1
|
Luo H, Liu R, Lang Y, Zhao J, Zhuang C, Wang J, Liang C, Zhang J. Melatonin alleviated fluoride-induced impairment of spermatogenesis and sperm maturation process via Interleukin-17A. Food Chem Toxicol 2023:113867. [PMID: 37269891 DOI: 10.1016/j.fct.2023.113867] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.
Collapse
Affiliation(s)
- Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jinhui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
2
|
Dehdari Ebrahimi N, Parsa S, Nozari F, Shahlaee MA, Maktabi A, Sayadi M, Sadeghi A, Azarpira N. Protective effects of melatonin against the toxic effects of environmental pollutants and heavy metals on testicular tissue: A systematic review and meta-analysis of animal studies. Front Endocrinol (Lausanne) 2023; 14:1119553. [PMID: 36793277 PMCID: PMC9922902 DOI: 10.3389/fendo.2023.1119553] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Environmental pollution and infertility are two modern global challenges that agonize personal and public health. The causal relationship between these two deserves scientific efforts to intervene. It is believed that melatonin maintains antioxidant properties and may be utilized to protect the testicular tissue from oxidant effects caused by toxic materials. METHODS A systematic literature search was conducted in PubMed, Scopus, and Web of Science to identify the animal trial studies that evaluated melatonin therapy's effects on rodents' testicular tissue against oxidative stress caused by heavy metal and non-heavy metal environmental pollutants. Data were pooled, and standardized mean difference and 95% confidence intervals were estimated using the random-effect model. Also, the risk of bias was assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool. (PROSPERO: CRD42022369872). RESULTS Out of 10039 records, 38 studies were eligible for the review, of which 31 were included in the meta-analysis. Most of them showed beneficial effects of melatonin therapy on testicular tissue histopathology. [20 toxic materials were evaluated in this review, including arsenic, lead, hexavalent chromium, cadmium, potassium dichromate, sodium fluoride, cigarette smoke, formaldehyde, carbon tetrachloride (CCl4), 2-Bromopropane, bisphenol A, thioacetamide, bisphenol S, ochratoxin A, nicotine, diazinon, Bis(2-ethylhexyl) phthalate (DEHP), Chlorpyrifos (CPF), nonylphenol, and acetamiprid.] The pooled results showed that melatonin therapy increased sperm count, motility, viability and body and testicular weights, germinal epithelial height, Johnsen's biopsy score, epididymis weight, seminiferous tubular diameter, serum testosterone, and luteinizing hormone levels, testicular tissue Malondialdehyde, glutathione peroxidase, superoxide dismutase, and glutathione levels. On the other hand, abnormal sperm morphology, apoptotic index, and testicular tissue nitric oxide were lower in the melatonin therapy arms. The included studies presented a high risk of bias in most SYRCLE domains. CONCLUSION In conclusion, our study demonstrated amelioration of testicular histopathological characteristics, reproductive hormonal panel, and tissue markers of oxidative stress. Melatonin deserves scientific attention as a potential therapeutic agent for male infertility. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022369872.
Collapse
Affiliation(s)
| | - Shima Parsa
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Nozari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amirhossein Maktabi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrab Sayadi
- Cardiovascular research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Sadeghi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Negar Azarpira,
| |
Collapse
|
3
|
Cipolla-Neto J, Amaral FG, Soares JM, Gallo CC, Furtado A, Cavaco JE, Gonçalves I, Santos CRA, Quintela T. The Crosstalk between Melatonin and Sex Steroid Hormones. Neuroendocrinology 2022; 112:115-129. [PMID: 33774638 DOI: 10.1159/000516148] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Melatonin, an indolamine mainly released from the pineal gland, is associated with many biological functions, namely, the modulation of circadian and seasonal rhythms, sleep inducer, regulator of energy metabolism, antioxidant, and anticarcinogenic. Although several pieces of evidence also recognize the influence of melatonin in the reproductive physiology, the crosstalk between melatonin and sex hormones is not clear. Here, we review the effects of sex differences in the circulating levels of melatonin and update the current knowledge on the link between sex hormones and melatonin. Furthermore, we explore the effects of melatonin on gonadal steroidogenesis and hormonal control in females. The literature review shows that despite the strong evidence that sex differences impact on the circadian profiles of melatonin, reports are still considerably ambiguous, and these differences may arise from several factors, like the use of contraceptive pills, hormonal status, and sleep deprivation. Furthermore, there has been an inconclusive debate about the characteristics of the reciprocal relationship between melatonin and reproductive hormones. In this regard, there is evidence for the role of melatonin in gonadal steroidogenesis brought about by research that shows that melatonin affects multiple transduction pathways that modulate Sertoli cell physiology and consequently spermatogenesis, and also estrogen and progesterone production. From the outcome of our research, it is possible to conclude that understanding the correlation between melatonin and reproductive hormones is crucial for the correction of several complications occurring during pregnancy, like preeclampsia, and for the control of climacteric symptoms.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - José Maria Soares
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, HCFMUSP, São Paulo, Brazil
| | | | - André Furtado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José Eduardo Cavaco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Taslidere E, Esrefoglu M, Tok OE, Taslidere B, Bulut H. Effects of melatonin on both testicular regeneration and recovery of spermatogenesis in busulfan-treated rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - OE Tok
- Medipol University, Turkey
| | | | - H Bulut
- Bezmialem Vakif University, Turkey
| |
Collapse
|
5
|
Matzkin ME, Calandra RS, Rossi SP, Bartke A, Frungieri MB. Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad. Cells 2021; 10:cells10113114. [PMID: 34831334 PMCID: PMC8619877 DOI: 10.3390/cells10113114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The evolutionary theory of aging supports a trade-off relationship between reproduction and aging. Aging of the male reproductive system primarily affects the testes, leading to a decrease in the levels of sexual hormones, alterations in sperm quality and production, and a decline in fertility that does not necessarily involve a complete cessation of spermatogenesis. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases that are frequently observed in aged testes. Although the molecular mechanisms are still poorly understood, accumulating evidence points toward pro-inflammatory molecules and reactive oxygen species as primary contributing factors for testicular aging. However, the real impact of aging-related testicular alterations on fertility, reproductive health, and life span is far from being fully revealed. This work discusses the current knowledge on the impact of aging in the testis, particularly of aging-related dysregulated inflammation and oxidative damage on the functioning of its different cell populations. More interestingly, this review covers the potential benefits of anti-aging interventions and therapies using either pharmacological compounds (such as non-selective non-steroidal anti-inflammatory medication) or more natural alternatives (such as various nutraceuticals or even probiotics) that exhibit anti-inflammatory, antioxidant, and anti-apoptotic properties. Some of these are currently being investigated or are already in clinical use to delay or prevent testicular aging.
Collapse
Affiliation(s)
- María Eugenia Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
- Correspondence: ; Tel.: +54-114783-2869 (ext. 1209)
| | - Ricardo Saúl Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
| | - Soledad Paola Rossi
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Andrzej Bartke
- Geriatrics Research, Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA;
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Cátedra de Química, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad de Buenos Aires C1405CAE, Argentina
| |
Collapse
|
6
|
Muratoğlu S, Akarca Dizakar OS, Keskin Aktan A, Ömeroğlu S, Akbulut KG. The protective role of melatonin and curcumin in the testis of young and aged rats. Andrologia 2018; 51:e13203. [PMID: 30467869 DOI: 10.1111/and.13203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 01/06/2023] Open
Abstract
We aimed to investigate the effect of melatonin and curcumin treatment on oxidative stress, apoptosis, and histology of testicular tissue in our study. Four groups were formed using young (4 months old, n = 6) and aged (20-22 months old, n = 18) male Wistar albino rats: (a) Young control (1% ethanol:phosphate-buffered saline [PBS], subcutaneously [s.c.]); (b) Aged control (CTL; n = 6, 1% ethanol:PBS, s.c.); (c) Aged Melatonin (MLT; n = 6, 10 mg/kg, s.c.); (d) Aged Curcumin (CUR; n = 6, 30 mg/kg, i.p.). At the end of 21 days, the rats were sacrificed, and testicular tissues were removed. Malondialdehyde (MDA) in the testicular tissue was determined with thiobarbituric acid reactive substances formation, and glutathione (GSH) was determined with modified Ellman method; testosterone level was determined with chemiluminescence method and histologic changes were determined with Haematoxylin-Eosin and Johnsen's scoring; Apoptotic cell counts were made with TUNEL staining of seminiferous tubule in testis. With ageing, MDA level increased in testicular tissue, but GSH and blood testosterone levels decreased. Melatonin treatment for aged rats significantly decreased Paired total testicular/body weight ratio compared to aged control group (p < 0.05). Curcumin treatment for aged rats significantly increased GSH level compared to the aged control group (p < 0.05). Besides, melatonin and curcumin treatment significantly decreased the number of apoptotic cells and significantly increased Johnsen's score (p < 0.05).
Collapse
Affiliation(s)
- Saide Muratoğlu
- Department of Physiology, Gazi University School of Medicine, Ankara, Turkey
| | - Ozen S Akarca Dizakar
- Department of Histology and Embryology, Gazi University School of Medicine, Ankara, Turkey
| | - Arzu Keskin Aktan
- Department of Physiology, Gazi University School of Medicine, Ankara, Turkey.,Department of Physical Therapy and Rehabilitation, Health Science Faculty, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Suna Ömeroğlu
- Department of Histology and Embryology, Gazi University School of Medicine, Ankara, Turkey
| | | |
Collapse
|
7
|
Local Actions of Melatonin in Somatic Cells of the Testis. Int J Mol Sci 2017; 18:ijms18061170. [PMID: 28561756 PMCID: PMC5485994 DOI: 10.3390/ijms18061170] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 01/08/2023] Open
Abstract
The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.
Collapse
|
8
|
Melatonin membrane receptor (MT1R) expression and nitro-oxidative stress in testis of golden hamster, Mesocricetus auratus: An age-dependent study. Exp Gerontol 2015; 69:211-20. [DOI: 10.1016/j.exger.2015.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/09/2015] [Accepted: 06/29/2015] [Indexed: 02/02/2023]
|
9
|
Ahmad R, Haldar C. Effect of intra-testicular melatonin injection on testicular functions, local and general immunity of a tropical rodent Funambulus pennanti. Endocrine 2010; 37:479-88. [PMID: 20960172 DOI: 10.1007/s12020-010-9331-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/29/2010] [Indexed: 11/24/2022]
Abstract
Local antigonadotrophic action of melatonin in testes has never been correlated with local and general immune status of any rodent. Intra-testicular injection of melatonin (2.5 μg/50 μl) for 10 days (MI-10D) and 20 days (MI-20D) was given to young adult male of Funambulus pennanti and testicular androgen receptor (AR), androgen binding protein (ABP) expression, 3β-hydroxysteroid dehydrogenase (3β-HSD) activity, and Mel1aR expression in thymus was checked along with general immune parameters. Further, immunohistochemical localization of Mel1aR in testes was done. Decreased AR, ABP expression, testes weight, 3β-HSD activity, testosterone level, and spermatogenesis but increased Mel1aR expression in thymus, immunoreactivity in testes, and testicular macrophages following injection was noted. Lymphatic tissue weight, leukocyte, lymphocyte count, lymphocyte proliferation in spleen, thymus, plasma melatonin, and IL-2 level increased in a duration-dependent manner following intra-testicular injection. Intra-testicular injection of melatonin decreased steroidogenesis by enhancing the primary effect of melatonin on Leydig cell endocrine function. Along with reduced circulatory testosterone production, an increase in testicular as well as general immunity was observed in a duration-dependent manner. Therefore, a local participation of melatonin in testes of F. pennanti to control testicular androgen production is suggested.
Collapse
Affiliation(s)
- Raise Ahmad
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
10
|
Gonzalez A, Cos S, Martinez-Campa C, Alonso-Gonzalez C, Sanchez-Mateos S, Mediavilla MD, Sanchez-Barcelo EJ. Selective estrogen enzyme modulator actions of melatonin in human breast cancer cells. J Pineal Res 2008; 45:86-92. [PMID: 18298468 DOI: 10.1111/j.1600-079x.2008.00559.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin exerts oncostatic effects on different kinds of neoplasias, especially on estrogen-dependent mammary tumors. Current knowledge about the mechanisms by which melatonin inhibits the growth of breast cancer cells point to an interaction of melatonin with estrogen-responsive pathways. The intratumoral production of estrogens in breast carcinoma tissue plays a pivotal role in the proliferation of mammary tumoral cells and its blockade is one of the main objectives of the treatment of breast cancer. The aim of the present work is centered on the study of the role of melatonin in the control of some enzymes involved in the formation and transformation of estrogens in human breast cancer cells. The present study demonstrates that melatonin, at physiologic concentrations, modulates the synthesis and transformation of biologically active estrogens in MCF-7 cells, through the inhibition of sulfatase (STS) and 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) activity and expression, enzymes involved in the estradiol formation in breast cancer cells. Physiologic concentrations of melatonin also stimulate the activity and expression of estrogen sulfotransferase (EST), the enzyme responsible for the formation of the biologically inactive estrogen sulfates. The level of EST mRNA steady-state of cells treated with melatonin was three times higher than that in control cells. These findings which document that melatonin has an inhibitory effect on STS and 17beta-HSD1 and a stimulatory effect on EST, in combination with its previously described antiaromatase effect, can open up new and interesting possibilities in clinical applications of melatonin in breast cancer.
Collapse
Affiliation(s)
- A Gonzalez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Reddy PS, Pushpalatha T, Reddy PS. Reduction of spermatogenesis and steroidogenesis in mice after fentin and fenbutatin administration. Toxicol Lett 2006; 166:53-9. [PMID: 16806747 DOI: 10.1016/j.toxlet.2006.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 05/16/2006] [Accepted: 05/19/2006] [Indexed: 11/15/2022]
Abstract
The present study was designed to assess potential reproductive toxicity caused by fentin and fenbutatin in the mice. Adult male mice received i.p. injections of fentin hydroxide and fenbutatin oxide at a dose of 0, 10 or 25 microg/kg body weight on 1st, 3rd and 5th day of experimentation. Mice were sacrificed on day 25 and analyzed for spermatogenesis and steroidogenesis. A significant decrease in epididymal sperm count, sperm motility, sperm viability and sperm function (HOS coiling) were observed in experimental mice when compared with controls. The decrease in sperm quantity and quality was significant in the 25 microg/kg group than that in the control group. The activity levels of testicular steroidogenic enzymes, 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) were significantly decreased in treated mice indicating decreased steroidogenesis after organotin compounds administration. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in experimental mice when compared to control mice. The results suggest that fentin and fenbutatin cause impairment of spermatogenesis through the inhibition of testosterone production.
Collapse
Affiliation(s)
- P Sreedhar Reddy
- Department of Biotechnology, S.V. University, Tirupati 517502, India
| | | | | |
Collapse
|
12
|
Derlacz RA, Poplawski P, Napierala M, Jagielski AK, Bryla J. Melatonin-induced modulation of glucose metabolism in primary cultures of rabbit kidney-cortex tubules. J Pineal Res 2005; 38:164-9. [PMID: 15725337 DOI: 10.1111/j.1600-079x.2004.00188.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of melatonin on glucose metabolism in the presence and absence of insulin has been investigated in the primary cultures of renal tubules grown in a defined medium. In the absence of glucose in the medium containing 5 microg/mL of insulin and 2 mm alanine + 5 mm glycerol + 0.5 mm octanoate, 100 nm melatonin stimulated both glucose and lactate synthesis, while in the medium devoid of insulin melatonin action was negligible. Melatonin-induced increase in glucose and lactate synthesis was accompanied by an enhancement of alanine and glycerol consumption. In view of measurements of [U-14C]L-alanine and [U-14C]L-glycerol incorporation into glucose, it is likely that melatonin increased alanine utilization for glucose production, while accelerated lactate synthesis was because of an enhanced glycerol consumption. As (i) 10 nm luzindole attenuated the stimulatory action of melatonin on glucose formation and (ii) the indole induced a decrease in intracellular cAMP level, it seems likely that in renal tubules melatonin binds to ML1 membrane receptor subtype. In view of a decline of intracellular fructose-1,6-bisphosphate content accompanied by a significant rise in hexose-6-phosphate and glucose levels, melatonin might result in an acceleration of flux through fructose-1,6-bisphosphatase probably because of an increase in the active, dephosphorylated form of this enzyme. Thus, the administration of melatonin in combination with insulin might be beneficial for diabetic therapy because of protection against hypoglycemia.
Collapse
Affiliation(s)
- Rafal A Derlacz
- Department of Metabolic Regulation, Institute of Biochemistry, Warsaw University, Warsaw, Poland
| | | | | | | | | |
Collapse
|