Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin.
J Mol Neurosci 2023;
73:129-142. [PMID:
36652038 DOI:
10.1007/s12031-022-02077-9]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023]
Abstract
Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2-4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2-4 were given KET (20 mg/kg, i.p.) daily from days 8-14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.
Collapse