammary gland, and that the loss and/or change of myoepithelial cell function is a key step in the development of breast cancer. In this review we briefly address the characteristics of breast myoepithelial cells from human breast and mouse mammary gland, how they function in normal mammary gland development, and their recently appreciated role in tumor suppression.
Collapse
Affiliation(s)
- Melissa C Adriance
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jamie L Inman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ole W Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, Copenhagen, Denmark
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
3
|
Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R. Regulation of BRCC, a Holoenzyme Complex Containing BRCA1 and BRCA2, by a Signalosome-like Subunit and Its Role in DNA Repair. Mol Cell 2003; 12:1087-99. [PMID: 14636569 DOI: 10.1016/s1097-2765(03)00424-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have isolated a holoenzyme complex termed BRCC containing BRCA1, BRCA2, and RAD51. BRCC not only displays increased association with p53 following DNA damage but also ubiquitinates p53 in vitro. BRCC36 and BRCC45 are novel components of the complex with sequence homology to a subunit of the signalosome and proteasome complexes. Reconstitution of a recombinant four-subunit complex containing BRCA1/BARD1/BRCC45/BRCC36 revealed an enhanced E3 ligase activity compared to that of BRCA1/BARD1 heterodimer. In vivo, depletion of BRCC36 and BRCC45 by the small interfering RNAs (siRNAs) resulted in increased sensitivity to ionizing radiation and defects in G2/M checkpoint. BRCC36 shows aberrant expression in sporadic breast tumors. These findings identify BRCC as a ubiquitin E3 ligase complex that enhances cellular survival following DNA damage.
Collapse
Affiliation(s)
- Yuanshu Dong
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Tobacman JK, Hinkhouse M, Khalkhali-Ellis Z. Steroid sulfatase activity and expression in mammary myoepithelial cells. J Steroid Biochem Mol Biol 2002; 81:65-8. [PMID: 12127043 DOI: 10.1016/s0960-0760(02)00048-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE This investigation examined mRNA expression and enzymatic activity of steroid sulfatase (STS) in human mammary myoepithelial cells (MMECs) and MCF-7 cells and assessed the effects of 17-beta estradiol on the activity of STS. METHODS The mRNA level of STS in MMECs was determined by RT-PCR analysis using specific primers for STS. STS enzymatic activity prior to and after treatment with 17-beta estradiol was determined by measuring 3H-metabolites formed after exposure to [3H]estrone 3-sulfate (E1S) and [3H]dehydroepiandrosterone-sulfate (DHEA-S). RESULTS Our data demonstrate the presence of STS in the MMECs. Based on RT-PCR analysis, MMECs had slightly lower levels of STS compared to MCF-7 cells. However, sulfatase activity was about 120 times greater in the MMECs than the MCF-7 cells (E1S V(max)=2640nmol/(mg DNAh) compared to 20.9nmol/(mg DNAh)). Exposure to 17-beta estradiol was associated with 70% reduction in E1S sulfatase activity in the MCF-7 cells and 9% increase in the MMECs after 6 days. DISCUSSION Our studies indicate for the first time the presence of STS in MMECs. This is suggestive of a previously undetermined role for MMECs in converting precursor hormones into active steroid hormones within mammary tissue. In addition, differential response of the MMECs and the MCF-7 cells to estrogen demonstrates differences in hormone metabolism between these two cell types, perhaps related to the absence of estrogen receptors in the MMECs and their presence in the MCF-7 cells. The MMECs may have an important role in hormonal regulation within mammary tissue.
Collapse
Affiliation(s)
- Joanne K Tobacman
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242-1081, USA.
| | | | | |
Collapse
|
5
|
Weaver VM, Fischer AH, Peterson OW, Bissell MJ. The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem Cell Biol 1996; 74:833-51. [PMID: 9164652 PMCID: PMC2933195 DOI: 10.1139/o96-089] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is a dominant regulator of tissue development and homeostasis. "Designer microenvironments" in culture and in vivo model systems have shown that the ECM regulates growth, differentiation, and apoptosis in murine and human mammary epithelial cells (MEC) through a hierarchy of transcriptional events involving the intricate interplay between soluble and physical signaling pathways. Furthermore, these studies have shown that these pathways direct and in turn are influenced by the tissue structure. Tissue structure is directed by the cooperative interactions of the cell-cell and cell-ECM pathways and can be modified by stromal factors. Not surprisingly then, loss of tissue structure and alterations in ECM components are associated with the appearance and dissemination of breast tumors, and malignancy is associated with perturbations in cell adhesion, changes in adhesion molecules, and a stromal reaction. Several lines of evidence now support the contention that the pathogenesis of breast cancer is determined (at least in part) by the dynamic interplay between the ductal epithelial cells, the microenvironment, and the tissue structure (acini). Thus, to understand the mechanisms involved in carcinogenesis, the role of the microenvironment (ECM as well as the stromal cells) with respect to tissue structure should be considered and studied. Towards this goal, we have established a unique human MEC model of tumorigenesis, which in concert with a three-dimensional assay, recapitulates many of the genetic and morphological changes observed in breast in cancer in vivo. We are currently using this system to understand the role of the microenvironment and tissue structure in breast cancer progression.
Collapse
Affiliation(s)
- V M Weaver
- Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
6
|
Petersen OW, Rønnov-Jessen L, Bissell MJ. The Microenvironment of the Breast: Three-Dimensional Models to Study the Roles of the Stroma and the Extracellular Matrix in Function and Dysfunction. Breast J 1995. [DOI: 10.1111/j.1524-4741.1995.tb00215.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Karsten U, Papsdorf G, Vojtesek B, Moll R, Lane EB, Clausen H, Stosiek P, Kasper M, Pauly A. Subtypes of non-transformed human mammary epithelial cells cultured in vitro: histo-blood group antigen H type 2 defines basal cell-derived cells. Differentiation 1993. [DOI: 10.1111/j.1432-0436.1993.tb01588.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Karsten U, Papsdorf G, Pauly A, Vojtesek B, Moll R, Lane EB, Clausen H, Stosiek P, Kasper M. Subtypes of non-transformed human mammary epithelial cells cultured in vitro: histo-blood group antigen H type 2 defines basal cell-derived cells. Differentiation 1993; 54:55-66. [PMID: 8405774 DOI: 10.1111/j.1432-0436.1993.tb00659.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Normal (non-transformed) human mammary epithelial cell lines derived from reduction mammoplasties were analyzed by immunocytochemistry with more than 80 monoclonal antibodies (mAbs) and other specific reagents to tissue-specific and developmentally regulated antigens at different passage levels. A subpopulation of poorly differentiated, proliferating epithelial cells, corresponding to the 'selected' cell type of late passages, is shown to be characterized by a new marker, the histo-blood group antigen H type 2, probably carried on a membrane-bound glycolipid. These cells also express a number of other onco-developmental carbohydrate antigens [Le(y), Le(x), sialosyl-Le(a), precursor of Thomsen Friedenreich antigen (Tn), but not Thomsen-Friedenreich antigen and sialosyl-Tn]. Their cytokeratin (CK) phenotype, as assessed by reactivity with monospecific mAbs and two-dimensional gel electrophoresis, is CK 5, 6, 14 and 17, with CK 19 being consistently absent, and varying minor amounts of CK 7, 8 and 18, as well as 15 and 16. The reactivity of these cells with a panel of 11 mAbs specific for CK 18 varies considerably even after cloning, indicating heterogeneity of epitope expression or accessibility. Our data strongly suggest that the H type 2+ cells develop from the basal cell layer of the mammary gland.
Collapse
Affiliation(s)
- U Karsten
- Max Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Berthon P, Pancino G, de Cremoux P, Roseto A, Gespach C, Calvo F. Characterization of normal breast epithelial cells in primary cultures: differentiation and growth factor receptors studies. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:716-24. [PMID: 1282913 DOI: 10.1007/bf02631059] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The growth and differentiation of normal human mammary epithelial cells (HMEC) were studied after propagation of serial cultures from breast tissue biopsies from 42 mammoplasty patients. Cells were grown for up to 7 mo. in low calcium medium. HMEC cultures displayed heterogeneous growth patterns, according to the average doubling time of 44 +/- 6 h for 32 generations. Proliferation peaked at Day 30. HMEC maintained a normal karyotype and were organized in ductlike structures when cultured in collagen gel matrix. The cultures retained several phenotype traits of the epithelial lineage, including the expression of cytokeratins 18 and 19, specific mammary gland antigens, as shown by indirect HMEC immunostaining by the monoclonal antibodies DF3, EMA, 7B10, and 1BE12. Estrogen receptors were undetectable, whereas progesterone receptors were present at very low density. High-affinity cell surface receptors for epidermal growth factor (EGF) (Kd = 1.1 x 10(-10) M) were observed at a density of 50,000 to 100,000 sites per cell. Accordingly, [3H]thymidine incorporation in HMEC was optimally stimulated by EGF at concentrations of 10(-11) to 10(-10) M. HMEC were also seen to possess functional VIP receptors linked to the adenylate cyclase system, as we previously observed in seven human breast cancer cell lines. These results show that long-term cultures of HMEC provide useful models for studying the growth and differentiation of the normal human mammary gland, and the role of growth factors and hormones in these functions.
Collapse
Affiliation(s)
- P Berthon
- Laboratoire de Pharmacologie, Institut de Génétique Moléculaire, Hôpital Saint Louis, Paris
| | | | | | | | | | | |
Collapse
|
10
|
Rak JW, McEachern D, Miller FR. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Br J Cancer 1992; 65:641-8. [PMID: 1586590 PMCID: PMC1977372 DOI: 10.1038/bjc.1992.138] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A sequential, quantitative loss of Peanut agglutinin (PNA) binding with progression of mouse mammary cells from normal to preneoplastic to neoplastic phenotypes was observed. Normal mammary epithelium, preneoplastic mammary lesions designated D2HAN (D2-type hyperplastic alveolar nodules) and a series of nine spontaneous tumours (D2ST1, D2ST2, D2ST3, D2ST4, D2A1, D2F2, D2.0R, D2.1, EMT6R08) derived from mice bearing D2HAN were grown in culture and analysed by flow cytometry with respect to PNA binding intensity to the cell surface. Primary cultures of normal mammary epithelium strongly bound PNA. A stepwise decrease in PNA binding by preneoplastic D2HAN cells and subsequent tumours arising from those hyperplastic lesions was observed. Three cloned tumour subpopulations derived from such tumours exhibited dramatic differences in PNA binding ranging from high (D2.0R) to low (D2.1) to very low (D2A1 cells). Their growth rate in vitro was similar. However, an inverse correlation between PNA binding and malignant characteristics, such as the incidence and latency of subcutaneous tumours and the efficiency of the tumour cells to form lung colonies after i.v. injection, existed. Cells subsequently derived from tumours resulting from injection of the D2.0R clone (high PNA binding, low tumorigenicity) were found to have diminished PNA binding properties and to be more tumorigenic when reimplanted into syngeneic mice. The difference in PNA binding (up to 50-fold) between normal mammary cells and other mouse mammary tumour cells, i.e., unrelated to D2HAN lesions, was also seen. These include six sister subpopulations derived from a single BALB/cfC3H mouse mammary tumour (lines: 67, 66c14, 168FARN, 4TO7, 68H, 64pT) as well as SP1 spontaneous CBA/J mouse mammary carcinoma. The difference was greatly reduced by neuraminidase treatment suggesting a masking of PNA binding sites by sialic acid. Separation of cell lysates by SDS-PAGE revealed a high molecular weight PNA binding glycoprotein (greater than 250 kd) expressed by normal mammary epithelium and preneoplastic D2HAN cells, but not by tumour cells regardless of neuraminidase treatment. A PNA reactive glycoprotein of approximately 90 kd was uniquely expressed in normal mammary epithelial lysates, although neuraminidase treatment exposed a similar band in a few tumour lines. Normal mammary epithelium, preneoplastic D2HAN cells, and the poorly tumorigenic clone D2.0R expressed a PNA binding glycoprotein of approximately 150 kd. This band appeared to be specifically sialylated during transition from the high PNA binding, low tumorigenic phenotype of D2.0R cells to the low PNA binding, highly tumorigenic phenotype of cells isolated from tumours resulting from s.c. implantation of D2.0R cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Electrophoresis, Polyacrylamide Gel
- Female
- Flow Cytometry
- Glycoproteins/metabolism
- Kinetics
- Lectins/metabolism
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Neoplasm Proteins/metabolism
- Peanut Agglutinin
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Protein Binding
- Receptors, Mitogen/physiology
- Serum Albumin, Bovine/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J W Rak
- Breast Cancer Biology Program, Michigan Cancer Foundation, Detroit 48201
| | | | | |
Collapse
|
11
|
Ferrari SL, Rizzoli R, Bonjour JP. Parathyroid hormone-related protein production by primary cultures of mammary epithelial cells. J Cell Physiol 1992; 150:304-11. [PMID: 1734034 DOI: 10.1002/jcp.1041500213] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) plays a major role in the pathogenesis of malignant hypercalcemia, but has also been found in fetal and adult non-neoplastic tissues. Among them, lactating mammary gland was shown to produce PTHrP, and high levels of PTHrP were measured in milk. However, the regulation of PTHrP production by breast cells is still unknown. Primary cultures of mammary cells isolated from rat lactating glands were grown on collagen gels in an insulin/epidermal growth factor (EGF)-supplemented medium. Under these conditions, mammary cells displayed an epithelial phenotype and their number increased more than twofold after 1 week in culture. At that time, the cells were capable of producing immunoreactive PTHrP (range: 25 to 150 pg/10(5) cells x 24 h) and PTH-like bioactivity, as indicated by a 60% increase in cyclic adenosine monophosphate (cAMP) production induced by mammary epithelial cell conditioned medium in the PTH-responsive osteoblast-like UMR-106 cell line. When cell proliferation was hindered by lowering plating density, by removing medium supplements, or by adding transforming growth factor (TGF)-beta, a well-known autocrine inhibitor of mammary epithelial cell growth. PTHrP production was increased. In contrast, the omission of EGF or addition of specified anti-EGF antibodies decreased PTHrP production. In conclusion, primary cultures of mammary epithelial cells isolated from lactating rat were shown for the first time to produce PTHrP in vitro. This production was higher in the presence of EGF and could be modulated by cell growth rate.
Collapse
Affiliation(s)
- S L Ferrari
- Department of Medicine, University Hospital of Geneva, Switzerland
| | | | | |
Collapse
|
12
|
Rudland PS, Ollerhead GE, Platt-Higgins AM. Morphogenetic behavior of simian virus 40-transformed human mammary epithelial stem cell lines on collagen gels. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:103-12. [PMID: 1708370 DOI: 10.1007/bf02630995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of primary cultures of human breast cells with simian virus 40 and clonal selection has yielded single-cell-cloned, epithelial cell lines, as well as myoepithelial-related cell lines. When grown on floating collagen gels, the epithelial cell lines give rise to branching rays of cells, thick fingerlike protrusions, saclike structures, and degenerating areas. The myoepithelial-related cell lines give rise only to the branching rays. Epidermal growth factor stimulates the production of the thick protrusions, whereas cholera toxin stimulates the production of the degenerating areas. Immunocytochemical staining of these cultures using reagents directed against the cell surface-extracellular matrix or the cellular cytoskeleton confirms the epithelial and myoepithelial nature of the cells, and demonstrates that the degenerating areas are undergoing squamous metaplasia. The fingerlike protrusions consist of cords of cells composed of inner, epithelial and outer, myoepithelial-related cells sometimes surrounding a central lumen reminiscent of ducts. The saclike structures resemble alveoli. Ultrastructural analysis confirms the identification of the basic cell types and also identifies indeterminate cells possessing features of both epithelial and myoepithelial cells. It is suggested that the epithelial cell lines represent human mammary stem cells that can undergo processes of morphogenesis and differentiation in vitro to form many of the three-dimensional structures found within the breast.
Collapse
Affiliation(s)
- P S Rudland
- Department of Biochemistry, University of Liverpool, United Kingdom
| | | | | |
Collapse
|
13
|
Emerman JT, Wilkinson DA. Routine culturing of normal, dysplastic and malignant human mammary epithelial cells from small tissue samples. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1990; 26:1186-94. [PMID: 2079464 DOI: 10.1007/bf02623697] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We compared the growth and morphology of normal, dysplastic and malignant human mammary epithelial cells (HMEC) in medium containing 5% human serum, a serum-free medium (32) and serum-free medium with a low Ca++ concentration. Tissues were dissociated and epithelial organoids or single cells were seeded onto collagen-coated dishes. The cells grew in serum-containing medium, but growth of fibroblasts was also stimulated. The serum-free medium consistently selected for and stimulated the growth of epithelial cells. There was little advantage in reducing the Ca++ concentration to further increase cell yield. This serum-free primary culture system allows us to routinely produce sufficient numbers of HMEC from small tissue samples for molecular biological investigations. Furthermore, the maintenance of cells in a defined medium can provide a system for evaluating the direct effects of factors on gene expression.
Collapse
Affiliation(s)
- J T Emerman
- Department of Anatomy, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
14
|
Abstract
This review emphasizes cytogenetic changes and DNA analyses by Southern blot in primary breast tumors, rather than metastases, established cell lines, and pleural effusions. The data suggests that the most frequently altered chromosomes and chromosome regions are 1p, 1q, 2q, 3p, 5, 6q, 8p, 8q, 11p, 11q, 12, 13q, 14q, 16, 17p, and 17q. Changes on 8q, 11p, 11q, 13q, and 17q appear to be associated with either progression of the disease or poor prognosis. Alterations on 1p and 3p may represent early events in the development of breast cancer.
Collapse
Affiliation(s)
- W M Mars
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston
| | | |
Collapse
|