1
|
Collar DC, Hobbs TJ, Thompson JS. Scaling of fast-start performance and its thermal dependence in mummichog Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2024; 104:611-623. [PMID: 37942892 DOI: 10.1111/jfb.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Fast-start predator-escape performance and its sensitivity to temperature (24, 30, and 36°C) were evaluated in mummichog Fundulus heteroclitus across a range of body sizes spanning YOY to adult (35-68 mm standard length). Mummichogs exhibit isometry of body dimensions and areas of the dorsal and anal fins but negative allometry of the caudal fin area. These scaling relationships are consistent with observed decreases in fast-start angular velocities with increasing body size. Linear velocity, on the contrary, does not vary with size, and both large and small mummichogs are capable of traversing similar distances in a given amount of time. In addition, temperature influences fast-start performance in similar ways over the size range, though the magnitude of the effect varies with size for some performance measures. In general, fast-start performance increases with test temperature, but mummichogs acclimated to warmer temperatures exhibit lower performance at each test temperature. Altogether, our results suggest that mummichogs across the adult size range may suffer decreases in their predator-escape performance as increasing sea temperatures combine with short-term temperature fluctuations in the estuaries these fish occupy.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Trevor J Hobbs
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Jessica S Thompson
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| |
Collapse
|
2
|
Grothues TM, Able KW. Shoreline infrastructure degradation and increasing littoral naturalization accommodates juvenile fish and crab assemblages in heavily urbanized Upper New York Harbor. Restor Ecol 2020. [DOI: 10.1111/rec.13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas M. Grothues
- Department of Marine and Coastal Sciences, Rutgers University Marine Field Station 800 c/o 132 Great Bay Boulevard, Tuckerton NJ 08087 U.S.A
| | - Kenneth W. Able
- Department of Marine and Coastal Sciences, Rutgers University Marine Field Station 800 c/o 132 Great Bay Boulevard, Tuckerton NJ 08087 U.S.A
| |
Collapse
|
3
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Collar DC, Thompson JS, Ralston TC, Hobbs TJ. Fast-start escape performance across temperature and salinity gradients in mummichog Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2020; 96:755-767. [PMID: 32010969 DOI: 10.1111/jfb.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Fast-start predator-escape performance of mummichogs Fundulus heteroclitus was tested across field-informed variation in temperature (24, 30 and 36°C) and salinity (2, 12 and 32 ppt). Performance was similar across temperatures and salinities when fish were allowed to acclimate to these conditions. However, when mummichogs experienced acute temperature changes, performance exhibited thermal dependence in two contrasting ways. Fast-start turning rates and linear speeds varied directly with the temperature at which the manoeuvre was executed, but these aspects of performance varied inversely with acclimation temperature, with cool-acclimated fish exhibiting faster starts across test temperatures. Temperature effects were consistent across salinities. These results suggest that while mummichogs increase performance with acute temperature increases, long-term rises in sea temperature may cause these fish to become more susceptible to predation during abrupt cooling events, such as when storm events flood shallow water estuaries with cool rainwater.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Jessica S Thompson
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Tyler C Ralston
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Trevor J Hobbs
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| |
Collapse
|
5
|
Ziegler SL, Able KW, Fodrie FJ. Dietary shifts across biogeographic scales alter spatial subsidy dynamics. Ecosphere 2019. [DOI: 10.1002/ecs2.2980] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Shelby L. Ziegler
- Institute of Marine Sciences University of North Carolina at Chapel Hill Morehead City North Carolina 28557 USA
| | - Kenneth W. Able
- Rutgers University Marine Field Station Rutgers University Tuckerton New Jersey 08087 USA
| | - F. Joel Fodrie
- Institute of Marine Sciences University of North Carolina at Chapel Hill Morehead City North Carolina 28557 USA
| |
Collapse
|
6
|
Life-cycle mediated effects of urbanization on parasite communities in the estuarine fish, Fundulus heteroclitus. PLoS One 2019; 14:e0225896. [PMID: 31790480 PMCID: PMC6886805 DOI: 10.1371/journal.pone.0225896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
This study examined the relationship between urbanization and parasite community structure in the estuarine fish, Fundulus heteroclitus. We measured landscape and physicochemical factors associated with urbanization at 6 sites from 4 collection periods. Concurrently, we quantified the metazoan parasite community in F. heteroclitus collected at those sites, with 105 fish studied per site during the 4 collection periods. Parasite community composition differed among sites. Host size was the most important variable for direct life-cycle parasite assemblages and indirect life-cycle parasites at the individual fish level, while landscape and physicochemical factors determined the structure of indirect life-cycle parasite assemblages at the population scale. Variation in the prevalence and intensity of infection of two indirect life-cycle parasites, Lasiocotus minutus and Glossocercus caribaensis, were the primary parasites that drove differences across sites. Variation in the presence/absence of these indirect life-cycle parasite species was associated with sediment Ni concentrations, patch density, and marsh size. Our data support the hypothesis that urbanization, acting at both landscape and physicochemical scales, can have a significant impact on parasite community structure. This, however, varied by parasite life history: there was little effect of urbanization on the prevalence and intensity of direct life-cycle parasites, but significant variation was detected for indirect life-cycle parasites. This study demonstrates how anthropogenically driven landscape change influences fine-scale population dynamics of parasites.
Collapse
|
7
|
Carr DL, Smith EE, Thiyagarajah A, Cromie M, Crumly C, Davis A, Dong M, Garcia C, Heintzman L, Hopper T, Kouth K, Morris K, Ruehlen A, Snodgrass P, Vaughn K, Carr JA. Assessment of gonadal and thyroid histology in Gulf killifish (Fundulus grandis) from Barataria Bay Louisiana one year after the Deepwater Horizon oil spill. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:245-254. [PMID: 29476974 DOI: 10.1016/j.ecoenv.2018.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
We examined gonads and thyroid glands of Gulf killifish (Fundulus grandis) 1yr after the Deepwater Horizon oil spill. F. grandis were trapped from two impacted sites in Barataria Bay (Bayou St. Denis, Bay Jimmy) and an un-impacted site in East Texas (Sabine Pass). The greatest number of F. grandis were collected at Sabine Pass. F. grandis collected at Bayou St. Denis were smaller and had smaller Fulton condition factor scores than fish collected at Sabine Pass. Sex ratios were biased roughly 2:1 in favor of females at Sabine Pass and Bayou St. Denis. Gonad-somatic index (GSI) in males from Sabine Pass was double that of fish from Bay Jimmy while germinal epithelium thickness of the testes was 2.7 fold smaller in males from the impacted site. GSI and oocyte diameters in females from Bayou St. Denis were significantly smaller than females from Bay Jimmy or the reference site. There were no differences in thyroid follicle cell height. While total polyaromatic hydrocarbons at the impacted sites were no different from the reference site, the impacted sites did have greater concentrations of benzo[a]pyrene in sediment pore water. The finding of smaller GSI and testicular germinal epithelium in males from an impacted site suggest that exposure to a combination of oil and dispersants may adversely impact testicular function.
Collapse
Affiliation(s)
- Deborah L Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Ernest E Smith
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, USA
| | - Arunthavarani Thiyagarajah
- Department of Global Environmental Health Sciences, School of Public Health & Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70119, USA
| | - Meghan Cromie
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Christopher Crumly
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Angela Davis
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Meijun Dong
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Carlos Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Lucas Heintzman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Tiffany Hopper
- Texas Parks and Wildlife Department, Austin, TX 78744, USA
| | - Kourtney Kouth
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Kimberly Morris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Amelia Ruehlen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Phillip Snodgrass
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Katelynn Vaughn
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA.
| |
Collapse
|
8
|
Chung DJ, Healy TM, McKenzie JL, Chicco AJ, Sparagna GC, Schulte PM. Mitochondria, Temperature, and the Pace of Life. Integr Comp Biol 2018; 58:578-590. [DOI: 10.1093/icb/icy013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dillon J Chung
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy M Healy
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA
| | - Jessica L McKenzie
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Genevieve C Sparagna
- Anschutz Medical Campus, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Patricia M Schulte
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
9
|
Brown DR, Thompson J, Chernick M, Hinton DE, Di Giulio RT. Later life swimming performance and persistent heart damage following subteratogenic PAH mixture exposure in the Atlantic killifish (Fundulus heteroclitus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3246-3253. [PMID: 28585726 PMCID: PMC5942201 DOI: 10.1002/etc.3877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/27/2016] [Accepted: 06/05/2017] [Indexed: 05/10/2023]
Abstract
High-level, acute exposures to individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures result in cardiac abnormalities in developing fish embryos. Whereas acute PAH exposures can be developmentally lethal, little is known about the later life consequences of early life, lower level PAH exposures in survivors. A population of PAH-adapted Fundulus heteroclitus from the PAH-contaminated Superfund site, Atlantic Wood Industries, Elizabeth River, Portsmouth, Virginia, United States, is highly resistant to acute PAH cardiac teratogenicity. We sought to determine and characterize long-term swimming performance and cardiac histological alterations of a subteratogenic PAH mixture exposure in both reference killifish and PAH-adapted Atlantic Wood killifish embryos. Killifish from a relatively uncontaminated reference site, King's Creek, Virginia, United States, and Atlantic Wood killifish were treated with dilutions of Elizabeth River sediment extract at 24 h post fertilization (hpf). Two proven subteratogenic dilutions, 0.1 and 1.0% Elizabeth River sediment extract (total PAH 5.04 and 50.4 µg/L, respectively), were used for embryo exposures. Then, at 5-mo post hatching, killifish were subjected to a swim performance test. A separate subset of these individuals was processed for cardiac histological analysis. Unexposed King's Creek killifish significantly outperformed the unexposed Atlantic Wood killifish in swimming performance as measured by Ucrit (i.e., critical swimming speed). However, King's Creek killifish exposed to Elizabeth River sediment extract (both 0.1 and 1.0%) showed significant declines in Ucrit. Histological analysis revealed the presence of blood in the pericardium of King's Creek killifish. Although Atlantic Wood killifish showed baseline performance deficits relative to King's Creek killifish, their pericardial cavities were nearly free of blood and atrial and ventricular alterations. These findings may explain, in part, the diminished swimming performance of King's Creek fish. Environ Toxicol Chem 2017;36:3246-3253. © 2017 SETAC.
Collapse
|
10
|
Fine-scale genetic structure due to adaptive divergence among microhabitats. Heredity (Edinb) 2017; 118:594-604. [PMID: 28295034 DOI: 10.1038/hdy.2017.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/20/2016] [Accepted: 01/22/2017] [Indexed: 02/03/2023] Open
Abstract
It has been suggested that adaptive evolution on ecological timescales shapes communities. However, adaptation among environments relies on isolation or large selection coefficients that exceed migration effects. This reliance is tempered if adaptation is polygenic-does not depend on one allele completely replacing another but instead requires small allele frequency changes at many loci. Thus, whether individuals can evolve adaptation to fine-scale habitat variation (for example, microhabitats) is not resolved. Here we analyze the genetic divergence of the teleost fish, Fundulus heteroclitus, among microhabitats that are <200 m apart in three separate saltmarshes using 4741 single-nucleotide polymorphisms (SNPs). Among these SNPs, 1.3-2.3% have large and highly significant differences among microhabitats (mean FST=0.15; false discovery rate ⩽1%). The divergence among microhabitats for these outlier SNPs is larger than that among populations, exceeds neutral expectation and indicates surprising population structure among microhabitats. Thus, we suggest that polygenic selection is surprisingly effective in altering allele frequencies among many different SNPs that share similar biological functions in response to environmental and ecological differences over very small geographic distances. We acknowledge the evolutionary difficulty of large genetic divergence among well-connected habitats. Therefore, these studies are only the first step to discern whether natural selection is responsible and capable of effecting genetic divergence on such a fine scale.
Collapse
|
11
|
Valdez JW, Klop-Toker K, Stockwell MP, Fardell L, Clulow S, Clulow J, Mahony MJ. Differences in microhabitat selection patterns between a remnant and constructed landscape following management intervention. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr16172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Achieving successful conservation outcomes in habitat creation and reintroductions requires an understanding of how species use their habitat and respond to these interventions. However, few initiatives directly compare microhabitat selection between remnant and managed habitats to measure effectiveness and evaluate outcomes. Probability of detection is also rarely included in studies on microhabitat use, which may lead to erroneous conclusions if detectability varies between variables. Methods In this study, we used the endangered green and golden bell frog (Litoria aurea) to compare differences in microhabitat-use patterns in both a remnant and a constructed habitat. A detectability study was also conducted to determine detection probabilities among microhabitats. Key results Aquatic vegetation was used more than expected in both the remnant and constructed habitats, and rock piles were utilised less than expected in the constructed habitat, despite their recommendation in most habitat templates. We found that detection probabilities altered the outcomes of abundance estimates for nearly all the measured microhabitat variables. Conclusions Future management for this species should focus on providing high proportions of aquatic vegetation. Furthermore, although rock piles have been utilised greatly in past L. aurea habitat creation, placing large rocks on a managed site is expensive and time consuming. Future management initiatives may need to focus on providing smaller proportion of rocks, which would be a more appropriate use of resources. Implications With conservation management projects increasing over the next few decades, understanding habitat use before implementing strategies should be a priority as it will provide important insights and inform decision-making for optimum habitat creation and restoration. Furthermore, accounting for detectability in microhabitat use studies is essential to avoid wrong conclusions that may negatively affect the success of ecological management strategies.
Collapse
|
12
|
Gittman RK, Peterson CH, Currin CA, Fodrie FJ, Piehler MF, Bruno JF. Living shorelines can enhance the nursery role of threatened estuarine habitats. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:249-263. [PMID: 27039523 DOI: 10.1890/14-0716] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coastal ecosystems provide numerous services, such as nutrient cycling, climate change amelioration, and habitat provision for commercially valuable organisms. Ecosystem functions and processes are modified by human activities locally and globally, with degradation of coastal ecosystems by development and climate change occurring at unprecedented rates. The demand for coastal defense strategies against storms and sea-level rise has increased with human population growth and development along coastlines world-wide, even while that population growth has reduced natural buffering of shorelines. Shoreline hardening, a common coastal defense strategy that includes the use of seawalls and bulkheads (vertical walls constructed of concrete, wood, vinyl, or steel), is resulting in a "coastal squeeze" on estuarine habitats. In contrast to hardening, living shorelines, which range from vegetation plantings to a combination of hard structures and plantings, can be deployed to restore or enhance multiple ecosystem services normally delivered by naturally vegetated shores. Although hundreds of living shoreline projects have been implemented in the United States alone, few studies have evaluated their effectiveness in sustaining or enhancing ecosystem services relative to naturally vegetated shorelines and hardened shorelines. We quantified the effectiveness of (1) sills with landward marsh (a type of living shoreline that combines marsh plantings with an offshore low-profile breakwater), (2) natural salt marsh shorelines (control marshes), and (3) unvegetated bulkheaded shores in providing habitat for fish and crustaceans (nekton). Sills supported higher abundances and species diversity of fishes than unvegetated habitat adjacent to bulkheads, and even control marshes. Sills also supported higher cover of filter-feeding bivalves (a food resource and refuge habitat for nekton) than bulkheads or control marshes. These ecosystem-service enhancements were detected on shores with sills three or more years after construction, but not before. Sills provide added structure and may provide better refuges from predation and greater opportunity to use available food resources for nekton than unvegetated bulkheaded shores or control marshes. Our study shows that unlike shoreline hardening, living shorelines can enhance some ecosystem services provided by marshes, such as provision of nursery habitat.
Collapse
|
13
|
Larsen AM, Bullard SA, Womble M, Arias CR. Community Structure of Skin Microbiome of Gulf Killifish, Fundulus grandis, Is Driven by Seasonality and Not Exposure to Oiled Sediments in a Louisiana Salt Marsh. MICROBIAL ECOLOGY 2015; 70:534-44. [PMID: 25704317 DOI: 10.1007/s00248-015-0578-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/28/2015] [Indexed: 05/25/2023]
Abstract
Mucus of fish skin harbors complex bacterial communities that likely contribute to fish homeostasis. When the equilibrium between the host and its external bacterial symbionts is disrupted, bacterial diversity decreases while opportunistic pathogen prevalence increases, making the onset of pathogenic bacterial infection more likely. Because of that relationship, documenting temporal and spatial microbial community changes may be predictive of fish health status. The 2010 Deepwater Horizon oil spill was a potential stressor to the Gulf of Mexico's coastal ecosystem. Ribosomal intergenic spacer analysis (RISA) and pyrosequencing were used to analyze the bacterial communities (microbiome) associated with the skin and mucus of Gulf killifish (Fundulus grandis) that were collected from oiled and non-oiled salt marsh sites in Barataria Bay, LA. Water samples and fin clips were collected to examine microbiome structure. The microbiome of Gulf killifish was significantly different from that of the surrounding water, mainly attributable to shifts in abundances of Cyanobacteria and Proteobacteria. The Gulf killifish's microbiome was dominated by Gammaproteobacteria, specifically members of Pseudomonas. No significant difference was found between microbiomes of fish collected from oiled and non-oiled sites suggesting little impact of oil contamination on fish bacterial assemblages. Conversely, seasonality significantly influenced microbiome structure. Overall, the high similarity observed between the microbiomes of individual fish observed during this study posits that skin and mucus of Gulf killifish have a resilient core microbiome.
Collapse
Affiliation(s)
- Andrea M Larsen
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA,
| | | | | | | |
Collapse
|
14
|
Di Giulio RT, Clark BW. The Elizabeth River Story: A Case Study in Evolutionary Toxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:259-98. [PMID: 26505693 PMCID: PMC4733656 DOI: 10.1080/15320383.2015.1074841] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.
Collapse
Affiliation(s)
- Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Address correspondence to Richard T. Di Giulio, Nicholas School of the Environment, Duke University, Durham, NC27708-0328, USA. E-mail:
| | - Bryan W. Clark
- U.S. Environmental Protection Agency, Atlantic Ecology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, Narragansett, Rhode Island, USA
| |
Collapse
|
15
|
Pilcher W, Miles S, Tang S, Mayer G, Whitehead A. Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native killifish. PLoS One 2014; 9:e106351. [PMID: 25208076 PMCID: PMC4160169 DOI: 10.1371/journal.pone.0106351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA.
Collapse
Affiliation(s)
- Whitney Pilcher
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Scott Miles
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Song Tang
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States of America
| | - Greg Mayer
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States of America
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Schulte PM. What is environmental stress? Insights from fish living in a variable environment. ACTA ACUST UNITED AC 2014; 217:23-34. [PMID: 24353201 DOI: 10.1242/jeb.089722] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the term environmental stress is used across multiple fields in biology, the inherent ambiguity associated with its definition has caused confusion when attempting to understand organismal responses to environmental change. Here I provide a brief summary of existing definitions of the term stress, and the related concepts of homeostasis and allostasis, and attempt to unify them to develop a general framework for understanding how organisms respond to environmental stressors. I suggest that viewing stressors as environmental changes that cause reductions in performance or fitness provides the broadest and most useful conception of the phenomenon of stress. I examine this framework in the context of animals that have evolved in highly variable environments, using the Atlantic killifish, Fundulus heteroclitus, as a case study. Consistent with the extreme environmental variation that they experience in their salt marsh habitats, killifish have substantial capacity for both short-term resistance and long-term plasticity in the face of changing temperature, salinity and oxygenation. There is inter-population variation in the sensitivity of killifish to environmental stressors, and in their ability to acclimate, suggesting that local adaptation can shape the stress response even in organisms that are broadly tolerant and highly plastic. Whole-organism differences between populations in stressor sensitivity and phenotypic plasticity are reflected at the biochemical and molecular levels in killifish, emphasizing the integrative nature of the response to environmental stressors. Examination of this empirical example highlights the utility of using an evolutionary perspective on stressors, stress and stress responses.
Collapse
Affiliation(s)
- Patricia M Schulte
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
17
|
|
18
|
Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci U S A 2011; 109:20298-302. [PMID: 21949382 DOI: 10.1073/pnas.1109545108] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological consequences of the Deepwater Horizon oil spill are unknown, especially for resident organisms. Here, we report results from a field study tracking the effects of contaminating oil across space and time in resident killifish during the first 4 mo of the spill event. Remote sensing and analytical chemistry identified exposures, which were linked to effects in fish characterized by genome expression and associated gill immunohistochemistry, despite very low concentrations of hydrocarbons remaining in water and tissues. Divergence in genome expression coincides with contaminating oil and is consistent with genome responses that are predictive of exposure to hydrocarbon-like chemicals and indicative of physiological and reproductive impairment. Oil-contaminated waters are also associated with aberrant protein expression in gill tissues of larval and adult fish. These data suggest that heavily weathered crude oil from the spill imparts significant biological impacts in sensitive Louisiana marshes, some of which remain for over 2 mo following initial exposures.
Collapse
|
19
|
Green BC, Smith DJ, Grey J, Underwood GJC. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach. Oecologia 2011; 168:245-55. [DOI: 10.1007/s00442-011-2077-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
|
20
|
Goto D, Wallace WG. Altered feeding habits and strategies of a benthic forage fish (Fundulus heteroclitus) in chronically polluted tidal salt marshes. MARINE ENVIRONMENTAL RESEARCH 2011; 72:75-88. [PMID: 21726897 DOI: 10.1016/j.marenvres.2011.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 03/18/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
Responses in feeding ecology of a benthic forage fish, mummichogs (Fundulus heteroclitus), to altered prey resources were investigated in chronically polluted salt marshes (the Arthur Kill-AK, New York, USA). The diet niche breadth of the AK populations of mummichogs was significantly lower than that of the reference population, reflecting reduced benthic macroinfaunal species diversity. Most of the AK populations also had 2-3 times less food in their gut than the reference population. This disparity in gut fullness among the populations appeared to be partly due to ingested prey size shifts; some of the AK populations ingested fewer large prey than the reference population. Furthermore, benthic assemblages were strongly associated with sediment-associated mercury; gut fullness of the AK populations also significantly decreased with increasing mercury body burdens. These results indicate that chronic pollution may have directly (chemical bioaccumulation) and indirectly (reduced prey availability) altered the feeding ecology of mummichogs.
Collapse
Affiliation(s)
- Daisuke Goto
- Biology Program, Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
21
|
Eberhardt AL, Burdick DM, Dionne M. The Effects of Road Culverts on Nekton in New England Salt Marshes: Implications for Tidal Restoration. Restor Ecol 2010. [DOI: 10.1111/j.1526-100x.2010.00721.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Larkin DJ, Madon SP, West JM, Zedler JB. Topographic heterogeneity influences fish use of an experimentally restored tidal marsh. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:483-496. [PMID: 18488610 DOI: 10.1890/06-1984.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ecological theory predicts that incorporating habitat heterogeneity into restoration sites should enhance diversity and key functions, yet research is limited on how topographic heterogeneity affects higher trophic levels. Our large (8-ha) southern California restoration experiment tested effects of tidal creek networks and pools on trophic structure of salt marsh habitat and high-tide use by two regionally dominant fish species, California killifish (Fundulus parvipinnis) and longjaw mudsucker (Gillichthys mirabilis). We expected tidal creeks to function as "conduits" that would enhance connectivity between subtidal and intertidal habitat and pools to serve as microhabitat "oases" for fishes. Pools did provide abundant invertebrate prey and were a preferred microhabitat for F. parvipinnis, even when the entire marsh was inundated (catch rates were 61% higher in pools). However, G. mirabilis showed no preference for pools. At a larger scale, effects of tidal creek networks were also mixed. Areas containing creeks had 12% higher catch rates of G. mirabilis, but lower catch rates and feeding rates of F. parvipinnis. Collectively, the results indicate that restoring multiple forms of heterogeneity is required to provide opportunities for multiple target consumers.
Collapse
Affiliation(s)
- Daniel J Larkin
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
23
|
Nye JA, Davis DD, Miller TJ. The effect of maternal exposure to contaminated sediment on the growth and condition of larval Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 82:242-50. [PMID: 17433459 DOI: 10.1016/j.aquatox.2007.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 02/13/2007] [Accepted: 02/18/2007] [Indexed: 05/14/2023]
Abstract
We employed a factorial laboratory experiment to determine the single and combined effect of maternal and larval exposure to contaminated sediment from Elizabeth River, Virginia, a site contaminated with high concentrations of multiple pollutants. Females were exposed to either reference or contaminated sediment and the larvae from both groups of mothers were in turn transferred to either reference or contaminated sediment. We found a strong maternal influence on yolk area, length and RNA:DNA ratio at hatch. Further, the maternal exposure significantly influenced growth rate and RNA:DNA ratios of larvae 14 days after hatch and was a more important factor in determining these endpoints than larval exposure. We found that after 14 days larvae were larger and had higher survivorship when the maternal and larval exposures were the same. There also was no statistical difference with respect to growth and condition between larvae that had hatched from exposed mothers and remained in contaminated water and larvae that had hatched from reference mothers and were placed in either reference or contaminated sediment. However, larvae that hatched from exposed mothers and then were switched to reference sediment had significantly lower growth, lower RNA:DNA ratios, and were smaller despite being large at hatch size, indicating that there are fitness trade-offs in exchange for apparent resistance to contaminants which are provided by the mother. Maternal effects add complexity to ecotoxicological research and should be incorporated into studies to predict population level responses more realistically.
Collapse
Affiliation(s)
- Janet A Nye
- University of Maryland Center for Environmental Science Chesapeake Biological Laboratory, PO Box 38, Solomons, MD 20688, United States.
| | | | | |
Collapse
|
24
|
Able KW, Balletto JH, Hagan SM, Jivoff PR, Strait K. Linkages Between Salt Marshes and Other Nekton Habitats in Delaware Bay, USA. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/10641260600960995] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Salierno JD, Gipson GT, Kane AS. Quantitative movement analysis of social behavior in mummichog, Fundulus heteroclitus. J ETHOL 2007. [DOI: 10.1007/s10164-006-0027-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
McMahon KW, Johnson BJ, Ambrose WG. Diet and movement of the killifish,Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/bf02696024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Able KW, Nemerson DM, Grothues TM. Evaluating salt marsh restoration in Delaware Bay: Analysis of Fish response at former salt hay farms. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf02803560] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Currin CA, Wainright SC, Able KW, Weinstein MP, Fuller CM. Determination of food web support and trophic position of the mummichog,Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf02823726] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Able KW, Hagan SM, Brown SA. Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf02823725] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|