1
|
Synoground BF, McGraw CE, Elliott KS, Leuze C, Roth JR, Harcum SW, Sandoval NR. Transient ammonia stress on Chinese hamster ovary (CHO) cells yield alterations to alanine metabolism and IgG glycosylation profiles. Biotechnol J 2021; 16:e2100098. [PMID: 34014036 DOI: 10.1002/biot.202100098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ammonia concentrations typically increase during mammalian cell cultures, mainly due to glutamine and other amino acid consumption. An early ammonia stress indicator is a metabolic shift with respect to alanine. To determine the underlying mechanisms of this metabolic shift, a Chinese hamster ovary (CHO) cell line with two distinct ages (standard and young) was cultured in parallel fed-batch bioreactors with 0 mM or 10 mM ammonia added at 12 h. Reduced viable cell densities were observed for the stressed cells, while viability was not significantly affected. The stressed cultures had higher alanine, lactate, and glutamate accumulation. Interestingly, the ammonia concentrations were similar by Day 8.5 for all cultures. We hypothesized the ammonia was converted to alanine as a coping mechanism. Interestingly, no significant differences were observed for metabolite profiles due to cell age. Glycosylation analysis showed the ammonia stress reduced galactosylation, sialylation, and fucosylation. Transcriptome analysis of the standard-aged cultures indicated the ammonia stress had a limited impact on the transcriptome, where few of the significant changes were directly related metabolite or glycosylation reactions. These results indicate that mechanisms used to alleviate ammonia stress are most likely controlled post-transcriptionally, and this is where future research should focus.
Collapse
Affiliation(s)
| | - Claire E McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Kathryn S Elliott
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Christina Leuze
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jada R Roth
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Prediction of N-linked Glycoform Profiles of Monoclonal Antibody with Extracellular Metabolites and Two-Step Intracellular Models. Processes (Basel) 2019. [DOI: 10.3390/pr7040227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibodies (mAbs) are commonly glycosylated and show varying levels of galactose attachment. A set of experiments in our work showed that the galactosylation level of mAbs was altered by the culture conditions of hybridoma cells. The uridine diphosphate galactose (UDP-Gal) is one of the substrates of galactosylation. Based on that, we proposed a two-step model to predict N-linked glycoform profiles by solely using extracellular metabolites from cell culture. At the first step, the flux level of UDP-Gal in each culture was estimated based on a computational flux balance analysis (FBA); its level was found to be linear with the galactosylation degree on mAbs. At the second step, the glycoform profiles especially for G0F (agalactosylated), G1F (monogalactosylated) and G2F (digalactosylated) were predicted by a kinetic model. The model outputs well matched with the experimental data. Our study demonstrated that the integrated mathematical approach combining FBA and kinetic model is a promising strategy to predict glycoform profiles for mAbs during cell culture processes.
Collapse
|
3
|
Liu B, Spearman M, Doering J, Lattová E, Perreault H, Butler M. The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 2013; 170:17-27. [PMID: 24286971 DOI: 10.1016/j.jbiotec.2013.11.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
The glycosylation pattern of a chimeric heavy chain antibody (EG2) produced from CHO cells was affected by the glucose concentration (0-25mM) of cultures established at high density (>10(6)ml(-1)) over 24h. The resulting proportion of non-glycosylated Mab was directly correlated to the exposure time of cells to media depleted of glucose. Deprivation of glucose for the full 24h resulted in a 45% non-glycosylated Mab fraction. Analysis of steady state levels of intracellular lipid-linked oligosaccharides (LLOs) showed that under glucose limitation there was a reduction in the amount of full length LLO (Glc3Man9GlcNac2), with a concomitant increase in the smaller mannosyl-glycans (Man2-5GlcNAc2). Glycan microheterogeneity was quantified by galactosylation and sialylation indices (GI and SI) which showed a direct correlation to the cell specific glucose uptake. The GI increased to 0.83 following media supplementation with a cocktail of uridine, manganese and galactose. This is significantly higher than for a fully humanized antibody (DP12) produced under the similar conditions or for similar antibodies reported in the literature. The high GI of the chimeric antibody (EG2) may be due to its low molecular weight and unusual structure. These findings are important in relation to the low substrate that may occur in fed-batch cultures for Mab production.
Collapse
Affiliation(s)
- Bo Liu
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - John Doering
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Erica Lattová
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
| |
Collapse
|
4
|
Wuest DM, Harcum SW, Lee KH. Genomics in mammalian cell culture bioprocessing. Biotechnol Adv 2012; 30:629-38. [PMID: 22079893 PMCID: PMC3718848 DOI: 10.1016/j.biotechadv.2011.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/20/2011] [Accepted: 10/30/2011] [Indexed: 12/14/2022]
Abstract
Explicitly identifying the genome of a host organism including sequencing, mapping, and annotating its genetic code has become a priority in the field of biotechnology with aims at improving the efficiency and understanding of cell culture bioprocessing. Recombinant protein therapeutics, primarily produced in mammalian cells, constitute a $108 billion global market. The most common mammalian cell line used in biologic production processes is the Chinese hamster ovary (CHO) cell line, and although great improvements have been made in titer production over the past 25 years, the underlying molecular and physiological factors are not well understood. Confident understanding of CHO bioprocessing elements (e.g. cell line selection, protein production, and reproducibility of process performance and product specifications) would significantly improve with a well understood genome. This review describes mammalian cell culture use in bioprocessing, the importance of obtaining CHO cell line genetic sequences, and the current status of sequencing efforts. Furthermore, transcriptomic techniques and gene expression tools are presented, and case studies exploring genomic techniques and applications aimed to improve mammalian bioprocess performance are reviewed. Finally, future implications of genomic advances are surmised.
Collapse
Affiliation(s)
- Diane M. Wuest
- Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Sarah W. Harcum
- Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - Kelvin H. Lee
- Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
5
|
Brodsky AN, Caldwell M, Harcum SW. Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells. Methods 2011; 56:408-17. [PMID: 22033470 DOI: 10.1016/j.ymeth.2011.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 01/14/2023] Open
Abstract
DNA microarray analysis of gene expression has become a valuable tool for bioprocessing research aimed at improving therapeutic protein yields. The highly parallel nature of DNA microarray technology allows researchers to assess hundreds of gene simultaneously, essentially enabling genome-wide snapshots. The quality and amount of therapeutic proteins produced by cultured mammalian cells rely heavily on the culture environment. In order to implement beneficial changes to the culture environment, a better understanding of the relationship between the product quality and culture environment must be developed. By analyzing gene expression levels under various environmental conditions, light can be shed on the underlying mechanisms. This paper describes a method for evaluating gene expression changes for cultured NS0 cells, a mouse-derived myeloma cell line, under culture environment conditions, such as ammonia buildup, known to affect product quality. These procedures can be easily adapted to other environmental conditions and any mammalian cell lines cultured in suspension, so long as a sufficient number of gene sequences are publicly available.
Collapse
Affiliation(s)
- Arthur Nathan Brodsky
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC 29634-0905, USA
| | | | | |
Collapse
|
6
|
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009; 89:799-845. [PMID: 19584314 DOI: 10.1152/physrev.00030.2008] [Citation(s) in RCA: 701] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.
Collapse
Affiliation(s)
- Marc Liesa
- Institute for Research in Biomedicine (IRB Barcelona), CIBER de Diabetes y Enfermedades Metabólicas Asociadas, and Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | |
Collapse
|
7
|
Müller D, Katinger H, Grillari J. MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol 2008; 26:359-65. [DOI: 10.1016/j.tibtech.2008.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 01/10/2023]
|