1
|
Cui M, Xiaoyu Chen, Luo X, Zhou Z, Chen Z, Zhou Z, Zhou X, Zou H, Xu T, Wang S, Yang M. Dually stimulative single-chain polymeric nano lock with dynamic ligands for sensitive detection of circulating tumor cells. Biosens Bioelectron 2022; 217:114692. [PMID: 36150325 DOI: 10.1016/j.bios.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTCs) are important markers for cancer diagnosis and monitoring. However, CTCs detection remains challenging due to their scarcity, where most of the detection methods are compromised by the loss of CTCs in pre-enrichment, and by the lack of universal antibodies for capturing different kinds of cancer cells. Herein, we report a single-chain based nano lock (SCNL) polymer incorporating dually stimulative dynamic ligands that can bind with a broad spectrum of cancer cells and CTCs overexpressing sialic acid (SA) with high sensitivity and selectivity. The high sensitivity is realized by the polymeric single chain structure and the multi-valent functional moieties, which improve the accessibility and binding stability between the target cells and the SCNL. The highly selective targeting of cancer cells is achieved by the dynamic and dually stimulative nano lock structures, which can be unlocked and functionalized upon simultaneous exposure to overexpressed SA and acidic microenvironment. We applied the SCNL to detecting cancer cells and CTCs in clinical samples, where the detection threshold of SCNL reached 4 cells/mL. Besides CTCs enumeration, the SCNL approach could also be extended to metastasis assessment through monitoring the expressing level of surface SA on cancer cells.
Collapse
Affiliation(s)
- Miao Cui
- Shenzhen Bay Laboratory, Shenzhen, 518132, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xu Luo
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiji Chen
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengdong Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Xiaoyu Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Heng Zou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Cellomics (Shenzhen) Limited, Shenzhen, China
| | - Tao Xu
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Cellomics (Shenzhen) Limited, Shenzhen, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Liang J, Liu J, Lord MS, Wang Y, Liang K. De Novo Engineering of Metal-Organic Framework-Printed In Vitro Diagnostic Devices for Specific Capture and Release of Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103590. [PMID: 34585844 DOI: 10.1002/smll.202103590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Herein, a paper-based in vitro diagnostic device (IVD) is developed via inkjet printing of de novo engineered, boronic acid-rich metal-organic frameworks (BMOFs). The newly developed BMOFs simultaneously possess crystalline and amorphous structure, mesopore size, large surface area, and retain a high level of boronic acid integration. After printing the BMOFs on the filter paper, the BMOF-printed paper IVD shows a rapid response time (40 min) towards cancer cell capture and its maximum cell capture capacity reaches approximately (4.5 ±1.1) ×104 cells cm-2 . Furthermore, the BMOF-printed IVD shows nine times higher capture ability of cancer cells than non-cancerous cells, suggesting its excellent selectivity. Importantly, the pH-tunable affinity of BMOF to glucose enables its dual-responsive behavior without affecting cell viability. In addition, a desired cell pattern could be achieved by directly drawing BMOFs onto a silicon substrate, highlighting its capacity as a miniaturized device for tumor cell capture and analysis. This simple and label-free nanoplatform enables new opportunities for designing MOF-based smart devices for diverse biomedical applications such as a cost-effective IVD technologies for cancer diagnosis, genotyping, and prognosis.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jian Liu
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yu Wang
- X-ray Diffraction Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Bauer TJ, Gombocz E, Wehland M, Bauer J, Infanger M, Grimm D. Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion-An Omics Network Approach. Int J Mol Sci 2020; 21:ijms21051749. [PMID: 32143440 PMCID: PMC7084616 DOI: 10.3390/ijms21051749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
The adhesion behavior of human tissue cells changes in vitro, when gravity forces affecting these cells are modified. To understand the mechanisms underlying these changes, proteins involved in cell-cell or cell-extracellular matrix adhesion, their expression, accumulation, localization, and posttranslational modification (PTM) regarding changes during exposure to microgravity were investigated. As the sialylation of adhesion proteins is influencing cell adhesion on Earth in vitro and in vivo, we analyzed the sialylation of cell adhesion molecules detected by omics studies on cells, which change their adhesion behavior when exposed to microgravity. Using a knowledge graph created from experimental omics data and semantic searches across several reference databases, we studied the sialylation of adhesion proteins glycosylated at their extracellular domains with regards to its sensitivity to microgravity. This way, experimental omics data networked with the current knowledge about the binding of sialic acids to cell adhesion proteins, its regulation, and interactions in between those proteins provided insights into the mechanisms behind our experimental findings, suggesting that balancing the sialylation against the de-sialylation of the terminal ends of the adhesion proteins' glycans influences their binding activity. This sheds light on the transition from two- to three-dimensional growth observed in microgravity, mirroring cell migration and cancer metastasis in vivo.
Collapse
Affiliation(s)
- Thomas J. Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Erich Gombocz
- Melissa Informatics, 2550 Ninth Street, Suite 114, Berkeley, CA 94710, USA;
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Johann Bauer
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
- Correspondence: ; Tel.: +49-89-85783803
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
- Department of Biomedicine, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Pfälzer Platz, 39106 Magdeburg, Germany
| |
Collapse
|
4
|
Li Q, Xie Y, Xu G, Lebrilla CB. Identification of potential sialic acid binding proteins on cell membranes by proximity chemical labeling. Chem Sci 2019; 10:6199-6209. [PMID: 31360427 PMCID: PMC6585875 DOI: 10.1039/c9sc01360a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/14/2019] [Indexed: 01/28/2023] Open
Abstract
A “protein oxidation of sialic acid environments” (POSE) mapping tool is developed for sialic acid binding protein discovery.
The cell membrane contains a highly interactive glycan surface on a scaffold of proteins and lipids. Sialic acids are negatively charged monosaccharides, and the proteins that bind to sialic acids play an important role in maintaining the integrity and collective functions of this interactive space. Sialic acid binding proteins are not readily identified and have nearly all been discovered empirically. In this research, we developed a proximity labeling method to characterize proteins with oxidation by localized radicals produced in situ. The sites of oxidation were identified and quantified using a standard proteomic workflow. In this method, a clickable probe was synthesized and attached to modified sialic acids on the cell membrane, which functioned as a catalyst for the localized formation of radicals from hydrogen peroxide. The proteins in the sialic acid environment were labeled through amino acid oxidation, and were categorized into three groups including sialylated proteins, non-sialylated proteins with transmembrane domains, and proteins that are associated with the membrane with neither sialylated nor transmembrane domains. The analysis of the last group of proteins showed that they were associated with binding functions including carbohydrate binding, anion binding, and cation binding, thereby revealing the nature of the sialic acid–protein interaction. This new tool identified potential sialic acid-binding proteins in the extracellular space and proteins that were organized around sialylated glycans in cells.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry , University of California, Davis , Davis , California , USA .
| | - Yixuan Xie
- Department of Chemistry , University of California, Davis , Davis , California , USA .
| | - Gege Xu
- Department of Chemistry , University of California, Davis , Davis , California , USA .
| | - Carlito B Lebrilla
- Department of Chemistry , University of California, Davis , Davis , California , USA . .,Department of Biochemistry , University of California, Davis , Davis , California , USA
| |
Collapse
|
5
|
Akasov R, Haq S, Haxho F, Samuel V, Burov SV, Markvicheva E, Neufeld RJ, Szewczuk MR. Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. Oncotarget 2018; 7:66119-66134. [PMID: 27608845 PMCID: PMC5323220 DOI: 10.18632/oncotarget.11868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
Multicellular tumor spheroids (MTS) have been at the forefront of cancer research, designed to mimic tumor-like developmental patterns in vitro. Tumor growth in vivo is highly influenced by aberrant cell surface-specific sialoglycan structures on glycoproteins. Aberrant sialoglycan patterns that facilitate MTS formation are not well defined. Matrix-free spheroids from breast MCF-7 and pancreatic PANC1 cancer cell lines and their respective tamoxifen (TMX) and gemcitabine (Gem) resistant variants were generated using the RGD platform of cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK (TPP)). MCF-7 and MCF-7 TMX cells formed tight spheroids both in the classical agarose-and RGD-based platforms while all PANC1 cells formed loose aggregates. Using lectin histochemistry staining, sialidase assay, neuraminidase (Vibrio cholerae) and oseltamivir phosphate (OP) neuraminidase inhibitor treatments, MCF-7 and PANC1 cells and their drug-resistant variants expressed different sialic acid (SA) content on their cell surfaces. α-2,3- and α-2,6-sialic acid surface residues facilitated spheroid formation under cyclo-RGDfK(TPP)-induced self-assembly. Pretreatment with α-2,3- SA specific Maackia amurensis (MAL-II) lectin, α-2,6-SA specific Sambucus nigra (SNA) lectin, and exogenous α-2,6-SA specific neuraminidase (Vibrio cholerae) dose-dependently reduced spheroid volume. OP enhanced cell aggregation and compaction forming spheroids. PANC1 and MDA-MB231 xenograft tumors from untreated and OP-treated RAGxCγ double mutant mice expressed significantly higher levels of α-2,3- SA over α-2,6-SA. MCF-7 spheroids also expressed a high α-2,3-SA to α-2,6-SA ratio. These results suggest that the relative levels of specific sialoglycan structures on the cell surface correlate with the ability of cancer cells to form avascular multicellular tumor spheroids and in vivo xenograft tumors.
Collapse
Affiliation(s)
- Roman Akasov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sabah Haq
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| | - Fiona Haxho
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| | - Vanessa Samuel
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| | - Sergey V Burov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Petersburg, 119004 Russia
| | - Elena Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
6
|
Haq S, Samuel V, Haxho F, Akasov R, Leko M, Burov SV, Markvicheva E, Szewczuk MR. Sialylation facilitates self-assembly of 3D multicellular prostaspheres by using cyclo-RGDfK(TPP) peptide. Onco Targets Ther 2017; 10:2427-2447. [PMID: 28496342 PMCID: PMC5422540 DOI: 10.2147/ott.s133563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Prostaspheres-based three dimensional (3D) culture models have provided insight into prostate cancer (PCa) biology, highlighting the importance of cell–cell interactions and the extracellular matrix (EMC) in the tumor microenvironment. Although these 3D classical spheroid platforms provide a significant advance over 2D models mimicking in vivo tumors, the limitations involve no control of assembly and structure with only limited spatial or glandular organization. Here, matrix-free prostaspheres from human metastatic prostate carcinoma PC3 and DU145 cell lines and their respective gemcitabine resistant (GemR) variants were generated by using cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK(TPP)). Materials and methods Microscopic imaging, immunocytochemistry (ICC), flow cytometry, sialidase, and WST-1 cell viability assays were used to evaluate the formation of multicellular tumor spheroid (MCTS), cell survival, morphologic changes, and expression levels of α2,6 and α2,3 sialic acid (SA) and E- and N-cadherin in DU145, PC3, and their GemR variants. Results By using the cyclo-RGDfK(TPP) peptide platform in a dose- and time-dependent manner, both DU145 and DU145GemR cells formed small MCTS. In contrast, PC3 and PC3GemR cells formed irregular multicellular aggregates at all concentrations of cyclo-RGDfK(TPP) peptide, even after 6 days of incubation. ICC and flow cytometry results revealed that DU145 cells expressed higher amounts of E-cadherin but lower N-cadherin compared with PC3 cells. By using Maackia amurensis (α2,3-SA-specific MAL-II) and Sambucus nigra (α2,6-SA specific SNA) lectin-based cytochemistry staining and flow cytometry, it was found that DU145 and DU145GemR cells expressed 5 times more α2,6-SA than α2,3-SA on the cell surface. PC3 cells expressed 4 times more α2,3-SA than α2,6-SA, and the PC3GemR cells showed 1.4 times higher α2,6-SA than α2,3-SA. MCTS volume was dose-dependently reduced following pretreatment with α2,6-SA-specific neuraminidase (Vibrio cholerae). Oseltamivir phosphate enhanced cell aggregation and compaction of 3D MCTS formed with PC3 cells. Conclusion The relative levels of specific sialoglycan structures on the cell surface correlate with the ability of PCa cells to form avascular multicellular prostaspheres.
Collapse
Affiliation(s)
- Sabah Haq
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Vanessa Samuel
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fiona Haxho
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Roman Akasov
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow
| | - Maria Leko
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Sergey V Burov
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Elena Markvicheva
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
7
|
Abstract
The morphologic spectrum of lobular carcinoma in situ (LCIS) includes the classical type and unusual variants recently described. In this article we review the morphology of LCIS and highlight ways to distinguish it from its morphologic mimickers.
Collapse
Affiliation(s)
- Melissa Murray
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, 1275 York Avenue, New York, NY 10065, USA.
| | - Edi Brogi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
8
|
Harigopal M, Shin SJ, Murray MP, Tickoo SK, Brogi E, Rosen PP. Aberrant E-cadherin staining patterns in invasive mammary carcinoma. World J Surg Oncol 2005; 3:73. [PMID: 16287501 PMCID: PMC1308872 DOI: 10.1186/1477-7819-3-73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 11/14/2005] [Indexed: 12/04/2022] Open
Abstract
Background E-cadherin, a cell surface protein involved in cell adhesion, is present in normal breast epithelium, benign breast lesions, and in breast carcinoma. Alterations in the gene CDH1 on chromosome 16q22 are associated with changes in E-cadherin protein expression and function. Inactivation of E-cadherin in lobular carcinomas and certain diffuse gastric carcinomas may play a role in the dispersed, discohesive "single cell" growth patterns seen in these tumors. The molecular "signature" of mammary lobular carcinomas is the loss of E-cadherin protein expression as evidenced by immunohistochemistry, whereas ductal carcinomas are typically E-cadherin positive. Patients and methods We report on E-cadherin immunostaining patterns in five cases of invasive mammary carcinoma Results These were five exceptional instances in which the E-cadherin immunophenotype did not correspond to the apparent histologic classification of the lesion. These cases which are exceedingly rare in our experience are the subject of this report. Conclusion Findings such as those illustrated in this study occur in virtually all biologic phenomena and they do not invalidate the very high degree of correlation between the expression of E-cadherin and the classification of breast carcinomas as ductal or lobular type on the basis of conventional histologic criteria.
Collapse
Affiliation(s)
- Malini Harigopal
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital Weill Cornell Medical Center, New York, NY, USA
| | - Sandra J Shin
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital Weill Cornell Medical Center, New York, NY, USA
| | - Melissa P Murray
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital Weill Cornell Medical Center, New York, NY, USA
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Paul Peter Rosen
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Wen YJ, Mancino A, Pashov A, Whitehead T, Stanley J, Kieber-Emmons T. Antigen binding of human IgG Fabs mediate ERK-associated proliferation of human breast cancer cells. DNA Cell Biol 2005; 24:73-84. [PMID: 15699628 DOI: 10.1089/dna.2005.24.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Serum-circulating antibody can be linked to poor outcomes in some cancer patients. To investigate the role of human antibodies in regulating tumor cell growth, we constructed a recombinant cDNA expression library of human IgG Fab from a patient with breast cancer. Clones were screened from the library with breast tumor cell lysate. Sequence analysis of the clones showed somatic hypermutations when compared to their closest VH/VL germ-line genes. Initial characterizations focused on five clones. All tested clones displayed stronger binding to antigen derived from primary breast cancers and established breast cancer cell lines than to normal breast tissues. In vitro functional studies showed that four out of five tested clones could stimulate the growth of MDA-MB-231 breast cancer cell lines, and one out of five was able to promote MCF-7 cell growth as well. Involvement of ERK2 pathway was observed. By 1H-NMR spectra and Western blot analysis, it was evident that two tested antibody Fabs are capable of interacting with sialic acid. Our study suggests a possible role for human antibody in promoting tumor cell growth by direct binding of IgG Fab to breast tumor antigen. Such studies prompt speculation regarding the role of serum antibodies in mediating tumor growth as well as their contribution to disease progression.
Collapse
Affiliation(s)
- Yue-Jin Wen
- Department of Pathology, Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The insulin-like growth factor I receptor (IGF-IR) has been implicated in the development and progression of many common cancers and other neoplastic diseases. The tumorigenic potential of IGF-IR relies on its antiapoptotic and transforming activities. The molecular mechanisms by which IGF-IR controls the proliferation and survival of tumour cells have been extensively studied and many pathways have been delineated. However, the role of IGF-IR in the regulation of non-mitogenic cell functions is less well understood. Here we focus on IGF-IR-dependent cell-cell adhesion. Limited studies suggested that IGF-IR can regulate cell aggregation and intercellular adhesion mediated by cadherins and cadherin-associated proteins. We review the mechanisms of this process and discuss the impact of IGF-IR-dependent cell-cell adhesion on the phenotype of tumour cells.
Collapse
Affiliation(s)
- Loredana Mauro
- Department of Cellular Biology and Faculty of Pharmacy, University of Calabria, 87030 Rende, Italy
| | | |
Collapse
|
11
|
Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 2003; 5:R217-22. [PMID: 14580257 PMCID: PMC314411 DOI: 10.1186/bcr651] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 08/18/2003] [Accepted: 08/22/2003] [Indexed: 01/13/2023] Open
Abstract
Introduction Aberrant expression of E-cadherin has been associated with the development of metastases in patients with breast cancer. Even though the expression of E-cadherin has been studied in primary breast tumors, little is known about its expression at the distant metastatic sites. We investigate the relationship between E-cadherin expression in primary breast carcinoma and their distant, non-nodal metastases. Methods Immunohistochemical analysis of E-cadherin was performed in tissues from 30 patients with primary invasive breast carcinoma and their distant metastases. E-cadherin expression was evaluated as normal or aberrant (decreased when compared with normal internal positive controls, or absent). Results Twenty-two (73%) invasive carcinomas were ductal, and eight (27%) were lobular. Of the primary invasive ductal carcinomas, 55% (12/22) had normal E-cadherin expression and 45% (10/22) had aberrant expression. All of the metastases expressed E-cadherin with the same intensity as (12 tumors) or with stronger intensity than (10 tumors) the corresponding primaries. Of the invasive lobular carcinomas, one of eight (12%) primary carcinomas and none of the metastases expressed E-cadherin in the cell membranes, but they accumulated the protein in the cytoplasm. Conclusion Aberrant E-cadherin expression is frequent in invasive ductal carcinomas that progress to develop distant metastases. Distant metastases consistently express E-cadherin, often more strongly than the primary tumor. Invasive lobular carcinomas have a different pattern of E-cadherin expression, suggesting a different role for E-cadherin in this form of breast carcinoma.
Collapse
Affiliation(s)
- Paul J Kowalski
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark A Rubin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Celina G Kleer
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Steelant WF, Recchi MA, Noë VT, Boilly-Marer Y, Bruyneel EA, Verbert A, Mareel MM, Delannoy P. Sialylation of E-cadherin does not change the spontaneous or ET-18-OMe-mediated aggregation of MCF-7 human breast cancer cells. Clin Exp Metastasis 1999; 17:245-53. [PMID: 10432010 DOI: 10.1023/a:1006639804430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have investigated the role of sialylation on cell-cell adhesion mediated by E-cadherin. Two MCF-7 human breast cancer cell variants were studied: MCF-7/AZ cells showed a spontaneous cell-cell adhesion in the fast and slow aggregation assay. whereas the adhesion deficient MCF-7/6 cell variant failed to form larger aggregates, suggesting that E-cadherin was not functional under the conditions of both assays. We measured the sialyltransferase activities using Galbeta1-3GalNAcalpha-O-benzyl and Galbeta1-4GlcNAcalpha-O-benzyl as acceptor substrates as well as mRNA levels of four sialyltransferases, ST3Gal I, ST3Gal III, ST3Gal IV, ST6Gal I, using multiplex RT-PCR in MCF-7 cell variants. The alpha2-6 and alpha2-3 sialylation of E-cadherin was investigated by immuno-blot using Sambucus nigra agglutinin and Maackia amurensis agglutinin. Compared to the adhesion-proficient MCF-7/AZ cells, the adhesion-deficient MCF-7/6 cell line apparently lacks ST6Gal I mRNA, has a lower ST3Gal I mRNA, a lower ST3Gal I sialyltransferase activity, and no alpha2-3 linked sialic acid moieties on E-cadherin. The potential anti-cancer drug 1-O-octadecyl-2-O-methylglycero-3-phosphocholine (ET-18-OMe, 48 h, 25 microg/ml) belonging to the class of alkyllysophospholipids restored the E-cadherin function in the adhesion-deficient MCF-7/6 cells as evidenced by an increased aggregation. ET-18-OMe caused loss of ST6Gal I mRNA in MCF-7/AZ cells but no changes of sialyltransferase activities or sialic acid moieties on E-cadherin could be observed. We conclude that Ca2+-dependent, E-cadherin-specific homotypic adhesion of MCF-7/AZ or MCF-7/6 cells treated with ET-18-OMe was not affected by sialylation of E-cadherin.
Collapse
Affiliation(s)
- W F Steelant
- Department of Radiotherapy and Nuclear Medicine, University Hospital Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jankowski JA, Bedford FK, Kim YS. Changes in gene structure and regulation of E-cadherin during epithelial development, differentiation, and disease. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:187-215. [PMID: 9175434 DOI: 10.1016/s0079-6603(08)60281-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J A Jankowski
- Department of Medicine, University of Birmingham, England
| | | | | |
Collapse
|