1
|
Coecke S, Rogiers V, Bayliss M, Castell J, Doehmer J, Fabre G, Fry J, Kern A, Westmoreland C. The Use of Long-term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: The Current Status. Altern Lab Anim 2014; 27:579-638. [PMID: 25487865 DOI: 10.1177/026119299902700408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, metabolically competent in vitro systems have been reviewed, in the context of drug metabolising enzyme induction. Based on the experience of the scientists involved, a thorough survey of the literature on metabolically competent long-term culture models was performed. Following this, a prevalidation proposal for the use of the collagen gel sandwich hepatocyte culture system for drug metabolising enzyme induction was designed, focusing on the induction of the cytochrome P450 enzymes as the principal enzymes of interest. The ultimate goal of this prevalidation proposal is to provide industry and academia with a metabolically competent in vitro alternative for long-term studies. In an initial phase, the prevalidation study will be limited to the investigation of induction. However, proposals for other long-term applications of these systems should be forwarded to the European Centre for the Validation of Alternative Methods for consideration. The prevalidation proposal deals with several issues, including: a) species; b) practical prevalidation methodology; c) enzyme inducers; and d) advantages of working with independent expert laboratories. Since it is preferable to include other alternative tests for drug metabolising enzyme induction, when such tests arise, it is recommended that they meet the same level of development as for the collagen gel sandwich long-term hepatocyte system. Those tests which do so should begin the prevalidation and validation process.
Collapse
Affiliation(s)
- S Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, 21020 Ispra, Italy
| | - V Rogiers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Bayliss
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - J Castell
- Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain
| | - J Doehmer
- Institut für Toxikologie und Umwelthygiene, Technische Universität München, Lazarettstrasse 62, 80636 Munich, Germany
| | - G Fabre
- Preclinical Metabolism and Pharmacokinetics, Sanofi Recherche, 34184 Montpellier, France
| | - J Fry
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH
| | - A Kern
- Drug Metabolism and Isotope Chemistry, Bayer, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - C Westmoreland
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| |
Collapse
|
2
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
3
|
Kane BJ, Zinner MJ, Yarmush ML, Toner M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem 2007; 78:4291-8. [PMID: 16808435 DOI: 10.1021/ac051856v] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nearly half a billion dollars in resources are lost each time a drug candidate is withdrawn from the market by the Food and Drug Administration (FDA) for reasons of liver toxicity. The number of late-phase drug developmental failures due to liver toxicity could potentially be reduced through the use of hepatocyte-based systems capable of modeling the response of in vivo liver tissue to toxic insults. With this article, we report progress toward the goal of realizing an array of primary hepatocytes for use in high-throughput liver toxicity studies. Described herein is the development of a 64 (8 x 8) element array of microfluidic wells capable of supporting micropatterned primary rat hepatocytes in coculture with 3T3-J2 fibroblasts. Each of the wells within the array was continuously perfused with medium and oxygen in a nonaddressable format. The key features of the system design and fabrication are described, including the use of two microfluidic perfusion networks to provide the coculture with an independent and continuous supply of cell culture medium and oxygen. Also described are the fabrication techniques used to selectively pattern hepatocytes and 3T3-J2 fibroblasts within the wells of the array. The functional studies used to demonstrate the synthetic and metabolic capacity of the array are outlined in this article. These studies demonstrate that the hepatocytes contained within the array are capable of continuous, steady-state albumin synthesis (78.4 microg/day, sigma = 3.98 microg/day, N = 8) and urea production (109.8 microg/day, sigma = 11.9 microg/day, N = 8). In the final section of the article, these results are discussed as they relate to the final goal of this research effort, the development of an array of primary hepatocytes for use in physiologically relevant toxicology studies.
Collapse
Affiliation(s)
- Bartholomew J Kane
- Department of Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
4
|
Grant MH, Morgan C, Henderson C, Malsch G, Seifert B, Albrecht W, Groth T. The viability and function of primary rat hepatocytes cultured on polymeric membranes developed for hybrid artificial liver devices. J Biomed Mater Res A 2005; 73:367-75. [PMID: 15834932 DOI: 10.1002/jbm.a.30306] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bioartificial liver devices require membranes to support the function and viability of hepatocytes because they are anchorage-dependent cells. This study investigated the ability of several polymeric membranes to support the functions of primary hepatocyte cultures. Tailor-made membranes were sought by synthesizing acrylonitrile copolymers with different comonomers resulting in ionic, hydrophilic, or reactive functional groups on the polymer surface. Hepatocyte morphology and viability were assessed by confocal microscopy, and function by the content and activities of cytochrome P450, and the expression of glutathione S-transferases. Hydrophilic membranes (polyacrylonitrile and acrylonitrile copolymerized with 2-acrylamino-2-methyl-propane sulfonic acid) were more biocompatible than hydrophobic membranes such as polysulfone. The chemistry of the hydrophilic group was important; amine groups had a deleterious effect on maintenance of the primary hepatocytes. The biocompatibility of hydrophobic membranes was improved by collagen coating. Improving the chemistry of membranes for artificial liver devices will enhance the phenotypic stability of the cells, enabling us to prolong treatment times for patients.
Collapse
Affiliation(s)
- M Helen Grant
- Bioengineering Unit, Strathclyde University, Wolfson Centre, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
5
|
Washizu J, Berthiaume F, Mokuno Y, Tompkins RG, Toner M, Yarmush ML. Long-term maintenance of cytochrome P450 activities by rat hepatocyte/3T3 cell co-cultures in heparinized human plasma. TISSUE ENGINEERING 2001; 7:691-703. [PMID: 11749727 DOI: 10.1089/107632701753337654] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Little information on the effect of plasma on hepatocyte cytochrome P450 (CYP) activities is currently available. We characterized the effect of plasma on CYPs of hepatocyte-mesenchymal cell co-cultures, which exhibit stable liver specific functions and may be potentially useful for bioartificial liver design. Rat hepatocyte-mouse 3T3-J2 cell co-cultures were maintained for 6 days in medium, and then switched to heparinized human plasma containing 3-methylcholanthrene (3MC; 2 microM), phenobarbital (PB; 1 mM), or no inducer for up to 7 days. CYP activities were measured in situ based on the o-dealkylation of ethoxy- (EROD), methoxy- (MROD), pentoxy- (PROD), or benzyloxy- (BROD) resorufin. Plasma alone increased PROD/BROD but not EROD/MROD. The endogenous inducer was in the high molecular weight fraction (>5 kD) of plasma and inhibited by >5 nM okadaic acid and >10 microM dibutyryl cyclic AMP, two inhibitors of PB-inducible CYPs. Furthermore, plasma increased CYP1A1 and CYP2B1/2 mRNA levels. In plasma, 3MC induced EROD/MROD to about 60% of the level induced in culture medium while PB induced PROD/BROD that were three- to 10-fold above levels induced in medium. CYP activities decreased between days 2 and 7 of plasma exposure, but were enhanced by plasma supplementation with amino acids, insulin, glucagon, and hydrocortisone.
Collapse
Affiliation(s)
- J Washizu
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
6
|
Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999; 13:1883-900. [PMID: 10544172 DOI: 10.1096/fasebj.13.14.1883] [Citation(s) in RCA: 732] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heterotypic cell interaction between parenchymal cells and nonparenchymal neighbors has been reported to modulate cell growth, migration, and/or differentiation. In both the developing and adult liver, cell-cell interactions are imperative for coordinated organ function. In vitro, cocultivation of hepatocytes and nonparenchymal cells has been used to preserve and modulate the hepatocyte phenotype. We summarize previous studies in this area as well as recent advances in microfabrication that have allowed for more precise control over cell-cell interactions through 'cellular patterning' or 'micropatterning'. Although the precise mechanisms by which nonparenchymal cells modulate the hepatocyte phenotype remain unelucidated, some new insights on the modes of cell signaling, the extent of cell-cell interaction, and the ratio of cell populations are noted. Proposed clinical applications of hepatocyte cocultures, typically extracorporeal bioartificial liver support systems, are reviewed in the context of these new findings. Continued advances in microfabrication and cell culture will allow further study of the role of cell communication in physiological and pathophysiological processes as well as in the development of functional tissue constructs for medical applications.
Collapse
Affiliation(s)
- S N Bhatia
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
7
|
Yamanaka N, Kitani H, Mikami O, Nakajima Y, Miura K. Serum-free culture of adult chicken hepatocytes; morphological and biochemical characterisation. Res Vet Sci 1997; 62:233-7. [PMID: 9300540 DOI: 10.1016/s0034-5288(97)90196-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morphological and biochemical characterisation of adult chicken hepatocytes in a serum-free culture are described. When cultured in positively charged plastic dishes, chicken hepatocytes formed a monolayer cell sheet. The monolayer morphology of these chicken hepatocytes was quite distinct from the spheroid shape of rat hepatocytes cultured under similar conditions. Electron microscopy showed that the cytoplasmic organelles of chicken hepatocytes were well preserved in vitro. Two-dimensional gel electrophoresis showed that the chicken hepatocytes secreted liver-specific proteins. Several enzymes of glucose-6-phosphatase, cytochrome P-450 or glutathione S-transferase, involved in metabolic and biotransformation pathways in the liver, were retained in the chicken hepatocytes in a serum free condition. These findings suggest that the primary culture of adult chicken hepatocytes with a serum-free culture system could be useful to study the hepatic metabolic pathway in the chicken and its response to various chemicals.
Collapse
Affiliation(s)
- N Yamanaka
- Nationaal Institute of Animal Health, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
8
|
Lerche C, Fautrel A, Shaw PM, Glaise D, Ballet F, Guillouzo A, Corcos L. Regulation of the major detoxication functions by phenobarbital and 3-methylcholanthrene in co-cultures of rat hepatocytes and liver epithelial cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:98-106. [PMID: 9063451 DOI: 10.1111/j.1432-1033.1997.00098.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study, we analysed the expression of monooxygenase activities and mRNAs associated with cytochrome P-450 (CYP), including CYP1A1/2, CYP2B1/2, CYP2C6, CYP2E1, CYP3A1/2, glutathione transferase alpha (GST alpha), aldehyde dehydrogenase and epoxide hydrolase in co-cultures of primary rat hepatocytes and rat liver epithelial cells. We observed that pentoxyresorufin O-deethylation activity was well maintained and ethoxyresorufin O-deethylation activity gradually decreased during co-culture time. In addition, we showed that phenobarbital and 3-methylcholanthrene treatments resulted in a significant increase of these activities. Two general patterns of accumulation of liver-specific mRNAs were observed. CYP1A1/2, CYP2B1/2, CYP3A1/2, GST alpha, aldehyde dehydrogenase and epoxide hydrolase mRNAs were maintained at a stable level, whereas CYP2C6 and CYP2E1 mRNAs showed a continuous decline. In addition, we observed a strong increase of CYP1A1/2 (13.6-fold) and GST alpha (3.9-fold) mRNA expression in 3-methylcholanthrene-treated co-cultures and induction of CYP2B1/2 (19-fold), CYP2C6 (10-fold), CYP3A1/2 (11.2-fold), GST alpha (9-fold), aldehyde dehydrogenase (6-fold) and epoxide hydrolase (5-fold) mRNA expression in phenobarbital-treated co-cultures. Furthermore, we demonstrated that liver-specific gene expression was restricted to hepatocytes, with the notable exception of epoxide hydrolase and CYP2E1 which were expressed in both cell types during the co-culture, as shown by the selective recovery of both hepatocytes and rat liver epithelial cells. Finally, to investigate whether co-cultures could be used to study the molecular mechanisms regulating CYP transcription, we performed transfection of hepatocytes, before the establishment of the co-culture, with large CYP2B1 (3.9 kb) or CYP2B2 (4.5 kb) promoter chloramphenicol acetyltransferase constructs or with a construct containing a 163-bp DNA sequence element reported to confer phenobarbital responsiveness. A 2-3-fold increase over the basal level of chloramphenicol acetyltransferase activity was observed in phenobarbital-treated co-cultures transfected with the phenobarbital-responsive element construct, although phenobarbital had no effect on large CYP2B1 or CYP2B2 promoter fragments. Our results demonstrate that the co-culture system provides a good tool for studying drug metabolism, and shows promise as a new tool for analysing transcriptional regulation under the influence of xenobiotics within primary hepatocytes.
Collapse
Affiliation(s)
- C Lerche
- INSERM U456, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu L, LeCluyse EL, Liu J, Klaassen CD. Sulfotransferase gene expression in primary cultures of rat hepatocytes. Biochem Pharmacol 1996; 52:1621-30. [PMID: 8937478 DOI: 10.1016/s0006-2952(96)00569-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatocyte cultures have been used in pharmacotoxicological studies, and sulfotransferases (ST) are important drug-metabolizing enzymes in liver. The expression of sulfotransferases in hepatocyte cultures has not been examined systematically. In the present study, the mRNA levels of different sulfotransferases in male and female rat hepatocytes were examined by northern-blot analyses. Various culture conditions such as different matrices (collagen, matrigel, collagen sandwich, or co-culture with epithelial cells), medium (Way-mouth's MB 752/1 and Modified Chee's Medium) and glucocorticoid supplementation (dexamethasone, 0.1 microM) were compared. Phenol ST (ST1A1) mRNA levels decreased to about 50% of initial mRNA levels within 10 hr of culture. At 96 hr, ST1A1 mRNA levels were approximately 20% of initial values when cultured on collagen, matrigel or co-culture. The two media did not differ in ability to maintain ST1A1 mRNA levels in the absence of dexamethasone (DEX); however, DEX addition to either medium resulted in ST1A1 mRNA levels greater than 100% of the initial mRNA levels at 96 hr, with the greatest increase observed using the matrigel substratum and Chee's medium. In the absence of DEX, the mRNA levels of N-hydroxy-2-acetylaminoflurene sulfortransferase (ST1C1), estrogen sulfotransferase (ST1E2) and hydroxysteroid sulfotransferase (ST-20/21, ST-40/41, ST-60) fell to approximately 20% of their initial levels within 24 hr, and to less than 5% at 96 hr. The loss of expression of these sulfotransferases was observed with all culture conditions. Addition of DEX to the media resulted in ST-40/41 and ST-60 mRNA expression at 20 and 35% of their initial values, respectively, in cultures maintained on matrigel and Chee's medium at 96 hr. These data suggest that sulfotransferases lose their constitutive expression in hepatocyte culture, but retain their inducibility.
Collapse
Affiliation(s)
- L Liu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417, USA
| | | | | | | |
Collapse
|
10
|
LeCluyse EL, Bullock PL, Parkinson A. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv Drug Deliv Rev 1996. [DOI: 10.1016/s0169-409x(96)00418-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Gutsche AT, Lo H, Zurlo J, Yager J, Leong KW. Engineering of a sugar-derivatized porous network for hepatocyte culture. Biomaterials 1996; 17:387-93. [PMID: 8745336 DOI: 10.1016/0142-9612(96)85577-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Many tissue engineering applications require a scaffold or template conducive to cell attachment and maintenance of functions. It may also be advantageous in some cases for these scaffolds to have a controlled porous architecture to facilitate cellular or tissue ingrowth. In this study, we have engineered a porous carbohydrate-derivatized substrate for hepatocyte culture. Polystyrene foams, with pore sizes up to 100 microns, fabricated by phase separation from a homogeneous naphthalene solution, were derivatized with lactose and heparin, both of which are known to promote rat hepatocyte attachment and maintenance of its differentiated functions. Rat hepatocytes cultured on these derivatized foams exhibited a rounded cellular morphology with many microvilli evident on the surface of the cells. The hepatocytes showed an increase in albumin secretion for the first 3 days of culture in a defined, serum-free medium, and dropped back to initial levels by the end of 7 days. The production of cytochrome P450-dependent hydroxytestosterone metabolites were also measured. Two testosterone metabolites were maintained and five others were present but decreased over a culture period of 1 week. These carbohydrate-derivatized porous substrates may be useful for large-scale culture of hepatocytes, toxicology screening and for use in a liver assist device.
Collapse
Affiliation(s)
- A T Gutsche
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
12
|
LeCluyse EL, Bullock PL, Parkinson A, Hochman JH. Cultured rat hepatocytes. PHARMACEUTICAL BIOTECHNOLOGY 1996; 8:121-59. [PMID: 8791809 DOI: 10.1007/978-1-4899-1863-5_9] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E L LeCluyse
- INTERx Research/Merck Research Laboratories, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
13
|
Jurima-Romet M, Casley WL, Neu JM, Huang HS. Induction of CYP3A and associated terfenadine N-dealkylation in rat hepatocytes cocultured with 3T3 cells. Cell Biol Toxicol 1995; 11:313-27. [PMID: 8788208 DOI: 10.1007/bf01305904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-term culture of hepatocytes has been challenged by the loss of differentiated functions. In particular, there is a rapid decline in cytochrome P450 (CYP). In this study, we cocultured rat hepatocytes with 3T3 fibroblasts for 10 days, and examined hepatocyte viability, morphology, and expression of CYP3A. Terfenadine was incubated with the cultures, and its biotransformation was quantitatively analyzed by HPLC. Terfenadine is metabolized by two major pathways: C-hydroxylation to an alcohol metabolite which is further oxidized to a carboxylic acid, and N-dealkylation to azacyclonol. In rat liver, only the N-dealkylation pathway appears to be mediated by CYP3A since anti-rat CYP3A antibody inhibited azacyclonol but not alcohol metabolite formation in incubations of terfenadine with liver microsomes. Freshly isolated rat hepatocytes were seeded on top of confluent 3T3 cells. Cultures were maintained in Williams' E medium supplemented with 10% fetal bovine serum and either 0.1 mumol/L or 5 mumol/L dexamethasone. In pure hepatocyte cultures, viability, as determined by lactate dehydrogenase (LDH) activity, decreased steadily to less than 30% of initial levels by day 10. In cocultures, LDH activity remained high and was 70% of initial levels on day 10. The half-life of terfenadine disappearance was optimally maintained in cocultures treated with 5 mumol/L dexamethasone, and was associated with the increased formation of azacyclonol. On day 5, nearly 50% of added 5 mumol/L terfenadine was converted to azacyclonol within 6 h, whereas the conversion was only 4% on day 1. Western and RNA-slot blot analyses confirmed that treatment with 5 mumol/L dexamethasone induced CYP3A mRNA expression and CYP3A protein expression. This coculture system could offer a useful approach in the study of drugs and xenobiotics metabolized by CYP3A.
Collapse
|
14
|
Oesch F, Abdel-Latif H, Diener B. Viability, attachment efficiency, and xenobiotic metabolizing enzyme activities are well maintained in EDTA isolated rat liver parenchymal cells after hypothermic preservation for up to 3 days in University of Wisconsin solution. In Vitro Cell Dev Biol Anim 1995; 31:590-4. [PMID: 8528513 DOI: 10.1007/bf02634311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rat liver parenchymal cells were isolated by EDTA perfusion and were subsequently purified by Percoll centrifugation. The freshly isolated liver cells had a mean viability of 95% as judged by trypan blue exclusion. Isolated liver parenchymal cells were then stored at 0 degrees C for up to 1 wk in University of Wisconsin solution (UW). During this hypothermic preservation, the viability was only slightly reduced to 92% after 1 d and to 85% after 3 d at 0 degrees C. Thereafter, the viability decreased rapidly. After cold storage for up to 3 d, it was possible to use the parenchymal liver cells either in short-term suspension or in cell culture. The attachment efficiency in cell culture was the same for freshly isolated liver cells (84%) and after 2 d cold preservation (81%). The cytochrome P450 content and the enzyme activities of soluble epoxide hydrolase, UDP-glucuronosyl transferase, phenol sulfotransferase, and glutathione S-transferase were not significantly different between freshly isolated cells and cells after 3 d of hypothermic preservation. Furthermore, freshly isolated and intact liver cells stored for 3 d were used in the cell-mediated Salmonella mutagenicity test as a metabolizing system. Both fresh and stored liver parenchymal cells metabolized benzo(a)pyrene,2-aminoanthracene, and cyclophosphamide to their ultimate mutagens.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, University of Mainz, Germany
| | | | | |
Collapse
|
15
|
Guéry C, Secchi J, Vannier B, Fournex R, Lorenzon G. Formation of bile canaliculi in long-term primary cultures of adult rat hepatocytes on permeable membrane: an ultrastructural study. Cytopathology 1995; 6:255-67. [PMID: 8520005 DOI: 10.1111/j.1365-2303.1995.tb00477.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adult rat hepatocytes were cultured for 15 days on type I collagen-coated permeable membranes in a hormonally defined Waxman's modified medium supplemented with very low concentrations of insulin, glucagon and dexamethasone. Phase contrast examination showed that 15-day-old cultures still formed a regular monolayer of polygonal cells. In similarly aged cultures, intracellular glycogen was abundant and evenly distributed, while steatosis remained very limited. Scanning and transmission electron microscopy showed that well developed bile canaliculi could be observed on the lateral side of the hepatocyte membrane after 4 days of incubation and persisted for 2 weeks. These canalicular structures probably originated from coalescence of membrane invaginations observed in 1-day-old cultures. Transmission electron microscopy showed that the ultrastructure of the cells was very close to that of normal rat hepatocytes in the intact liver. These results suggest that rat hepatocytes cultured under these experimental conditions are able to develop and maintain tissue-specific cytochemical and morphological properties for at least 15 days.
Collapse
Affiliation(s)
- C Guéry
- Centre de Recherches Roussel UCLAF, Département de Toxicologie, Romainville, France
| | | | | | | | | |
Collapse
|
16
|
Traiser M, Diener B, Utesch D, Oesch F. The gap junctional intercellular communication is no prerequisite for the stabilization of xenobiotic metabolizing enzyme activities in primary rat liver parenchymal cells in vitro. In Vitro Cell Dev Biol Anim 1995; 31:266-73. [PMID: 7795845 DOI: 10.1007/bf02634000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In primary monocultures of adult rat liver parenchymal cells (PC), the activities of the xenobiotic metabolizing enzymes microsomal epoxide hydrolase (mEHb), soluble epoxide hydrolase (sEH), glutathione S-transferases (GST), and phenolsulfotransferase (ST) were reduced after 7 d to values below 33% of the initial activities. Furthermore, the gap junctional intercellular communication (GJIC), measured after microinjection by dye transfer, decreased from 90% on Day 1 to undetectable values after 5 d in monoculture. Co-culture of PC with nonparenchymal rat liver epithelial cells (NEC) increased (98% on Day 1) and stabilized (82% on Day 7) the homotypic GJIC of PC. Additionally, most of the measured xenobiotic metabolizing enzyme activities were well stabilized over 1 wk in co-culture. Because GJIC is one of several mechanisms playing an important role in cell differentiation, the importance of GJIC for the stabilization of xenobiotic metabolizing enzymes in PC was investigated. PC in monoculture were, therefore, treated with 2% dimethyl sulfoxide (DMSO), a differentiation promoting factor, and 1,1,1-trichloro-2,2,-bis (p-chlorophenyl) ethane (DDT) (10 micrograms/ml), a liver tumor promotor and inhibitor of GJIC, was given to co-cultures of PC with NEC. DMSO significantly stabilized (68% on Day 7), while DDT significantly inhibited (8% on Day 7) homotypic GJIC of PC in the respective culture systems. In contrast, the activities of mEHb, sEH, GST, and ST were not affected in the presence of DMSO or DDT. These results lead to the assumption that the differentiation parameters measured in this study (i.e., homotypic GJIC and the activities of xenobiotic metabolizing enzymes) are independently regulated in adult rat liver PC.
Collapse
Affiliation(s)
- M Traiser
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | |
Collapse
|
17
|
Donato MT, Castell JV, Gómez-Lechón MJ. Cytochrome P450 activities in pure and co-cultured rat hepatocytes. Effects of model inducers. In Vitro Cell Dev Biol Anim 1994; 30A:825-32. [PMID: 7894773 DOI: 10.1007/bf02639392] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The stability and inducibility of several P450 activities (namely, P450 1A1; 2A1, 2B1/2, 2C11, and 3A1) were studied in rat hepatocytes co-cultured with the MS epithelial cell line derived from monkey kidney. The results revealed that these monooxygenase activities were systematically higher in co-cultures than in conventional hepatocyte cultures. Pure cultures showed a rapid loss of monooxygenase activities, which were undetectable after 5 days. In contrast, all isozymes assayed were measurable in co-cultured hepatocytes on Day 7 (about 15 to 40% of the initial activities of Day 0 of culture). The beneficial effects of the co-culture system seemed to be more selective for certain cytochrome P450 isoforms, with P450 1A1 and 3A1 being the best stabilized isozymes after 1 wk. A clear response to inducers was observed in co-cultures, each isozyme showing a different induction pattern. 3-Methylcholanthrene produced a strong increase in P450 1A1 (7-ethoxyresorufin O-deethylase) activity and a low increase in P450 2A1 (testosterone 7 alpha-hydroxylation), whereas no changes were observed in the other activities. Phenobarbital treatment resulted in increases in P450 2B1/2 (7-pentoxyresorufin O-depentylase and 16 alpha- and 16 beta-hydroxylation of testosterone) activities, while minor effects were observed on P450 3A1 (testosterone 6 beta-hydroxylation) activity. Dexamethasone markedly increased P450 3A1 (testosterone 6 beta- and 15 beta-hydroxylation) activity and, to a lesser extent, P450 2B1/2 (16 beta-hydroxylation).
Collapse
Affiliation(s)
- M T Donato
- Unidad de Hepatología Experimental, Hospital Universitario La Fe, Valencia, Spain
| | | | | |
Collapse
|
18
|
Skett P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing—Solutions? Toxicol In Vitro 1994; 8:491-504. [DOI: 10.1016/0887-2333(94)90174-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1993] [Revised: 12/22/1993] [Indexed: 01/15/2023]
|
19
|
Diener B, Beer N, Dürk H, Traiser M, Utesch D, Wieser RJ, Oesch F. Gap junctional intercellular communication of cultured rat liver parenchymal cells is stabilized by epithelial cells and their isolated plasma membranes. EXPERIENTIA 1994; 50:124-6. [PMID: 8125169 DOI: 10.1007/bf01984948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The gap junctional intercellular communication (GJIC) determined by measuring dye coupling with Lucifer yellow, decreased within 3 d from 66% to 28% in monocultures of rat liver parenchymal cells. Coculturing of the parenchymal cells with a nonparenchymal epithelial cell line from rat liver resulted in increased and stabilized intercellular communication (83% after 3 d). The presence of isolated plasma membrane vesicles of the nonparenchymal epithelial cells also stabilized the intercellular communication between the liver parenchymal cells (70% after 3 d). When liver parenchymal cells were cocultured with a rat liver fibroblast cell line the gap junctional communication between the parenchymal cells was not stabilized (43% after 3 d), and isolated plasma membrane vesicles of the fibroblast were also unable to support the GJIC in parenchymal cells (35% after 3 d). It is concluded that plasma membrane constituents of the nonparenchymal epithelial cells were responsible for the stabilization of the GJIC between parenchymal cells. A heterotypic gap junctional communication between parenchymal and nonparenchymal cells was not observed.
Collapse
Affiliation(s)
- B Diener
- Institut für Toxikologie, Universität Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Chajek-Shaul T, Scherer G, Barash V, Shiloni E, Caine Y, Stein O, Stein Y. Metabolic effects of nicotine on human adipose tissue in organ culture. THE CLINICAL INVESTIGATOR 1994; 72:94-9. [PMID: 8186667 DOI: 10.1007/bf00184583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fragments of human adipose tissue were maintained in culture for 1 week in a medium containing 1 mU/ml insulin and 100 ng/ml dexamethasone. Under these conditions lipoprotein lipase activity was present in human adipose tissue fragments which converted [14C]glucose to 14CO2 and [14C]triglyceride. Both metabolic parameters studied were affected by human tumor necrosis factor and brefeldin A. When fragments of human adipose tissue after 1 week in culture were incubated with nicotine tartrate for 20 h, a slight but significant increase in lipoprotein lipase activity was observed, and an increased conversion of [14C]glucose to 14CO2 and [14C]triglyceride occurred. Nicotine was taken up by human adipose tissue, but no conversion to cotinine was observed. Our data demonstrate a direct effect of nicotine on human adipose tissue metabolism. Furthermore, it is suggested that weight loss in smokers is a multifactorial phenomenon, and one of the important factors to be considered is the direct effect of nicotine within the tissue.
Collapse
Affiliation(s)
- T Chajek-Shaul
- Department of Medicine, Hadassah University Hospital, Jerusalem
| | | | | | | | | | | | | |
Collapse
|
21
|
Oesch F, Diener B. Rational species extrapolation of toxic effects. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1994; 16:161-8. [PMID: 8192577 DOI: 10.1007/978-3-642-78640-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F Oesch
- Institute of Toxicology, University of Mainz, Germany
| | | |
Collapse
|
22
|
Shaddock JG, Snawder JE, Casciano DA. Cryopreservation and long-term storage of primary rat hepatocytes: effects on substrate-specific cytochrome P450-dependent activities and unscheduled DNA synthesis. Cell Biol Toxicol 1993; 9:345-57. [PMID: 8039011 DOI: 10.1007/bf00754463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of cryopreservation and long-term storage on substrate-specific cytochrome P450-dependent activities and unscheduled DNA synthesis were studied in freshly isolated and cryopreserved hepatocytes derived from adult male Fischer 344 and Sprague-Dawley rats. Primary rat hepatocytes were isolated via an in situ collagenase perfusion technique, cryopreserved at -196 degrees C, and thawed at 5 weeks and 104 and 156 weeks post-freezing. In Fischer 344 and Sprague-Dawley rats, cryopreserved hepatocytes were equivalent or similar to freshly isolated hepatocytes in substrate-specific activities for 7-ethoxyresorufin-O-deethylase and dimethylnitrosamine-N-demethylase and unscheduled DNA synthesis responses. No significant differences in activities toward 7-ethoxyresorufin-O-deethylase and dimethylnitrosamine-N-demethylase, the substrate-specific activities for cytochromes P4501A1 and P4501A2 and cytochrome P4502E1, respectively, were observed between freshly isolated and cryopreserved hepatocytes. Similar unscheduled DNA synthesis responses, a measure of DNA damage and repair, were observed after exposure to the genotoxic carcinogens 2-acetylamino-fluorene, 7,12-dimethylbenz[a]anthracene, and dimethylnitrosamine; although some decreases were also observed in Fischer 344 hepatocytes after 104 weeks and Sprague-Dawley hepatocytes after 156 weeks in the highest concentrations tested. These results suggest that cryopreserved hepatocytes, stored for extended periods of time in liquid nitrogen, are metabolically equivalent to freshly isolated hepatocytes in their ability to activate precarcinogens.
Collapse
Affiliation(s)
- J G Shaddock
- National Center for Toxicological Research, Division of Genetic Toxicology, Jefferson, AR 72079
| | | | | |
Collapse
|
23
|
Zaleski J, Richburg J, Kauffman FC. Preservation of the rate and profile of xenobiotic metabolism in rat hepatocytes stored in liquid nitrogen. Biochem Pharmacol 1993; 46:111-6. [PMID: 8347122 DOI: 10.1016/0006-2952(93)90354-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A simple procedure for cryopreservation of rat hepatocytes that allows recovery of viable cells retaining activities of phase I and phase II drug metabolism equivalent to freshly isolated cells is described. The cooling process was initiated 30 min after incubation of freshly isolated hepatocytes at 37 degrees in Krebs-Ringer bicarbonate buffer containing 15 mM glucose to allow for metabolic equilibration. At the end of this period, hepatocyte suspensions were supplemented with 1.7% albumin, 13.3% dimethyl sulfoxide, and the synthetic buffers, 3-[N-morpholino]propanesulfonic acid (MOPS) and N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] (HEPES). Hepatocytes were cooled in a stepwise manner to -196 degrees by holding the cells for 1 hr at -20 degrees and then for 1 hr at -70 degrees before transfer into liquid nitrogen. After thawing and removal of damaged cells by centrifugation in Percoll, the total recovery of viable hepatocytes subjected to freezing was about 42%. The contents of ATP, ADP, and AMP were not altered significantly in cells stored in liquid nitrogen. The metabolic competence of cryopreserved hepatocytes was further confirmed by their ability to synthesize urea from NH4Cl and ornithine at the same high rate that was observed in freshly isolated cells (693 +/- 68 and 740 +/- 68 nmol.mg dry wt-1 x hr-1, respectively). Similarly, cryopreservation did not affect drug-metabolizing systems as indicated by the metabolism of benzo[a]pyrene and 7-ethoxycoumarin, two model substrates. In both freshly isolated and cryopreserved hepatocytes, 7-ethoxycoumarin was O-deethylated to 7-hydroxycoumarin at essentially the same rates (8.66 +/- 0.75 and 8.25 +/- 0.53 nmol.mg dry wt-1.hr-1, respectively) and 7-hydroxycoumarin accumulated in hepatocyte suspensions almost exclusively in the conjugated form. The storage of hepatocytes in liquid nitrogen also did not affect the complex metabolism of benzo[a]pyrene to total oxygenated metabolites and, more importantly, to metabolites conjugated with glutathione, glucuronic acid, and sulfuric acid. Thus, cryopreserved hepatocytes represent a valid and convenient model to study drug biotransformation in intact cells.
Collapse
Affiliation(s)
- J Zaleski
- Laboratory for Cellular and Biochemical Toxicology, Rutgers University, Piscataway, NJ 08854
| | | | | |
Collapse
|
24
|
Guery C, Stepniewski J, Vannier B, Fournex R, Lorenzon G. Long-term culture of rat hepatocytes on porous membranes in hormonally defined serum-free medium. Toxicol In Vitro 1993; 7:453-9. [DOI: 10.1016/0887-2333(93)90046-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Pfeifer AM, Cole KE, Smoot DT, Weston A, Groopman JD, Shields PG, Vignaud JM, Juillerat M, Lipsky MM, Trump BF. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc Natl Acad Sci U S A 1993; 90:5123-7. [PMID: 7685115 PMCID: PMC46667 DOI: 10.1073/pnas.90.11.5123] [Citation(s) in RCA: 303] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Normal human liver tissue and cultured human hepatocytes are valuable models to study xenobiotic metabolism and toxicity, but they only have a limited in vitro life-span and are not readily available. This report describes the establishment of replicative cultures of human adult liver epithelial cells in serum-free medium. The longevity of three of these cultures, derived from different donors, was extended by introduction of the simian virus 40 large T antigen gene. Two cell lines, THLE-2 and -3, established with a recombinant simian virus 40 large T antigen virus have undergone > 100 population doublings, are nontumorigenic when injected into athymic nude mice, have near-diploid karyotypes, and do not express alpha-fetoprotein. The cells express cytokeratin 18 and albumin in early passage, whereas higher-passage cells in logarithmic-phase growth also express cytokeratin 19. THLE-2 and -3 cells metabolize benzo[a]pyrene, N-nitrosodimethylamine, and aflatoxin B1 to their ultimate carcinogenic metabolites that adduct DNA, which indicates functional cytochrome P450 pathways. Other enzymes involved in metabolism of chemical carcinogens, such as epoxide hydrolase, NADPH cytochrome P450 reductase, superoxide dismutase, catalase, glutathione S-transferases, and glutathione peroxidase are also retained by THLE cells. Thus, these immortalized human liver cells constitute an in vitro model for pharmacotoxicological studies and for the investigation of etiology and pathogenesis of human hepatocellular carcinoma.
Collapse
Affiliation(s)
- A M Pfeifer
- Nestec Ltd. Research Center, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Utesch D, Arand M, Thomas H, Petzinger E, Oesch F. Xenobiotic-metabolizing enzyme activities in hybrid cell lines established by fusion of primary rat liver parenchymal cells with hepatoma cells. Xenobiotica 1992; 22:1451-7. [PMID: 1494890 DOI: 10.3109/00498259209056695] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The activities of xenobiotic-metabolizing enzymes were determined in hybrid cell lines (hepatocytoma, HPCT) which have been established by fusion of liver parenchymal cells from adult rat (PC) with cells from a Reuber hepatoma cell line (FAO). 2. Cytochrome P450 was not measurable spectrophotometrically in FAO and HPCT. P450-dependent conversion of testosterone was below the detection limit in FAO and only marginally present in HPCT. 3. Microsomal and cytosolic epoxide hydrolase, glutathione S-transferase and phenol sulphotranserase were low or even below detection limit in FAO. These enzyme activities were significantly higher in HPCT and correspond to about 1-10% the activities measured in PC. 4. 1-Naphthol UPD-glucuronosyl transferase activity was about 20% in FAO and about 100% in HPCT compared to PC. 5. Metabolic conversion of benzo[a]pyrene was low in FAO, high in PC, and intermediate in HPCT. The presented data, however, do not allow the conclusion whether this intermediate rate is catalyzed by similar P450 isoenzymes as in PC. 6. Due to the easily measurable phase II-metabolizing enzyme activities HPCT may, however, be useful for in vitro enzyme induction or repression studies.
Collapse
Affiliation(s)
- D Utesch
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
27
|
Utesch D, Diener B, Molitor E, Oesch F, Platt KL. Characterization of cryopreserved rat liver parenchymal cells by metabolism of diagnostic substrates and activities of related enzymes. Biochem Pharmacol 1992; 44:309-15. [PMID: 1642645 DOI: 10.1016/0006-2952(92)90014-a] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The metabolism of testosterone and benzo(a)pyrene (BaP) which is mediated by diverse enzymes was determined in cryopreserved rat liver parenchymal cells and compared with that found in freshly isolated cells. In addition, the activities of single xenobiotic-metabolizing enzymes were measured by using specific substrates. The cytochrome P450 (P450)-mediated total metabolic conversion of testosterone was reduced to 55% in cryopreserved cells. The metabolite profile, i.e. the formation of single metabolites compared with total metabolic conversion, was however unchanged when compared with freshly isolated cells. A concomitant reduction in the activities of the involved P450 isoenzymes can therefore be postulated. The amount of detected phase I-metabolites of BaP was unaffected by the cryopreservation method. The formation of phase II-metabolites and total metabolic conversion of BaP in cryopreserved cells was however reduced to about 50-60%. The reduced glutathione S-transferase and more obviously phenol sulfotransferase activities measured in cryopreserved cells, may explain the impaired conjugation of BaP. The ratio between phase I- and phase II-metabolites was thus changed by cryopreservation. Density separation on Percoll yielded cryopreserved cells with a viability and metabolic capacity not measurably different from freshly isolated cells. To this extent, cryopreserved, Percoll-purified liver parenchymal cells are a useful in vitro system for drug metabolism studies. However due to the extensive loss in cell number during this procedure (recovery = 22% of freshly isolated cells) the application of this system is limited.
Collapse
Affiliation(s)
- D Utesch
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
28
|
Utesch D, Oesch F. Dependency of the in vitro stabilization of differentiated functions in liver parenchymal cells on the type of cell line used for co-culture. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:193-8. [PMID: 1582994 DOI: 10.1007/bf02631091] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The differentiation status in cultures of primary rat liver parenchymal cells was determined by measuring the activities of various xenobiotic metabolizing enzymes. Most enzyme activities dropped rather rapidly in monocultures of parenchymal cells. The protein content and the activities of cytosolic epoxide hydrolase, glutathione S-transferase, and alpha-naphthol UDP-glucuronosyl transferase were, however, well stabilized in 7-day-old co-cultures of parenchymal cells with two different lines of rat liver nonparenchymal epithelial cells (NEC1 and NEC2). Phenol sulfotransferase and microsomal epoxide hydrolase activity were reduced in this coculture system after 7 days to about 30 and 20% of the initial activity. Generally, higher enzyme activities were measured in co-cultures with one specific epithelial cell line (NEC2) as compared to those with the other line (NEC1). C3H 10T1/2 mouse embryo fibroblasts supported the parenchymal cells even better than the two epithelial lines, because the activity of microsomal epoxide hydrolase was also stabilized. Glutathione transferase activity was increased over time in this co-culture system. Our results show that the differentiation status of liver parenchymal cells was much better stabilized in co-cultures than in monocultures but that, depending on the type of cells used for co-culture, great quantitative differences existed. The entire pattern of xenobiotic metabolizing enzyme activities could not be stabilized at the kind of levels found in freshly isolated parenchymal cells.
Collapse
Affiliation(s)
- D Utesch
- Institute of Toxicology, University of Mainz, Germany
| | | |
Collapse
|