1
|
Anagnostopoulos C, Anastassiadou M, Castoldi AF, Cavelier A, Coja T, Crivellente F, Dujardin B, Hart A, Hooghe W, Jarrah S, Machera K, Menegola E, Metruccio F, Sieke C, Mohimont L. Retrospective cumulative dietary risk assessment of craniofacial alterations by residues of pesticides. EFSA J 2022; 20:e07550. [PMID: 36237417 PMCID: PMC9536188 DOI: 10.2903/j.efsa.2022.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA established cumulative assessment groups and conducted retrospective cumulative risk assessments for two types of craniofacial alterations (alterations due to abnormal skeletal development, head soft tissue alterations and brain neural tube defects) for 14 European populations of women in childbearing age. Cumulative acute exposure calculations were performed by probabilistic modelling using monitoring data collected by Member States in 2017, 2018 and 2019. A rigorous uncertainty analysis was performed using expert knowledge elicitation. Considering all sources of uncertainty, their dependencies and differences between populations, it was concluded with varying degrees of certainty that the MOET resulting from cumulative exposure is above 100 for the two types of craniofacial alterations. The threshold for regulatory consideration established by risk managers is therefore not exceeded. Considering the severity of the effects under consideration, it was also assessed whether the MOET is above 500. This was the case with varying levels of certainty for the head soft tissue alterations and brain neural tube defects. However, for the alterations due to abnormal skeletal development, it was found about as likely as not that the MOET is above 500 in most populations. For two populations, it was even found more likely that the MOET is below 500. These results were discussed in the light of the conservatism of the methodological approach.
Collapse
|
2
|
Cho K, Lee SM, Heo J, Kwon YM, Chung D, Yu WJ, Bae SS, Choi G, Lee DS, Kim Y. Retinaldehyde Dehydrogenase Inhibition-Related Adverse Outcome Pathway: Potential Risk of Retinoic Acid Synthesis Inhibition during Embryogenesis. Toxins (Basel) 2021; 13:toxins13110739. [PMID: 34822523 PMCID: PMC8623920 DOI: 10.3390/toxins13110739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid (RA) is one of the factors crucial for cell growth, differentiation, and embryogenesis; it interacts with the retinoic acid receptor and retinoic acid X receptor to eventually regulate target gene expression in chordates. RA is transformed from retinaldehyde via oxidization by retinaldehyde dehydrogenase (RALDH), which belongs to the family of oxidoreductases. Several chemicals, including disulphiram, diethylaminobenzaldehyde, and SB-210661, can effectively inhibit RALDH activity, potentially causing reproductive and developmental toxicity. The modes of action can be sequentially explained based on the molecular initiating event toward key events, and finally the adverse outcomes. Adverse outcome pathway (AOP) is a conceptual and theoretical framework that describes the sequential chain of casually liked events at different biological levels from molecular events to adverse effects. In the present review, we discussed a recently registered AOP (AOP297; inhibition of retinaldehyde dehydrogenase leads to population decline) to explain and support the weight of evidence for RALDH inhibition-related developmental toxicity using the existing knowledge.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Sang-Moo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea;
| | - Jina Heo
- Department of Growth Engine Research, Chungbuk Research Institute (CRI), Chungju 28517, Korea;
| | - Yong Min Kwon
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dawoon Chung
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Woon-Jong Yu
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Seung Seob Bae
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Grace Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
- Correspondence: (D.-S.L.); (Y.K.)
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
- Correspondence: (D.-S.L.); (Y.K.)
| |
Collapse
|
3
|
Metruccio F, Palazzolo L, Di Renzo F, Battistoni M, Menegola E, Eberini I, Moretto A. Development of an adverse outcome pathway for cranio-facial malformations: A contribution from in silico simulations and in vitro data. Food Chem Toxicol 2020; 140:111303. [PMID: 32251704 DOI: 10.1016/j.fct.2020.111303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce additive effects. The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid (RA) local increase, triggering key events leading to craniofacial defects. Valproic acid (VPA) is supposed to imbalance RA-regulated gene expression trough histone deacetylases (HDACs) inhibition. The aim was to evaluate effects of molecules sharing the same MIE (azoles) and of such having (hypothetically) different MIEs but which are eventually involved in the same adverse outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST software. The common target was the branchial apparatus. In silico results confirmed azole-related CYP26 inhibition and a weak general VPA inhibition on the tested HDACs. Unexpectedly, VPA showed also a weak, but not marginal, capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA catabolism, acting as an additional MIE. Our findings suggest a new more complex picture. Consequently two different AOPs, leading to the same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on the two converging AOPs.
Collapse
Affiliation(s)
| | - Luca Palazzolo
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Francesca Di Renzo
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Maria Battistoni
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Elena Menegola
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Ivano Eberini
- Università degli Studi di Milano, Department of Pharmacological and Biomolecular Sciences & DSRC, via Balzaretti 9- 20133, Milan, Italy.
| | - Angelo Moretto
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| |
Collapse
|
4
|
Som PM, Streit A, Naidich TP. Illustrated review of the embryology and development of the facial region, part 3: an overview of the molecular interactions responsible for facial development. AJNR Am J Neuroradiol 2014; 35:223-9. [PMID: 23557958 DOI: 10.3174/ajnr.a3453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SUMMARY Parts 1 and 2 of this review discussed the complex morphogenesis of the face. However, the molecular processes that drive the morphology of the face were not addressed. Part 3 of this review will present an overview of the genes and their products that have been implicated in the developing face.
Collapse
Affiliation(s)
- P M Som
- From the Department of Radiology (P.M.S., T.P.N.), Mount Sinai School of Medicine, New York University, New York, New York
| | | | | |
Collapse
|
5
|
Som PM, Naidich TP. Illustrated review of the embryology and development of the facial region, part 1: Early face and lateral nasal cavities. AJNR Am J Neuroradiol 2013; 34:2233-40. [PMID: 23493891 DOI: 10.3174/ajnr.a3415] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The early embryological development of the face has been reviewed. One repeating theme to note is the serial closing and then the re-opening of a space. This is seen in the separation of the nasal and oral cavities, the nostrils, and in part 2 the developing eyelids fusing and then re-opening. Part 2 will discuss the further facial development as well as the changes in facial bone appearance after birth.
Collapse
Affiliation(s)
- P M Som
- Department of Radiology, Mount Sinai School of Medicine, New York University, New York, New York
| | | |
Collapse
|
6
|
Di Renzo F, Broccia ML, Giavini E, Menegola E. Antifungal triazole derivative triadimefon induces ectopic maxillary cartilage by altering the morphogenesis of the first branchial arch. ACTA ACUST UNITED AC 2007; 80:2-11. [PMID: 17187389 DOI: 10.1002/bdrb.20097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The triazole derivative, triadimefon (FON), induces branchial arch abnormalities in post-implantation rat embryos cultured in vitro, and cranio-facial malformations in mouse fetuses. Ectopic maxillary cartilage has been also described as a typical FON-related malformation. This work studies the morphogenesis of the ectopic cartilage in rat embryos and fetuses exposed in vivo to FON during the early postimplantation period. METHODS Pregnant rats were treated with 0, 250, and 500 mg/kg FON on Day 9.5 of pregnancy (D9.5) and sacrificed at term (D20), during the early fetal period (D17) or at different embryogenetic periods (D10, D11, D12). The skeleton was examined after stain of bone and cartilage or of cartilage alone respectively at term or at D17. The neural crest cell (NCC) migration and compaction was investigated at D10 and D11 and the cranial nerve organization described at D12. RESULTS Triadimefon is teratogenic in rats under the chosen experimental conditions. The malformations were at the level of the cranio-facial and axial skeleton at term and of the hindbrain nerves in embryos. A NCC abnormal migration and compaction was observed at the level of the first branchial arch: in FON-exposed embryos NCC were detected at the level of both maxillary and mandibular processes, whereas control embryos showed the immunostained tissue only at the level of the mandibular bud. CONCLUSIONS The pathogenic pathway, proposed to explain the ectopic cartilage, is the displacement of part of the NCC-derived tissues at the maxillary region of the first branchial arch.
Collapse
|
7
|
Kuratani S, Ueki T, Hirano S, Aizawa S. Rostral truncation of a cyclostome, Lampetra japonica, induced by all-trans retinoic acid defines the head/trunk interface of the vertebrate body. Dev Dyn 1998; 211:35-51. [PMID: 9438422 DOI: 10.1002/(sici)1097-0177(199801)211:1<35::aid-aja4>3.0.co;2-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of all-trans retinoic acid on embryogenesis was studied in a cyclostome, Lampetra japonica. Treatment with 0.05-0.5 microM retinoic acid on early gastrula and early neurula resulted in loss of the pharynx and in the rostral truncation of the neural tube. The mouth, pharynx, esophagus, heart, endostyle, and rostral brain were missing with graded severity. In the severest case, the embryo consisted only of trunk segments, especially myotomes that extended to the rostral end of the axis. The effect appeared to be dose- and stage-dependent: Rostral pharyngeal arches were more vulnerable to a lower amount of retinoic acid, and earlier treatment resulted in severer defects. The initial protrusion of the anterior axis started equally in control and retinoic acid-treated embryos, implying that the head morphogenesis is omitted in treated embryos. By identifying the number of myotomes based on the differentiation of hypobranchial muscles, there seemed to be no myotomes lost by retinoic acid-induced truncation. The rostral truncation, therefore, was not simply a limitation of the anterior axis but was restricted to the ventral portion; only the branchial arches disappeared with normally developing myotomes dorsally. The absent region can be defined as the vertebrate head in a morphological sense, including the branchiomeric and preotic paraxial regions as well as the heart. The results suggest the presence of distinct programs between somitomeric and branchiomeric portions of the body, providing a developmental basis for the dual-metamerical body plan of vertebrates.
Collapse
Affiliation(s)
- S Kuratani
- Department of Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Japan.
| | | | | | | |
Collapse
|