1
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
2
|
Ye ZF, Zhang P, Gai TT, Lou JH, Dai FY, Tong XL. Sob gene is critical to wing development in Bombyx mori and Tribolium castaneum. INSECT SCIENCE 2022; 29:65-77. [PMID: 33822467 DOI: 10.1111/1744-7917.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The development of insect appendages requires the expression of multiple genes in a strict spatial and temporal order. The odd-skipped family genes are vital transcriptional factors involved in embryonic development. The development and morphogenesis of the insect wing requires multiple transcription factors to regulate the expression of wing patterning genes at the transcriptional level. However, the function of odd-related genes in insect wing morphogenesis and development during postembryonic stages is unclear. We focused on the roles of the sister of odd and bowl (sob) gene, a member of odd-skipped family genes, during the wing morphopoiesis in Bombyx mori using the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 system and in Tribolium castaneum by RNA interference. The results showed that the wings were significantly smaller and degenerated, and wing veins were indistinct in the sob gene loss-of-function group in both B. mori and T. castaneum. Quantitative real-time polymerase chain reaction revealed that the Tcsob gene regulated the expression of wing development genes, such as the cht 7 and the vg gene. The findings suggest the importance of sob gene in insect wing morphology formation during postembryonic stages.
Collapse
Affiliation(s)
- Zhan-Feng Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Pan Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Jing-Hou Lou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Mehta AS, Deshpande P, Chimata AV, Tsonis PA, Singh A. Newt regeneration genes regulate Wingless signaling to restore patterning in Drosophila eye. iScience 2021; 24:103166. [PMID: 34746690 PMCID: PMC8551474 DOI: 10.1016/j.isci.2021.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Newts utilize their unique genes to restore missing parts by strategic regulation of conserved signaling pathways. Lack of genetic tools poses challenges to determine the function of such genes. Therefore, we used the Drosophila eye model to demonstrate the potential of 5 unique newt (Notophthalmus viridescens) gene(s), viropana1-viropana5 (vna1-vna5), which were ectopically expressed in L 2 mutant and GMR-hid, GMR-GAL4 eye. L 2 exhibits the loss of ventral half of early eye and head involution defective (hid) triggers cell-death during later eye development. Surprisingly, newt genes significantly restore missing photoreceptor cells both in L 2 and GMR>hid background by upregulating cell-proliferation and blocking cell-death, regulating evolutionarily conserved Wingless (Wg)/Wnt signaling pathway and exhibit non-cell-autonomous rescues. Further, Wg/Wnt signaling acts downstream of newt genes. Our data highlights that unique newt proteins can regulate conserved pathways to trigger a robust restoration of missing photoreceptor cells in Drosophila eye model with weak restoration capability.
Collapse
Affiliation(s)
| | | | | | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
- Premedical Program, University of Dayton, Dayton, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
4
|
Xu Y, Wei W, Lin G, Yan S, Zhang J, Shen J, Wang D. The Ras/MAPK pathway is required for regenerative growth of wing discs in the black cutworm Agrotis ypsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103552. [PMID: 33577967 DOI: 10.1016/j.ibmb.2021.103552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Regeneration is a common phenomenon in various organisms by which tissues restore the damaged or naturally detached parts. In insects, appendage regeneration takes place during the embryonic, larval and pupal stages for individual survival. The wing disc of black cutworm Agrotis ypsilon has the capacity of regeneration after ablation, but understanding of molecular mechanisms in wing disc regeneration is still limited. After ablation of partial or whole wing discs before the fifth instar larval stage, the adult wings appeared to be normal. In the last two larval stages, ablation of the left wing disc led to smaller corresponding adult wing. Cell proliferation was reduced in the ablated wing disc but was gradually recovered two days post ablation. Transcriptome analysis found that genes in the mitogen-activated protein kinase (MAPK) pathway were upregulated. Repression of gene expression in this pathway, including Ras oncogene at 64B (Ras64B), Downstream of raf1 (Dsor1), and cAMP-dependent protein kinase catalytic subunit 3 (Pka-C3) by RNA interference after ablation, led to diminishment of both adult wings, suggesting that the MAPK signaling is essential for wing growth. Additionally, cell proliferation was still decelerated by injecting Ras64B, Dsor, or Pka-C3 dsRNA two days after ablation, indicating that the MAPK signaling-regulated cell proliferation is essential for growth. These results provide molecular clues to the regulation of cell proliferation during regeneration in lepidopteran insects.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wei Wei
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Identification of the major allergenic proteins from silkworm moth (Bombyx mori) involved in respiratory allergic diseases. Allergol Immunopathol (Madr) 2020; 48:597-602. [PMID: 32284266 DOI: 10.1016/j.aller.2019.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION AND OBJECTIVES Moths are a significant source of indoor and outdoor aeroallergens. High prevalence of IgE-mediated sensitization was demonstrated in a group of patients with allergic respiratory diseases. There are no studies on adult stage of these moth species allergens involved in allergic respiratory reactions - the aim of this study. MATERIAL AND METHODS 36 participants were included in an experimental study, submitted to skin prick test with Bombyx mori wing extract and six other common allergens, as well as Western blot analysis with incubated nitrocellulose membrane impregnated with silkworm moth extract and human IgE-antibody. The participants were divided into 3 groups: 1) 21 allergic patients whose skin prick test was positive to Bombyx mori wing extract, 2) eight allergic patients whose skin prick test was positive to mite and negative to Bombyx mori extract 3) seven negative non-allergic subjects. RESULTS Among the 21 participants from group 1, 19 serum samples reacted to Bombyx mori extract by Western blot. All of them reacted to a protein at 80 kDa and five other proteins (66, 50, 45, 37 and 30 kDa) were identified in more than 50% of the individuals tested, considered as major allergenic proteins. Sera from seven out of eight patients sensitized to house dust mite demonstrated IgE-reactivity to Bombyx mori extract by Western blot analysis. Serum samples from healthy participants did not react at all. CONCLUSION Six major reactive proteins by immunoblot analysis from moth's wings sensitized patients can be potential allergens. The one at 80 kDa is the major protein, seen in all IgE-reactive patients from group 1 and in none from group 2, yet to be identified. Future studies should be conducted to better characterize these proteins.
Collapse
|
6
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
7
|
Mehta AS, Luz-Madrigal A, Li JL, Tsonis PA, Singh A. Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS One 2019; 14:e0220416. [PMID: 31419228 PMCID: PMC6697330 DOI: 10.1371/journal.pone.0220416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Agustin Luz-Madrigal
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, United States of America
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, United States of America
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
8
|
Xu J, Yu Y, Chen K, Huang Y. Intersex regulates female external genital and imaginal disc development in the silkworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:1-8. [PMID: 30831220 DOI: 10.1016/j.ibmb.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
As a component of the mediator complex, the intersex (ix) gene product is involved in the sex determination pathway of the Drosophila melanogaster. IX functions together with the female-specific product of doublesex (dsx) at the bottom of the hierarchy to implement female sexual differentiation. Here we analyzed the functions of the ix gene in the model lepidopteran insect Bombyx mori. We found that Bmix is expressed in many tissues and is highly expressed in early pupal stages. We used the transgene-based CRISPR/Cas9 system to generate mutants of the Bmix gene. The Bmix female mutants were sterile and had irregular external genitalia, whereas in the mutant males external genitalia were normal. Mutants of both sexes had normal gonad development and normal splicing of the Bmdsx pre-mRNA, suggesting that Bmix functions independently of Bmdsx. Interestingly, both male and female mutants had defective development of the imaginal disc including wing, antenna, and leg. RNA-seq and gene expression analyses indicated that genes involved in WNT, Hippo, and Hedgehog signaling pathways and wing development genes Bmawd and Bmfng were up-regulated or down-regulated in the Bmix mutants compared with wild-type animals. Our data provide insights into the multiple functions of Bmix in female external genital and imaginal disc development in the silkworm.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
9
|
Özsu N, Chan QY, Chen B, Gupta MD, Monteiro A. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol 2017; 429:177-185. [PMID: 28668322 DOI: 10.1016/j.ydbio.2017.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
Eyespot patterns of nymphalid butterflies are an example of a novel trait yet, the developmental origin of eyespots is still not well understood. Several genes have been associated with eyespot development but few have been tested for function. One of these genes is the signaling ligand, wingless, which is expressed in the eyespot centers during early pupation and may function in eyespot signaling and color ring differentiation. Here we tested the function of wingless in wing and eyespot development by down-regulating it in transgenic Bicyclus anynana butterflies via RNAi driven by an inducible heat-shock promoter. Heat-shocks applied during larval and early pupal development led to significant decreases in wingless mRNA levels and to decreases in eyespot size and wing size in adult butterflies. We conclude that wingless is a positive regulator of eyespot and wing development in B. anynana butterflies.
Collapse
Affiliation(s)
- Nesibe Özsu
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Qian Yi Chan
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Bin Chen
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Shapingba, 400047 Chongqing, China
| | - Mainak Das Gupta
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Yale-NUS College, Singapore 138614, Singapore.
| |
Collapse
|
10
|
Prasad N, Tarikere S, Khanale D, Habib F, Shashidhara LS. A comparative genomic analysis of targets of Hox protein Ultrabithorax amongst distant insect species. Sci Rep 2016; 6:27885. [PMID: 27296678 PMCID: PMC4906271 DOI: 10.1038/srep27885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/25/2016] [Indexed: 01/07/2023] Open
Abstract
In the fruitfly Drosophila melanogaster, the differential development of wing and haltere is dependent on the function of the Hox protein Ultrabithorax (Ubx). Here we compare Ubx-mediated regulation of wing patterning genes between the honeybee, Apis mellifera, the silkmoth, Bombyx mori and Drosophila. Orthologues of Ubx are expressed in the third thoracic segment of Apis and Bombyx, although they make functional hindwings. When over-expressed in transgenic Drosophila, Ubx derived from Apis or Bombyx could suppress wing development, suggesting evolutionary changes at the level of co-factors and/or targets of Ubx. To gain further insights into such events, we identified direct targets of Ubx from Apis and Bombyx by ChIP-seq and compared them with those of Drosophila. While majority of the putative targets of Ubx are species-specific, a considerable number of wing-patterning genes are retained, over the past 300 millions years, as targets in all the three species. Interestingly, many of these are differentially expressed only between wing and haltere in Drosophila but not between forewing and hindwing in Apis or Bombyx. Detailed bioinformatics and experimental validation of enhancer sequences suggest that, perhaps along with other factors, changes in the cis-regulatory sequences of earlier targets contribute to diversity in Ubx function.
Collapse
Affiliation(s)
- Naveen Prasad
- Indian Institute of Science Education and Research Pune, 411008, India
| | | | | | - Farhat Habib
- Indian Institute of Science Education and Research Pune, 411008, India
| | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, 411008, India
| |
Collapse
|
11
|
Chen B, Piel WH, Monteiro A. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution. INSECT SCIENCE 2016; 23:335-352. [PMID: 26898323 DOI: 10.1111/1744-7917.12327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China
| | - William H Piel
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
12
|
Ling L, Ge X, Li Z, Zeng B, Xu J, Chen X, Shang P, James AA, Huang Y, Tan A. MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori. RNA Biol 2016; 12:742-8. [PMID: 26037405 DOI: 10.1080/15476286.2015.1048957] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators that target specific mRNAs for repression and thus play key roles in many biological processes, including insect wing morphogenesis. miR-2 is an invertebrate-specific miRNA family that has been predicted in the fruit fly, Drosophila melanogaster, to be involved in regulating the Notch signaling pathway. We show here that miR-2 plays a critical role in wing morphogenesis in the silkworm, Bombyx mori, a lepidopteran model insect. Transgenic over-expression of a miR-2 cluster using a Gal4/UAS system results in deformed adult wings, supporting the conclusion that miR-2 regulates functions essential for normal wing morphogenesis. Two genes, abnormal wing disc (awd) and fringe (fng), which are positive regulators in Notch signaling, are identified as miR-2 targets and validated by a dual-luciferase reporter assay. The relative abundance of both awd and fng expression products was reduced significantly in transgenic animals, implicating them in the abnormal wing phenotype. Furthermore, somatic mutagenesis analysis of awd and fng using the CRISPR/Cas9 system and knock-out mutants also resulted in deformed wings similar to those observed in the miR-2 overexpression transgenic animals. The critical role of miR-2 in Bombyx wing morphogenesis may provide a potential target in future lepidopteran pest control.
Collapse
Affiliation(s)
- Lin Ling
- a Faculty of Life Sciences; Northwestern Polytechnical University ; Xi'an , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana. Dev Biol 2014; 394:357-66. [PMID: 25169193 DOI: 10.1016/j.ydbio.2014.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/19/2014] [Indexed: 01/01/2023]
Abstract
In insects, forewings and hindwings usually have different shapes, sizes, and color patterns. A variety of RNAi experiments across insect species have shown that the hox gene Ultrabithorax (Ubx) is necessary to promote hindwing identity. However, it remains unclear whether Ubx is sufficient to confer hindwing fate to forewings across insects. Here, we address this question by over-expressing Ubx in the butterfly Bicyclus anynana using a heat-shock promoter. Ubx whole-body over-expression during embryonic and larvae development led to body plan changes in larvae but to mere quantitative changes to adult morphology, respectively. Embryonic heat-shocks led to fused segments, loss of thoracic and abdominal limbs, and transformation of head limbs to larger appendages. Larval heat-shocks led to reduced eyespot size in the expected homeotic direction, but neither additional eyespots nor wing shape changes were observed in forewings as expected of a homeotic transformation. Interestingly, Ubx was found to be expressed in a novel, non-characteristic domain - in the hindwing eyespot centers. Furthermore, ectopic expression of Ubx on the pupal wing activated the eyespot-associated genes spalt and Distal-less, known to be directly repressed by Ubx in the fly׳s haltere and leg primordia, respectively, and led to the differentiation of black wing scales. These results suggest that Ubx has been co-opted into a novel eyespot gene regulatory network, and that it is capable of activating black pigmentation in butterflies.
Collapse
|
14
|
Meng X, Hu J, Xu X, Wang Z, Hu Q, Jin F, Ren S. Toxic effect of destruxin A on abnormal wing disc-like (SLAWD) in Spodoptera litura fabricius (Lepidoptera: Noctuidae). PLoS One 2013; 8:e57213. [PMID: 23468937 PMCID: PMC3585292 DOI: 10.1371/journal.pone.0057213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 01/18/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Destruxin A (DA) is a microbial insecticide with potent bioactivity against Spodoptera litura larvae. A previous proteomic analysis of S. litura (SL-1) cells exposed to DA showed the abnormal expression of wing disc-like protein of S. litura (SLAWD). To further understand the effect of DA on SLAWD expression, a functional study was carried out. PRINCIPAL FINDINGS The SLAWD gene (SLAWD) was cloned and an open reading frame of 537 bp encoding a polypeptide of 178 amino acids was detected. Real-time fluorescence quantitative PCR (qRT-PCR) suggested that SLAWD is expressed in all developmental stages of S. litura, but expression was highest during the pupal and adult stages. RNAi knockdown of SLAWD expression in 6th-stage larvae was achieved by the microinjection of a specific double-stranded RNA (dsRNA). The results showed a significant decrease in SLAWD mRNA expression levels between the prepupal and adult stages. Interestingly, SLAWD expression was similarly down-regulated by treating 6th-stage larvae with DA. Growth- and development-related statistics confirmed the observed abnormalities in S. litura development after either RNAi or DA treatment. CONCLUSIONS SLAWD appears to have a biosynthetic function in the pupal and adult stages of S. litura. The toxic effect of DA on S. litura development is due the negative effect of DA on SLAWD gene expression.
Collapse
Affiliation(s)
- Xiang Meng
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Entomological Institute, Guangzhou, China
| | - Junjie Hu
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- College of Life Science, Guangzhou University, Guangzhou, China
| | - Xiaoxia Xu
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
| | - Zeqing Wang
- Guangdong New Scene Biological Engineering Co.,LTD, Guangdong, China
| | - Qiongbu Hu
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
| | - Fengliang Jin
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- * E-mail: (FJ); (SR)
| | - Shunxiang Ren
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- * E-mail: (FJ); (SR)
| |
Collapse
|
15
|
Turchyn N, Chesebro J, Hrycaj S, Couso JP, Popadić A. Evolution of nubbin function in hemimetabolous and holometabolous insect appendages. Dev Biol 2011; 357:83-95. [PMID: 21708143 DOI: 10.1016/j.ydbio.2011.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
Abstract
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia-tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa-trochanter and femur-tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.
Collapse
Affiliation(s)
- Nataliya Turchyn
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
16
|
Singh A, Kango-Singh M, Parthasarathy R, Gopinathan KP. Larval legs of mulberry silkworm Bombyx mori are prototypes for the adult legs. Genesis 2007; 45:169-76. [PMID: 17417803 DOI: 10.1002/dvg.20280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Morphological diversity of leg appendages is one of the hallmarks of developmental evolution. Limbs in insects may develop either from their embryonic prototypes or from imaginal discs harbored inside the larva. Bombyx mori (B. mori), a Lepidopteran insect, develops adult wings from larval wing imaginal discs. However, it has been debated whether the adult legs of B. mori arise from imaginal discs or from the larval legs. Here we addressed how the larval legs relate to their adult counterparts. We present the morphological landmarks during early leg development. We used expression of developmental genes like Distalless and extradenticle to mark leg primordia. Finally, we employed classical excision approach to develop a fate map of the adult leg. Excision and ablation of thoracic legs along proximo-distal axis at various times during larval development resulted in the loss of corresponding adult leg segments. Our data suggest that B. mori legs develop from larval appendages rather than leg imaginal discs.
Collapse
|
17
|
Dhawan S, Gopinathan KP. Spatio-temporal expression of wnt-1 during embryonic-, wing- and silkgland development in Bombyx mori. Gene Expr Patterns 2003; 3:559-70. [PMID: 12971988 DOI: 10.1016/s1567-133x(03)00122-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A homologue of the segment polarity gene wnt-1 from Bombyx mori (Bmwnt-1) has been characterized. The segmentally reiterated pattern of Bmwnt-1 transcrip9t distribution in B. mori embryos suggested its segment polarity function. Maximal levels of Bmwnt-1 RNA during embryonic development were reached by stage 21A. In the larval stages, Bmwnt-1 was expressed in the fore- and hindwing discs, ovaries, testes and gut, reminiscent of the expression domains in Drosophila. Bmwnt-1 was expressed in the wing-margin area of both the fore- and hindwing discs. The pattern of wnt-1 expression in the hindwing discs was similar to that in the butterfly Precis coenia but subtle differences existed in forewing discs of the two species, which correlated well with the absence of proximal bands of pigmentation in the adult Bombyx wings. In addition, Bmwnt-1 was expressed in the silkglands and the expression was confined to the anterior sub-compartment within the middle silkglands throughout development from the embryonic to late larval stages. This domain of Bmwnt-1 expression overlapped with those of Cubitus interruptus (BmCi) and sericin-2 but excluded the Engrailed expression domain viz. the middle and posterior sub-compartments of middle silkglands. Bmwnt-1 expression was detected only during the intermoults and not in the moulting periods.
Collapse
Affiliation(s)
- S Dhawan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
18
|
Dhawan S, Gopinathan KP. Expression pattern of Cubitus interruptus from the mulberry silkworm Bombyx mori in late developmental stages. Dev Genes Evol 2003; 213:166-77. [PMID: 12700901 DOI: 10.1007/s00427-003-0314-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Accepted: 03/09/2003] [Indexed: 10/25/2022]
Abstract
A partial genomic clone of Bombyx mori homologue of the segment polarity gene Cubitus interruptus ( BmCi), encoding the conserved zinc finger domain and harbouring two introns, has been characterized. BmCi was expressed in the silkglands of B. mori from embryonic to the late larval stages(3rd, 4th and 5th intermoults). The expression was confined to the anterior region of the middle silkglands, overlapping with the domain of sericin-2 expression and excluding the domains of Bm invected expression, namely the middle and posterior regions of the middle silkglands. In the wing discs, the expression was restricted to the anterior compartment, which increased from 4th to 5th larval intermoults and declined later in the pupal wing buds. In gonadal tissues (both ovaries and testes) BmCi was expressed from the larval to pupal stages. The transcripts were localized to the sperm tubes containing spermatogonia in the testis of Bombyx larvae. BmCi expression, however, was not detected in any of these tissues during the moulting stages. Expression of Ci in the wing discs and gonads is evolutionarily conserved, while the silkgland represents a novel domain. Our results imply that BmCi is involved in the specification and maintenance of micro-compartment identity within the middle silkglands.
Collapse
Affiliation(s)
- Sangeeta Dhawan
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012, Bangalore, India
| | | |
Collapse
|