1
|
Lan G, Song Q, Luan Y, Cheng Y. Targeted strategies to deliver boron agents across the blood-brain barrier for neutron capture therapy of brain tumors. Int J Pharm 2024; 650:123747. [PMID: 38151104 DOI: 10.1016/j.ijpharm.2023.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Boron neutron capture therapy (BNCT), as an innovative radiotherapy technology, has demonstrated remarkable outcomes when compared to conventional treatments in the management of recurrent and refractory brain tumors. However, in BNCT of brain tumors, the blood-brain barrier is a main stumbling block for restricting the transport of boron drugs to brain tumors, while the tumor targeting and retention of boron drugs also affect the BNCT effect. This review focuses on the recent development of strategies for delivering boron drugs crossing the blood-brain barrier and targeting brain tumors, providing new insights for the development of efficient boron drugs for the treatment of brain tumors.
Collapse
Affiliation(s)
- Gongde Lan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qingxu Song
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Terada S, Tsunetoh S, Tanaka Y, Tanaka T, Kashiwagi H, Takata T, Kawabata S, Suzuki M, Ohmichi M. Boron uptake of boronophenylalanine and the effect of boron neutron capture therapy in cervical cancer cells. Appl Radiat Isot 2023; 197:110792. [PMID: 37062147 DOI: 10.1016/j.apradiso.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/13/2022] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
There are few studies about boron neutron capture therapy (BNCT) for cervical cancer. The present study evaluated the biodistribution of boronophenylalanine (BPA) and the effect of BNCT on cervical cancer cell lines. BPA exposure and neutron irradiation of cervical cancer cell lines resulted in decreased survival fraction compared to irradiation only. In vivo cervical cancer tumor boron concentration was highest at 2.5 h after BPA intraperitoneal administration, and higher than in the other organs. BNCT may be effective against cervical carcinoma.
Collapse
|
4
|
Wang S, Zhang Z, Miao L, Zhang J, Tang F, Teng M, Li Y. Construction of targeted 10B delivery agents and their uptake in gastric and pancreatic cancer cells. Front Oncol 2023; 13:1105472. [PMID: 36845737 PMCID: PMC9947830 DOI: 10.3389/fonc.2023.1105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Boron Neutron Capture Therapy (BNCT) is a new binary radiation therapy for tumor tissue, which kills tumor cells with neutron capture reaction. Boron neutron capture therapy has become a technical means for glioma, melanoma, and other diseases has been included in the clinical backup program. However, BNCT is faced with the key problem of developing and innovating more efficient boron delivery agents to solve the targeting and selectivity. We constructed a tyrosine kinase inhibitor-L-p-boronophenylalanine (TKI-BPA) molecule, aiming to improve the selectivity of boron delivery agents by conjugating targeted drugs while increasing the molecular solubility by adding hydrophilic groups. It shows excellent selectivity in differential uptake of cells, and its solubility is more than 6 times higher than BPA, leading to the saving of boron delivery agents. This modification method is effective for improving the efficiency of the boron delivery agent and is expected to become a potential alternative with high clinical application value.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Jiaxing Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Futian Tang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yumin Li, ; Muzhou Teng,
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yumin Li, ; Muzhou Teng,
| |
Collapse
|
5
|
Cheng X, Li F, Liang L. Boron Neutron Capture Therapy: Clinical Application and Research Progress. Curr Oncol 2022; 29:7868-7886. [PMID: 36290899 PMCID: PMC9601095 DOI: 10.3390/curroncol29100622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary modality that is used to treat a variety of malignancies, using neutrons to irradiate boron-10 (10B) nuclei that have entered tumor cells to produce highly linear energy transfer (LET) alpha particles and recoil 7Li nuclei (10B [n, α] 7Li). Therefore, the most important part in BNCT is to selectively deliver a large number of 10B to tumor cells and only a small amount to normal tissue. So far, BNCT has been used in more than 2000 cases worldwide, and the efficacy of BNCT in the treatment of head and neck cancer, malignant meningioma, melanoma and hepatocellular carcinoma has been confirmed. We collected and collated clinical studies of second-generation boron delivery agents. The combination of different drugs, the mode of administration, and the combination of multiple treatments have an important impact on patient survival. We summarized the critical issues that must be addressed, with the hope that the next generation of boron delivery agents will overcome these challenges.
Collapse
Affiliation(s)
- Xiang Cheng
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
| | - Fanfan Li
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| | - Lizhen Liang
- Hefei Comprehensive National Science Center, Institute of Energy, Building 9, Binhu Excellence City Phase I, 16 Huayuan Avenue, Baohe District, Hefei 230031, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| |
Collapse
|
6
|
Coninx S, Kalot G, Godard A, Bodio E, Goze C, Sancey L, Auzély-Velty R. Tailored hyaluronic acid-based nanogels as theranostic boron delivery systems for boron neutron cancer therapy. Int J Pharm X 2022; 4:100134. [PMID: 36304136 PMCID: PMC9594117 DOI: 10.1016/j.ijpx.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Boron-rich nanocarriers possess great potential for advanced boron neutron capture therapy (BNCT) as an effective radiation treatment for invasive malignant tumors. If additionally, they can be imaged in a non-invasive and real-time manner allowing the assessment of local boron concentration, they could serve for dose calculation and image-guided BNCT to enhance tumor treatment efficacy. To meet this challenge, this study describes the design of a theranostic nanogel, enriched in 10B and fluorescent dye, to achieve selective imaging, and sufficient accumulation of boron at the tumor site. The boron-rich and fluorescent nanogels can be easily obtained via temperature triggered-assembly of hyaluronic acid (HA) modified with a thermoresponsive terpolymer. The latter was specifically designed to enable the efficient encapsulation of the fluorescent dye – an aza‑boron-dipyrromethene (aza-BODIPY) – linked to 10B-enriched sodium borocaptate (BSH), in addition to induce nanogel formation below room temperature, and to enable their core-crosslinking by hydrazone bond formation. The HA nanogel considerably concentrates aza-BODIPY-BSH into the hydrophobic nanodomains made of the terpolymer chains. Here, we present the detailed synthesis of the HA-terpolymer conjugate, nanogel formation, and characterization in terms of size, morphology, and stability upon storage, as well as the biological behavior of the boron nanocarrier using real-time fluorescence imaging in cells and in vivo. This work suggested the potential of the theranostic HA nanogel as a boron delivery system for the implementation of BNCT in brain cancer and sarcoma.
Collapse
Affiliation(s)
- Simon Coninx
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France
| | - Ghadir Kalot
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Lucie Sancey
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France,Corresponding author.
| |
Collapse
|
7
|
Jin WH, Seldon C, Butkus M, Sauerwein W, Giap HB. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int J Part Ther 2022; 9:71-82. [PMID: 35774489 PMCID: PMC9238127 DOI: 10.14338/ijpt-22-00002.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mechanism of Action External beam, whether with photons or particles, remains as the most common type of radiation therapy. The main drawback is that radiation deposits dose in healthy tissue before reaching its target. Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when 10B is irradiated with low-energy (0.0025 eV) thermal neutrons. The resulting 10B(n,α)7Li capture reaction produces high linear energy transfer (LET) α particles, helium nuclei (4He), and recoiling lithium-7 (7Li) atoms. The short range (5-9 μm) of the α particles limits the destructive effects within the boron-containing cells. In theory, BNCT can selectively destroy malignant cells while sparing adjacent normal tissue at the cellular levels by delivering a single fraction of radiation with high LET particles. History BNCT has been around for many decades. Early studies were promising for patients with malignant brain tumors, recurrent tumors of the head and neck, and cutaneous melanomas; however, there were certain limitations to its widespread adoption and use. Current Limitations and Prospects Recently, BNCT re-emerged owing to several developments: (1) small footprint accelerator-based neutron sources; (2) high specificity third-generation boron carriers based on monoclonal antibodies, nanoparticles, among others; and (3) treatment planning software and patient positioning devices that optimize treatment delivery and consistency.
Collapse
Affiliation(s)
- Will H Jin
- Department of Radiation Oncology, Jackson Memorial Hospital/Sylvester Comprehensive Cancer Center, University of Miami Health Systems, Miami, FL, USA
| | - Crystal Seldon
- Department of Radiation Oncology, Jackson Memorial Hospital/Sylvester Comprehensive Cancer Center, University of Miami Health Systems, Miami, FL, USA
| | - Michael Butkus
- Department of Radiation Oncology, Jackson Memorial Hospital/Sylvester Comprehensive Cancer Center, University of Miami Health Systems, Miami, FL, USA
| | - Wolfgang Sauerwein
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie (DGBNCT), Universitätsklinikum Essen, Essen, Germany
| | - Huan B Giap
- Department of Radiation Oncology, Nancy N. and J. C. Lewis Cancer & Research Pavilion, Savannah, GA, USA
| |
Collapse
|
8
|
Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol 2022; 12:788770. [PMID: 35433432 PMCID: PMC9009440 DOI: 10.3389/fonc.2022.788770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging therapy with the ability to selectively kill tumor cells. After the boron delivery agents enter the tumor tissue and enrich the tumor cells, the thermal neutrons trigger the fission of the boron atoms, leading to the release of boron atoms and then leading to the release of the α particles (4He) and recoil lithium particles (7Li), along with the production of large amounts of energy in the narrow region. With the advantages of targeted therapy and low toxicity, BNCT has become a unique method in the field of radiotherapy. Since the beginning of the last century, BNCT has been emerging worldwide and gradually developed into a technology for the treatment of glioblastoma multiforme, head and neck cancer, malignant melanoma, and other cancers. At present, how to develop and innovate more efficient boron delivery agents and establish a more accurate boron-dose measurement system have become the problem faced by the development of BNCT. We discuss the use of boron delivery agents over the past several decades and the corresponding clinical trials and preclinical outcomes. Furthermore, the discussion brings recommendations on the future of boron delivery agents and this therapy.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Dose-Dependent Suppression of Human Glioblastoma Xenograft Growth by Accelerator-Based Boron Neutron Capture Therapy with Simultaneous Use of Two Boron-Containing Compounds. BIOLOGY 2021; 10:biology10111124. [PMID: 34827117 PMCID: PMC8615214 DOI: 10.3390/biology10111124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Accelerator-based boron neutron capture therapy (BNCT) has opened up new perspectives in increasing cancer treatment efficacy, including malignant brain tumors and particularly glioblastoma. We studied dosimetry control optimization, neutron beam parameter adjustment, and two boron compound combinations (along with single and double irradiation regimens) to assess safety and increase therapy efficacy, using a U87MG xenotransplant immunodeficient mouse model. In two sets of experiments, we achieved increases in tumor-growth inhibition (to 80–83%), a neutron capture therapy ratio of 2:1 (two times higher neutron capture therapy efficacy than neutron irradiation without boron), and increases in animal life expectancy, from 9 to 107 days, by treatment parameter adjustment. These results will contribute to the development of clinical-trial protocols for accelerator-based BNCT and further innovations in this cancer treatment method. Abstract (1) Background: Developments in accelerator-based neutron sources moved boron neutron capture therapy (BNCT) to the next phase, where new neutron radiation parameters had to be studied for the treatment of cancers, including brain tumors. We aimed to further improve accelerator-BNCT efficacy by optimizing dosimetry control, beam parameters, and combinations of boronophenylalanine (BPA) and sodium borocaptate (BSH) administration in U87MG xenograft-bearing immunodeficient mice with two different tumor locations. (2) Methods: The study included two sets of experiments. In Experiment #1, BPA only and single or double irradiation in higher doses were used, while, in Experiment #2, BPA and BSH combinations and single or double irradiation with dosage adjustment were analyzed. Mice without treatment or irradiation after BPA or BPA+BSH injection were used as controls. (3) Results: Irradiation parameter adjustment and BPA and BSH combination led to 80–83% tumor-growth inhibition index scores, irradiation:BNCT ratios of 1:2, and increases in animal life expectancy from 9 to 107 days. (4) Conclusions: Adjustments in dosimetry control, calculation of irradiation doses, and combined use of two 10B compounds allowed for BNCT optimization that will be useful in the development of clinical-trial protocols for accelerator-based BNCT.
Collapse
|
10
|
Response of Normal Tissues to Boron Neutron Capture Therapy (BNCT) with 10B-Borocaptate Sodium (BSH) and 10B-Paraboronophenylalanine (BPA). Cells 2021; 10:cells10112883. [PMID: 34831105 PMCID: PMC8616460 DOI: 10.3390/cells10112883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a cancer-selective radiotherapy that utilizes the cancer targeting 10B-compound. Cancer cells that take up the compound are substantially damaged by the high liner energy transfer (LET) particles emitted mainly from the 10B(n, α7Li reaction. BNCT can minimize the dose to normal tissues, but it must be performed within the tolerable range of normal tissues. Therefore, it is important to evaluate the response of normal tissues to BNCT. Since BNCT yields a mixture of high and low LET radiations that make it difficult to understand the radiobiological basis of BNCT, it is important to evaluate the relative biological effectiveness (RBE) and compound biological effectiveness (CBE) factors for assessing the responses of normal tissues to BNCT. BSH and BPA are the only 10B-compounds that can be used for clinical BNCT. Their biological behavior and cancer targeting mechanisms are different; therefore, they affect the CBE values differently. In this review, we present the RBE and CBE values of BPA or BSH for normal tissue damage by BNCT irradiation. The skin, brain (spinal cord), mucosa, lung, and liver are included as normal tissues. The CBE values of BPA and BSH for tumor control are also discussed.
Collapse
|
11
|
Kalot G, Godard A, Busser B, Pliquett J, Broekgaarden M, Motto-Ros V, Wegner KD, Resch-Genger U, Köster U, Denat F, Coll JL, Bodio E, Goze C, Sancey L. Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications. Cells 2020; 9:cells9091953. [PMID: 32854219 PMCID: PMC7565158 DOI: 10.3390/cells9091953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (<10 μm). To be efficient, a sufficient amount of 10B should accumulate in the tumor area while being almost cleared from the normal surroundings. A water-soluble aza-boron-dipyrromethene dyes (BODIPY) fluorophore was reported to strongly accumulate in the tumor area with high and BNCT compatible Tumor/Healthy Tissue ratios. The clinically used 10B-BSH (sodium borocaptate) was coupled to the water-soluble aza-BODIPY platform for enhanced 10B-BSH tumor vectorization. We demonstrated a strong uptake of the compound in tumor cells and determined its biodistribution in mice-bearing tumors. A model of chorioallantoic membrane-bearing glioblastoma xenograft was developed to evidence the BNCT potential of such compound, by subjecting it to slow neutrons. We demonstrated the tumor accumulation of the compound in real-time using optical imaging and ex vivo using elemental imaging based on laser-induced breakdown spectroscopy. The tumor growth was significantly reduced as compared to BNCT with 10B-BSH. Altogether, the fluorescent aza-BODIPY/10B-BSH compound is able to vectorize and image the 10B-BSH in the tumor area, increasing its theranostic potential for efficient approach of BNCT.
Collapse
Affiliation(s)
- Ghadir Kalot
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Amélie Godard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Benoît Busser
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
- Grenoble Alpes University Hospital, 38043 Grenoble, France
| | - Jacques Pliquett
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Mans Broekgaarden
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Vincent Motto-Ros
- Institut Lumière Matière UMR 5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France;
| | - Karl David Wegner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany; (K.D.W.); (U.R.-G.)
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany; (K.D.W.); (U.R.-G.)
| | - Ulli Köster
- Institut Laue Langevin, 38042 Grenoble, France;
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| |
Collapse
|
12
|
Ďorďovič V, Tošner Z, Uchman M, Zhigunov A, Reza M, Ruokolainen J, Pramanik G, Cígler P, Kalíková K, Gradzielski M, Matějíček P. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6713-22. [PMID: 27287067 DOI: 10.1021/acs.langmuir.6b01995] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles.
Collapse
Affiliation(s)
| | | | | | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic , Heyrovský Sq. 2, 16206 Prague 6, Czech Republic
| | - Mehedi Reza
- Aalto University , Department of Applied Physics Nanotalo, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Janne Ruokolainen
- Aalto University , Department of Applied Physics Nanotalo, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Goutam Pramanik
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic , Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Petr Cígler
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic , Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | | | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Sekr. TC 7, Technische Universität Berlin , Strasse des 17. Juni 124, D-10623 Berlin, Germany
| | | |
Collapse
|
13
|
Wittig A, Moss RL, Sauerwein WA. Glioblastoma, brain metastases and soft tissue sarcoma of extremities: Candidate tumors for BNCT. Appl Radiat Isot 2014; 88:46-9. [DOI: 10.1016/j.apradiso.2013.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
|
14
|
Abstract
In medicinal chemistry, carbaboranes can be employed either as boron carriers for boron neutron capture therapy (BNCT) or as scaffolds for radiodiagnostic or therapeutic agents. We have developed a suitable synthesis employing the phosphoramidite method to connect meta-carbaboranyl bis-phosphonites with the 6'-OH group of isopropylidene-protected galactose, followed by oxidation or sulfurization to give the corresponding bis-phosphonates. Deprotection yielded water-soluble compounds. The corresponding disodium salts exhibit especially low cytotoxicity. Preliminary results on the in vivo toxicity and biodistribution of two compounds in mice indicated a lack of selectivity for the cotton rat lung (CRL) tumor chosen for the experiment. For the incorporation of carbaboranes into breast tumor-selective modified neuropeptide Y, [F7, P34]-NPY, a synthesis of a carbaborane-modified lysine derivative was developed. Linkage of the lysine to the boron cluster was achieved by using a propionic acid spacer. Incorporation of the amino acid derivatives into NPY and [F7, P34]-NPY by solid-phase peptide synthesis was successful. Preliminary studies showed that the receptor binding affinity and signal transduction of the boron-modified peptides were very well retained. Asborin, the carbaborane analogue of aspirin, is a rather weak inhibitor of cyclooxygenase-1 (COX-1) and COX-2, but a highly potent aldo/keto reductase 1A1 (AKR1A1) inhibitor. Modification either at the carboxyl group or at the chlorophenyl ring in indomethacin with ortho- and meta-carbaboranyl derivatives gave active derivatives only for the ortho-carbaborane directly attached to the carboxyl group, while the corresponding adamantyl and meta-carbaboranyl derivatives were inactive.
Collapse
|
15
|
Sun T, Zhou Y, Xie X, Chen G, Li B, Wei Y, Chen J, Huang Q, Du Z. Selective uptake of boronophenylalanine by glioma stem/progenitor cells. Appl Radiat Isot 2012; 70:1512-8. [PMID: 22728842 DOI: 10.1016/j.apradiso.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 12/22/2022]
Abstract
The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts.
Collapse
Affiliation(s)
- Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wittig A, Stecher-Rasmussen F, Hilger RA, Rassow J, Mauri P, Sauerwein W. Sodium mercaptoundecahydro-closo-dodecaborate (BSH), a boron carrier that merits more attention. Appl Radiat Isot 2011; 69:1760-4. [DOI: 10.1016/j.apradiso.2011.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 02/13/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
|
17
|
Bortolussi S, Bakeine J, Ballarini F, Bruschi P, Gadan M, Protti N, Stella S, Clerici A, Ferrari C, Cansolino L, Zonta C, Zonta A, Nano R, Altieri S. Boron uptake measurements in a rat model for Boron Neutron Capture Therapy of lung tumours. Appl Radiat Isot 2011; 69:394-8. [DOI: 10.1016/j.apradiso.2010.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/16/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
18
|
Wittig A, Collette L, Appelman K, Bührmann S, Jäckel MC, Jöckel KH, Schmid KW, Ortmann U, Moss R, Sauerwein WAG. EORTC trial 11001: distribution of two 10B-compounds in patients with squamous cell carcinoma of head and neck, a translational research/phase 1 trial. J Cell Mol Med 2009; 13:1653-1665. [PMID: 19602035 DOI: 10.1111/j.1582-4934.2009.00856.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Boron neutron capture therapy (BNCT) provides highly targeted delivery of radiation through the limited spatial distribution of its effects. This translational research/phase I clinical trial investigates whether BNCT might be developed as a treatment option for squamous cell carcinoma of head and neck (SCCHN) relying upon preferential uptake of the two compounds, sodium mercaptoundecahydro-closo-dodecaborate (BSH) or L-para-boronophenylalanine (BPA) in the tumour. Before planned tumour resection, three patients received BSH and three patients received BPA. The (10)B-concentration in tissues and blood was measured with prompt gamma ray spectroscopy. Adverse effects from compounds did not occur. After BPA infusion the (10)B-concentration ratio of tumour/blood was 4.0 +/- 1.7. (10)B-concentration ratios of tumour/normal tissue were 1.3 +/- 0.5 for skin, 2.1 +/- 1.2 for muscle and 1.4 +/- 0.01 for mucosa. After BSH infusion the (10)B-concentration ratio of tumour/blood was 1.2 +/- 0.4. (10)B-concentration ratios of tumour/normal tissue were 3.6 +/- 0.6 for muscle, 2.5 +/- 1.0 for lymph nodes, 1.4 +/- 0.5 for skin and 1.0 +/- 0.3 for mucosa. BPA and BSH deliver (10)B to SCCHN to an extent that might allow effective BNCT treatment. Mucosa and skin are the most relevant organs at risk.
Collapse
Affiliation(s)
- Andrea Wittig
- Department of Radiation Oncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Laurence Collette
- Statistics Department, European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Klaas Appelman
- Nuclear Research and consultancy Group (NRG), Petten, The Netherlands
| | - Sandra Bührmann
- Pharmacy of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martin C Jäckel
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology and Neuropathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Uta Ortmann
- Department of Radiation Oncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Raymond Moss
- HFR Unit, Institute for Energy, Joint Research Centre, European Commission, Petten, The Netherlands
| | - Wolfgang A G Sauerwein
- Department of Radiation Oncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Wittig A, Collette L, Moss R, Sauerwein W. Early clinical trial concept for boron neutron capture therapy: A critical assessment of the EORTC trial 11001. Appl Radiat Isot 2009; 67:S59-62. [DOI: 10.1016/j.apradiso.2009.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Yamamoto T, Nakai K, Kageji T, Kumada H, Endo K, Matsuda M, Shibata Y, Matsumura A. Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother Oncol 2009; 91:80-4. [DOI: 10.1016/j.radonc.2009.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 01/28/2009] [Accepted: 02/15/2009] [Indexed: 11/25/2022]
|
21
|
Abstract
Neutron capture therapy (NCT) theoretically allows an unique tumor-cell-selective high-LET particle radiotherapy. The survival benefits and safety of NCT were evaluated in 15 patients with newly diagnosed glioblastoma multiforme (GBM). Seven patients received intra-operative (IO-) NCT and eight patients received external beam (EB-) NCT. Sulfhydryl borane (BSH, 5 g/body) was administered intravenously 12 h before neutron irradiation. Additionally, p-dihydroxyboryl-phenylalanine (BPA, 250 mg/kg) was given 1 h before irradiation to the eight patients who underwent EB-NCT. EB-NCT was combined with fractionated photon irradiation. Five of 15 patients were alive at analysis for a mean follow-up time of 20.3 M. In 11 of 15 patients followed up for more than 1-year, eight (72.7%) maintained their Karnofsky performance status (KPS; 90 in 6 and 100 in 2). The median overall survival (OS) and time to magnetic resonance (MR) change (TTM) for all patients were 25.7 and 11.9 M, respectively. There was no difference in TTM between the IO-NCT (12.0 M) and EB-NCT (11.9 M) groups. The 1- and 2-year survival rates were 85.7% and 45.5%, respectively. This NCT pilot study in 15 patients with newly diagnosed GBM showed survival benefits, suggesting that the neutron capture reaction may function sufficiently to control tumors locally, and that further optimized studies in large series of patients are warranted.
Collapse
|
22
|
Kawabata S, Miyatake SI, Kuroiwa T, Yokoyama K, Doi A, Iida K, Miyata S, Nonoguchi N, Michiue H, Takahashi M, Inomata T, Imahori Y, Kirihata M, Sakurai Y, Maruhashi A, Kumada H, Ono K. Boron neutron capture therapy for newly diagnosed glioblastoma. JOURNAL OF RADIATION RESEARCH 2009; 50:51-60. [PMID: 18957828 DOI: 10.1269/jrr.08043] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We evaluate the clinical results of a form of tumor selective particle radiation known as boron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma (NDGB) patients, especially in combination with X-ray treatment (XRT). Between 2002 and 2006, we treated 21 patients of NDGB with BNCT utilizing sodium borocaptate and boronophenylalanine simultaneously. The first 10 were treated with only BNCT (protocol 1), and the last 11 were treated with BNCT followed by XRT of 20 to 30 Gy (protocol 2) to reduce the possibility of local tumor recurrence. No chemotherapy was applied until tumor progression was observed. The patients treated with BNCT (protocol 1 plus 2) showed a significant survival prolongation compared with the institutional historical controls. BNCT also showed favorable results in correspondence with the RTOG- and EORTC-RPA subclasses. The median survival time (MST) was 15.6 months for protocols 1 and 2 together. For protocol 2, the MST was 23.5 months. The main causes of death were cerebrospinal fluid dissemination as well as local recurrence. Our modified BNCT protocol showed favorable results of patients with NDGB not only for those with good prognoses but also for those with poor prognoses.
Collapse
Affiliation(s)
- Shinji Kawabata
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boron neutron capture therapy for glioblastoma. Cancer Lett 2008; 262:143-52. [DOI: 10.1016/j.canlet.2008.01.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/23/2022]
|
24
|
Wittig A, Malago M, Collette L, Huiskamp R, Bührmann S, Nievaart V, Kaiser GM, Jöckel KH, Schmid KW, Ortmann U, Sauerwein WA. Uptake of two 10B-compounds in liver metastases of colorectal adenocarcinoma for extracorporeal irradiation with boron neutron capture therapy (EORTC Trial 11001). Int J Cancer 2008; 122:1164-71. [PMID: 17985341 DOI: 10.1002/ijc.23224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disseminated metastases of colorectal cancer in liver are incurable. The trial EORTC 11001 investigates whether autotransplantation after extracorporeal irradiation of the liver by boron neutron capture therapy (BNCT) might become a curative treatment option because of selective uptake of the compounds sodium mercaptoundecahydro-closo-dodecaborate (BSH) or L-para-boronophenylalanine (BPA). BSH (50 mg/kg bw) or BPA (100 mg/kg bw) were infused into patients who subsequently underwent resection of hepatic metastases. Blood and tissue samples were analyzed forthe (10)B-concentration with prompt gamma ray spectroscopy (PGRS). Three patients received BSH and 3 received BPA. Adverse effects from the boron carriers did not occur. For BSH, the highest (10)B-concentration was observed in liver (31.5 +/- 2.7 microg/g) followed by blood (24.8 +/- 4.7 microg/g) and tumor (23.2 +/- 2.1 microg/g) with a mean (10)B-concentration ratio metastasis/liver of 0.72 +/- 0.07. For BPA, the highest (10)B-concentration was measured in metastases (12.1 +/- 2.2 microg/g) followed by liver (8.5 +/- 0.5 microg/g) and blood (5.8 +/- 0.8 microg/g). As BPA is transported actively into cells, viable, metabolically active cells accumulate exclusively this compound. Consequently, a model is proposed to adjust the values measured by PGRS for the proportion of viable cells to express the relevant (10)B-concentration in the tumor cells, revealing a (10)B-concentration ratio metastasis/liver of 6.8 +/- 1.7. In conclusion, BSH is not suitable as (10)B-carrier in liver metastases as the (10)B-concentration in liver was higher compared to metastasis. BPA accumulates in hepatic metastases to an extent that allows for extracorporeal irradiation of the liver with BNCT.
Collapse
Affiliation(s)
- Andrea Wittig
- Department of Radiation Oncology, University Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Trivillin VA, Heber EM, Nigg DW, Itoiz ME, Calzetta O, Blaumann H, Longhino J, Schwint AE. Therapeutic Success of Boron Neutron Capture Therapy (BNCT) Mediated by a Chemically Non-selective Boron Agent in an Experimental Model of Oral Cancer: A New Paradigm in BNCT Radiobiology. Radiat Res 2006; 166:387-96. [PMID: 16881740 DOI: 10.1667/rr3592.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hypothesis of boron neutron capture therapy (BNCT) research has been that the short-range, high-linear energy transfer radiation produced by the capture of thermal neutrons by (10)B will potentially control tumor and spare normal tissue only if the boron compound selectively targets tumor tissue within the treatment volume. In a previous in vivo study of low-dose BNCT mediated by GB-10 (Na(2)(10)B(10)H(10)) alone or combined with boronophenylalanine (BPA) in the hamster cheek pouch oral cancer model that was primarily designed to evaluate safety and feasibility, we showed therapeutic effects but no associated normal tissue radiotoxicity. In the present study, we evaluated the response of tumor, precancerous and normal tissue to high-dose BNCT mediated by GB-10 alone or combined with BPA. Despite the fact that GB-10 does not target hamster cheek pouch tumors selectively, GB-10-BNCT induced a 70% overall tumor response with no damage to normal tissue. (GB-10+BPA)-BNCT induced a 93% overall tumor response with no normal tissue radiotoxicity. Light microscope analysis showed that GB-10-BNCT selectively damages tumor blood vessels, sparing precancerous and normal tissue vessels. In this case, selective tumor lethality would thus result from selective blood vessel damage rather than from selective uptake of the boron compound.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission,San Martín, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Barth RF, Coderre JA, Vicente MGH, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 2005; 11:3987-4002. [PMID: 15930333 DOI: 10.1158/1078-0432.ccr-05-0035] [Citation(s) in RCA: 655] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma, most recently, head and neck and liver cancer. Neutron sources for BNCT currently are limited to nuclear reactors and these are available in the United States, Japan, several European countries, and Argentina. Accelerators also can be used to produce epithermal neutrons and these are being developed in several countries, but none are currently being used for BNCT. BORON DELIVERY AGENTS Two boron drugs have been used clinically, sodium borocaptate (Na(2)B(12)H(11)SH) and a dihydroxyboryl derivative of phenylalanine called boronophenylalanine. The major challenge in the development of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations ( approximately 20 microg/g tumor) sufficient to deliver therapeutic doses of radiation to the tumor with minimal normal tissue toxicity. Over the past 20 years, other classes of boron-containing compounds have been designed and synthesized that include boron-containing amino acids, biochemical precursors of nucleic acids, DNA-binding molecules, and porphyrin derivatives. High molecular weight delivery agents include monoclonal antibodies and their fragments, which can recognize a tumor-associated epitope, such as epidermal growth factor, and liposomes. However, it is unlikely that any single agent will target all or even most of the tumor cells, and most likely, combinations of agents will be required and their delivery will have to be optimized. CLINICAL TRIALS Current or recently completed clinical trials have been carried out in Japan, Europe, and the United States. The vast majority of patients have had high-grade gliomas. Treatment has consisted first of "debulking" surgery to remove as much of the tumor as possible, followed by BNCT at varying times after surgery. Sodium borocaptate and boronophenylalanine administered i.v. have been used as the boron delivery agents. The best survival data from these studies are at least comparable with those obtained by current standard therapy for glioblastoma multiforme, and the safety of the procedure has been established. CONCLUSIONS Critical issues that must be addressed include the need for more selective and effective boron delivery agents, the development of methods to provide semiquantitative estimates of tumor boron content before treatment, improvements in clinical implementation of BNCT, and a need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy. If these issues are adequately addressed, then BNCT could move forward as a treatment modality.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
27
|
Bergenheim AT, Capala J, Roslin M, Henriksson R. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J Neurooncol 2005; 71:287-93. [PMID: 15735919 DOI: 10.1007/s11060-004-1724-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boron neutron capture therapy (BNCT) is dependent on the selective accumulation of boron-10 in tumour cells. To maximise the radiation effect, the neutrons should be delivered when the ratio between the boron concentration in tumour cells to that in normal tissues reaches maximum. However, the pharmacokinetics of p-boronophenylalanine (BPA) and other boron delivery agents are only partly known. We used microdialysis to investigate the extracellular in vivo kinetics of boron in three intracerebral compartments -- solid tumour, brain adjacent to tumour (BAT), and the normal brain, as well as the subcutaneous tissue before, during, and after BNCT treatment. The findings were compared to the pharmacokinetics of BPA in the blood. We also measured the glucose metabolism and the levels of glutamate and glycerol in those compartments. Four patients were studied, two patients underwent surgical tumour resection and in two a stereotactic biopsy was performed. The patients were given BPA (900 mg/kg body weight) by a 6-h infusion. The infusion was completed approximately 2-3 h before neutron irradiation. In tumour tissue the extracellular concentration of BPA followed that of blood with a maximal concentration of 31.2 ppm and a maximal ratio vs. blood of 1.07. In BAT, the maximal concentration of BPA was 18.0 ppm with the peak level delayed for 4-6 h compared to the peak in blood with a maximal ratio of 1.2. Maximal blood concentration found was 41.0 ppm. The uptake of BPA in the normal brain was considerably lower than that in the blood and tumour tissue. No change in glucose metabolism was observed. The extracellular level of glycerol was increased after treatment in tumour tissue but not in normal brain suggesting a selective acute cytotoxic effect of BNCT on tumour cells.
Collapse
|
28
|
Vos MJ, Turowski B, Zanella FE, Paquis P, Siefert A, Hideghéty K, Haselsberger K, Grochulla F, Postma TJ, Wittig A, Heimans JJ, Slotman BJ, Vandertop WP, Sauerwein W. Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961. Int J Radiat Oncol Biol Phys 2005; 61:392-9. [PMID: 15667958 DOI: 10.1016/j.ijrobp.2004.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 05/11/2004] [Accepted: 06/06/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE To assess the occurrence and development of cerebral radiologic changes (cerebral atrophy and white matter lesions) in patients treated with boron neutron capture therapy (BNCT) for primary supratentorial glioblastoma multiforme within the European Organization for Research and Treatment of Cancer (EORTC) trial 11961. METHODS AND MATERIALS Magnetic resonance imaging (MRI) scans were performed before and after surgery and at 1 week and 2, 4.5, 6, 9, 12, 15, and 18 months after BNCT. For the current study, MRI scans of all assessable patients were analyzed, with emphasis on cerebral atrophy and white matter abnormalities. RESULTS Twenty-six patients had been treated with BNCT according to the EORTC trial 11961, of whom 24 were assessable for the current study. The development of possible BNCT-related cerebral changes was observed in 12 patients (50%), 10 of whom had cerebral atrophy (42%) and 10 white matter changes (42%) after a median interval of 7.5 and 4.5 months, respectively. CONCLUSION In this study, cerebral radiologic changes appeared in 50% of patients within the first year after BNCT. Although a clear correlation between the BNCT dose and the development of cerebral changes could not be demonstrated, a relationship between the occurrence of these radiologic abnormalities and BNCT seems likely.
Collapse
Affiliation(s)
- Maaike J Vos
- Department of Neurology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dagrosa MA, Viaggi M, Rebagliati RJ, Castillo VA, Batistoni D, Cabrini RL, Castiglia S, Juvenal GJ, Pisarev MA. Biodistribution of p-borophenylalanine (BPA) in dogs with spontaneous undifferentiated thyroid carcinoma (UTC). Appl Radiat Isot 2004; 61:911-5. [PMID: 15308167 DOI: 10.1016/j.apradiso.2004.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human undifferentiated thyroid carcinoma (UTC) is a very aggressive tumor which lacks an adequate treatment. The UTC human cell line ARO has a selective uptake of BPA in vitro and after transplanting into nude mice. Applications of boron neutron capture therapy (BNCT) to mice showed a 100% control of growth and a 50% histological cure of tumors with an initial volume of 50 mm(3) or less. As a further step towards the potential application in humans we have performed the present studies. Four dogs with diagnosis of spontaneous UTC were studied. A BPA-fructose solution was infused during 60 min and dogs were submitted to thyroidectomy. Samples of blood and from different areas of the tumors (and in one dog from normal thyroid) were obtained and the boron was determined by ICP-OES. Selective BPA uptake by the tumor was found in all animals, the tumor/blood ratios ranged between 2.02 and 3.76, while the tumor/normal thyroid ratio was 6.78. Individual samples had tumor/blood ratios between 8.36 and 0.33. These ratios were related to the two histological patterns observed: homogeneous and heterogeneous tumors. We confirm the selective uptake of BPA by spontaneous UTC in dogs and plan to apply BNCT in the future.
Collapse
Affiliation(s)
- M A Dagrosa
- Department of Radiobiology, University of Buenos Aires, 1429 Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Coderre JA, Turcotte JC, Riley KJ, Binns PJ, Harling OK, Kiger WS. Boron neutron capture therapy: cellular targeting of high linear energy transfer radiation. Technol Cancer Res Treat 2004; 2:355-75. [PMID: 14529302 DOI: 10.1177/153303460300200502] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is based on the preferential targeting of tumor cells with (10)B and subsequent activation with thermal neutrons to produce a highly localized radiation. In theory, it is possible to selectively irradiate a tumor and the associated infiltrating tumor cells with large single doses of high-LET radiation while sparing the adjacent normal tissues. The mixture of high- and low-LET dose components created in tissue during neutron irradiation complicates the radiobiology of BNCT. Much of the complexity has been unravelled through a combination of preclinical experimentation and clinical dose escalation experience. Over 350 patients have been treated in a number of different facilities worldwide. The accumulated clinical experience has demonstrated that BNCT can be delivered safely but is still defining the limits of normal brain tolerance. Several independent BNCT clinical protocols have demonstrated that BNCT can produce median survivals in patients with glioblastoma that appear to be equivalent to conventional photon therapy. This review describes the individual components and methodologies required for effect BNCT: the boron delivery agents; the analytical techniques; the neutron beams; the dosimetry and radiation biology measurements; and how these components have been integrated into a series of clinical studies. The single greatest weakness of BNCT at the present time is non-uniform delivery of boron into all tumor cells. Future improvements in BNCT effectiveness will come from improved boron delivery agents, improved boron administration protocols, or through combination of BNCT with other modalities.
Collapse
Affiliation(s)
- Jeffrey A Coderre
- Nuclear Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with neutrons of the appropriate energy to produce high-energy alpha particles and recoiling lithium-7 nuclei. BNCT has been used clinically to treat patients with high-grade gliomas, and a much smaller number with primary and metastatic melanoma. The purpose of this special issue of the Journal of Neuro-Oncology is to provide a critical and realistic assessment of various aspects of basic and clinical BNCT research in order to better understand its present status and future potential. Topics that are covered include neutron sources, tumor-targeted boron delivery agents, brain tumor models to assess therapeutic efficacy, computational dosimetry and treatment planning, results of clinical trails in the United States, Japan and Europe, pharmacokinetic studies of sodium borocaptate and boronophenylalanine (BPA), positron emission tomography imaging of BPA for treatment planning, and finally an overview of the challenges and problems that must be faced if BNCT is to become a useful treatment modality for brain tumors. Clinical studies have demonstrated the safety of BNCT. The next challenge is an unequivocal demonstration of therapeutic efficacy in one or more of the clinical trails that either are in progress or are planned over the next few years.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Verbakel WFAR, Sauerwein W, Hideghety K, Stecher-Rasmussen F. Boron concentrations in brain during boron neutron capture therapy: in vivo measurements from the phase I trial EORTC 11961 using a gamma-ray telescope. Int J Radiat Oncol Biol Phys 2003; 55:743-56. [PMID: 12573762 DOI: 10.1016/s0360-3016(02)04392-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Gamma-ray spectroscopic scans to measure boron concentrations in the irradiated volume were performed during treatment of 5 patients suffering from brain tumors with boron neutron capture therapy (BNCT). In BNCT, the dose that is meant to be targeted primarily to the tumor is the dose coming from the reaction 10B(n,alpha)7Li, which is determined by the boron concentration in tissue and the thermal neutron fluence rate. The boron distribution throughout the head of the patient during the treatment is therefore of major interest. The detection of the boron distribution during the irradiation was until now not possible. METHODS AND MATERIALS Five patients suffering from glioblastoma multiforme and treated with BNCT in a dose escalation study were administered the boron compound, boron sulfhydryl (BSH; Na(2)B(12)H(11)SH). Boron concentrations were reconstructed from measurements performed with the gamma-ray telescope which detects locally the specific gamma rays produced by neutron capture in 10B and 1H. RESULTS For all patients, at a 10B concentration in blood of 30 ppm, the boron concentration in nonoperated areas of the brain was very low, between 1 and 2.5 ppm. In the target volume, which included the area where the tumor had been removed and where remaining tumor cells have to be assumed, much higher boron concentrations were measured with large variations from one patient to another. Superficial tissue contained a higher concentration of 10B than the nonoperated areas of the brain, ranging between 8 and 15 ppm. CONCLUSIONS The measured results correspond with previous tissue uptake studies, confirming that normal brain tissue hardly absorbs the boron compound BSH. Gamma-ray telescope measurements seem to be a promising method to provide information on the biodistribution of boron during therapy. Furthermore, it also opens the possibility of in vivo dosimetry.
Collapse
|