1
|
Chen C, Wang Z, Sun Z, Li W, Dimitrov DS. Development of an efficient method for selection of stable cell pools for protein expression and surface display with Expi293F cells. Cell Biochem Funct 2023; 41:355-364. [PMID: 36864545 DOI: 10.1002/cbf.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
Compare with transient expression, stable cell lines generally have higher productivity and better quality for protein expression. However, selection of stable cell line is time-consuming and laborious. Here we describe an optimized selection method to achieve high-efficient stable cell pools with Expi293F suspension cells. This method only takes 2-3 weeks to generate stable cell pools with 2- to 10-fold higher productivity than transient gene expression (TGE). In fed-batch culture with Yeastolate, >1 g/L yield was achieved with our KTN0239-IgG stable cell pool in shaker flasks. This method can be also applied to efficiently display proteins on the cell surface.
Collapse
Affiliation(s)
- Chuan Chen
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| | - Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zehua Sun
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA.,Abound Bio, Pittsburgh, Pennsylvania, USA
| | - Wei Li
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| | - Dimiter S Dimitrov
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA.,Abound Bio, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Enabling HEK293 cells for antibiotic-free media bioprocessing through CRISPR/Cas9 gene editing. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. J Biosci Bioeng 2015; 120:323-9. [DOI: 10.1016/j.jbiosc.2015.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/22/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
|
4
|
Edros R, McDonnell S, Al-Rubeai M. The relationship between mTOR signalling pathway and recombinant antibody productivity in CHO cell lines. BMC Biotechnol 2014; 14:15. [PMID: 24533650 PMCID: PMC3937030 DOI: 10.1186/1472-6750-14-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
Background High recombinant protein productivity in mammalian cell lines is often associated with phenotypic changes in protein content, energy metabolism, and cell growth, but the key determinants that regulate productivity are still not clearly understood. The mammalian target of rapamycin (mTOR) signalling pathway has emerged as a central regulator for many cellular processes including cell growth, apoptosis, metabolism, and protein synthesis. This role of this pathway changes in response to diverse environmental cues and allows the upstream proteins that respond directly to extracellular signals (such as nutrient availability, energy status, and physical stresses) to communicate with downstream effectors which, in turn, regulate various essential cellular processes. Results In this study, we have performed a transcriptomic analysis using a pathway-focused polymerase chain reaction (PCR) array to compare the expression of 84 target genes related to the mTOR signalling in two recombinant CHO cell lines with a 17.4-fold difference in specific monoclonal antibody productivity (qp). Eight differentially expressed genes that exhibited more than a 1.5-fold change were identified. Pik3cd (encoding the Class 1A catalytic subunit of phosphatidylinositol 3-kinase [PI3K]) was the most differentially expressed gene having a 71.3-fold higher level of expression in the high producer cell line than in the low producer. The difference in the gene’s transcription levels was confirmed at the protein level by examining expression of p110δ. Conclusion Expression of p110δ correlated with specific productivity (qp) across six different CHO cell lines, with a range of expression levels from 3 to 51 pg/cell/day, suggesting that p110δ may be a key factor in regulating productivity in recombinant cell lines.
Collapse
Affiliation(s)
| | | | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Bandaranayake AD, Almo SC. Recent advances in mammalian protein production. FEBS Lett 2013; 588:253-60. [PMID: 24316512 DOI: 10.1016/j.febslet.2013.11.035] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022]
Abstract
Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support pre-clinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones.
Collapse
Affiliation(s)
- Ashok D Bandaranayake
- Departments of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Steven C Almo
- Departments of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
6
|
The use of glutamine synthetase as a selection marker: recent advances in Chinese hamster ovary cell line generation processes. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.56] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Schiedner G, Hertel S, Bialek C, Kewes H, Waschütza G, Volpers C. Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 2008; 8:13. [PMID: 18269738 PMCID: PMC2262890 DOI: 10.1186/1472-6750-8-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 02/12/2008] [Indexed: 01/07/2023] Open
Abstract
Background Human cell lines are the most innovative choice of host cell for production of biopharmaceuticals since they allow for authentic posttranslational modification of therapeutic proteins. We present a new method for generating high and stable protein expressing cell lines based on human amniocytes without the requirement of antibiotic selection. Results Primary amniocytes from routine amniocentesis samples can be efficiently transformed with adenoviral functions resulting in stable human cell lines. Cotransfection of the primary human amniocytes with a plasmid expressing adenoviral E1 functions plus a second plasmid containing a gene of interest resulted in permanent cell lines expressing up to 30 pg/cell/day of a fully glycosylated and sialylated protein. Expression of the gene of interest is very stable for more than 90 passages and, importantly, was achieved in the absence of any antibiotic selection. Conclusion We describe an improved method for developing high protein expressing stable human cell lines. These cell lines are of non-tumor origin, they are immortalized by a function not oncogenic in human and they are from an ethically accepted and easily accessible cell source. Since the cell can be easily adapted to growth in serum-free and chemically defined medium they fulfill the requirements of biopharmaceutical production processes.
Collapse
Affiliation(s)
- Gudrun Schiedner
- CEVEC Pharmaceuticals GmbH, Gottfried-Hagen-Str, 62, 51105 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Nissom PM, Sanny A, Kok YJ, Hiang YT, Chuah SH, Shing TK, Lee YY, Wong KTK, Hu WS, Sim MYG, Philp R. Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells. Mol Biotechnol 2007; 34:125-40. [PMID: 17172658 DOI: 10.1385/mb:34:2:125] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/23/2022]
Abstract
A combined transcriptome and proteome analysis was carried out to identify key genes and proteins differentially expressed in Chinese hamster ovary (CHO) cells producing high and low levels of dhfr-GFP fusion protein. Comparison of transcript levels was performed using a proprietary 15K CHO cDNA microarray chip, whereas proteomic analysis was performed using iTRAQ quantitative protein profiling technique. Microarray analysis revealed 77 differentially expressed genes, with 53 genes upregulated and 24 genes downregulated. Proteomic analysis gave 75 and 80 proteins for the midexponential and stationary phase, respectively. Although there was a general lack of correlation between mRNA levels and quantitated protein abundance, results from both datasets concurred on groups of proteins/genes based on functional categorization. A number of genes (20%) and proteins (45 and 23%) were involved in processes related to protein biosynthesis. We also identified three genes/proteins involved in chromatin modification. Enzymes responsible for opening up chromatin, Hmgn3 and Hmgb1, were upregulated whereas enzymes that condense chromatin, histone H1.2, were downregulated. Genes and proteins that promote cell growth (Igfbp4, Ptma, S100a6, and Lgals3) were downregulated, whereas those that deter cell growth (Ccng2, Gsg2, and S100a11) were upregulated. Other main groups of genes and proteins include carbohydrate metabolism, signal transduction, and transport. Our findings show that an integrated genomic and proteomics approach can be effectively utilized to monitor transcriptional and posttranscriptional events of mammalian cells in culture.
Collapse
Affiliation(s)
- Peter Morin Nissom
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore, 138668.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
de la Cruz Edmonds MC, Tellers M, Chan C, Salmon P, Robinson DK, Markusen J. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol Biotechnol 2007; 34:179-90. [PMID: 17172663 DOI: 10.1385/mb:34:2:179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
To date, the FDA has approved 18 monoclonal antibody (MAb) therapeutic drugs with targets ranging from asthma and rheumatoid arthritis to leukemia. Many of these approved products are produced in Chinese hamster ovary cells (CHO) making CHO a significant and relevant host system. We studied the applicability of CHOK1SV cells as a potential host cell line for MAb production in terms of timelines, achievable titers, transfectant stability, and reproducibility. CHOK1SV, developed by Lonza Biologics, is a suspension, protein-free-adapted CHOK1-derivative utilizing the glutamine synthetase (GS) gene expression system. CHOK1SV expresses the GS enzyme endogenously; thus, positive transfectants were obtained under the dual selection of methionine sulfoximine (MSX) and glutamine-free media. We examined outgrowth efficiencies, specific productivities, and achievable batch titers of three different IgG MAbs transfected into CHOK1SV. Reducing the MSX concentration in the initial selection medium resulted in a decreased incubation time required for transfectant colonies to appear. Specific productivities of "high-producers" ranged between 11 and 49 pg/c/d with batch titers ranging from 105 to 519 mg/L. Transfectant stability and the effects of MSX also were investigated, which indicated that the addition of MSX was necessary to maintain stable MAb production. Cell growth was stable regardless of MSX concentration.
Collapse
|
10
|
Schön A, Madani N, Klein JC, Hubicki A, Ng D, Yang X, Smith AB, Sodroski J, Freire E. Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry 2006; 45:10973-80. [PMID: 16953583 PMCID: PMC2504686 DOI: 10.1021/bi061193r] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.
Collapse
Affiliation(s)
- Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Navid Madani
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Jeffrey C. Klein
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Amy Hubicki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Danny Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Xinzhen Yang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph Sodroski
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
- All correspondence should be addressed to E. Freire, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; Phone (410) 516−7743; Fax (410) 516−6469; e-mail
| |
Collapse
|
11
|
Wlaschin KF, Hu WS. Fedbatch culture and dynamic nutrient feeding. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 101:43-74. [PMID: 16989257 DOI: 10.1007/10_015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteins reaching clinical applications. This increased demand has been met with much increased productivity through intensive process development. During this time, fedbatch culture processes have emerged as the predominant mode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch culture process design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation, and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporation of on-line nutrient measurement will play a key role in further refinement of process control for the development of a much sought after generic feeding strategy that can respond to the changing demands of different cell lines in a fluctuating culture environment. The future of process engineering will likely require a combination of current process engineering strategies along with a better understanding and control over cell physiology. Process development will likely to entail not only optimizing traditional engineering parameters but also engineering cell lines with desired characteristics. The integration of cell engineering and process intensification will likely provide the stimuli that propel the limits of growth and productivity to the next high level.
Collapse
Affiliation(s)
- Katie F Wlaschin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, MN 55455-0132, USA
| | | |
Collapse
|
12
|
Rothem L, Berman B, Stark M, Jansen G, Assaraf YG. The Reduced Folate Carrier Gene Is a Novel Selectable Marker for Recombinant Protein Overexpression. Mol Pharmacol 2005; 68:616-24. [PMID: 15939798 DOI: 10.1124/mol.105.013540] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Folate cofactors are one-carbon donors essential for the biosynthesis of purines and thymidylate. Mammalian cells are devoid of folate biosynthesis and are therefore folate auxotrophs that take up folate vitamins primarily via the reduced folate carrier (RFC). In this study, we showed that the human RFC (hRFC) gene can serve as a novel selectable marker for the overproduction of recombinant proteins. Toward this end, a hemagglutinin (HA) epitope tagged hRFC (hRFC-HA) was introduced into a bicistronic vector (pIRES2-EGFP), upstream of an enhanced green fluorescent protein (EGFP) reporter gene. Chinese hamster ovary cells deficient in RFC activity were isolated and transfected with this construct, followed by gradual deprivation of leucovorin, the sole folate source in the growth medium. Only cells with hRFC-HA overexpression were able to take up leucovorin and thereby survive these selective conditions. Western blot and immunofluorescence analyses confirmed that the hRFC-HA was overexpressed at extremely high levels, properly glycosylated and sorted out to the plasma membrane. This resulted in a approximately 450-fold increase in [3H]methotrexate influx and approximately 100-fold increased sensitivity to methotrexate, relative to untransfected RFC-deficient cells. Flow cytometric analysis consistently revealed that EGFP was overexpressed approximately 100-fold above the autofluorescence level. Overproduction of hRFC-HA and EGFP was stably maintained for at least 2 months in a constant concentration of leucovorin. These results establish a novel RFC-based metabolic selection system for the efficient overexpression of recombinant proteins. Furthermore, the possible implications to subcellular transporter localization and restoration of MTX sensitivity in drug-resistant tumors by RFC-based gene therapy are discussed.
Collapse
Affiliation(s)
- Lilah Rothem
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
13
|
Kan QC, Yu ZJ, Lei YC, Yang DL, Hao LJ. Artificially constructed biscistronic vector containing hepatitis C virus internal ribosome entry site. Shijie Huaren Xiaohua Zazhi 2003; 11:1520-1523. [DOI: 10.11569/wcjd.v11.i10.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study the function of hepatitis C virus(HCV) internal ribosome entry site (IRES), and to construct biscistronic vector.
METHODS After amplifying HCV IRES by reverse-transcription PCR (RT-PCR), the products were cloned into pcDNA3-S upstream hepatitis B virus (HBV) surface gene. HBV core gene was cloned following HCV IRES. After determination by PCR and sequencing, we acquired plasmids containing HBV S, C gene and HCV IRES, which were named as plasmids pcDNA3-SIC. PcDNA3-SIC were transfected into HepG2 cells and detected by immunofluorescence assay and Western blot.
RESULTS HBV surface gene and core gene were both expressed in hepG2 cells, which were detected by immunofluorescence assay and confirmed by Western blot.
CONCLUSION The 17 nt of 5' nontranslated RNA in HCV IRES had no effect on driving downstream gene expression itself and could be used in the biscistronic vector that drove two genes expression.
Collapse
Affiliation(s)
- Quan-Cheng Kan
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zu-Jiang Yu
- Department of Infectious Disease, First Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yan-Chang Lei
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dong-Liang Yang
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lian-Jie Hao
- Department of Clinical Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
14
|
Abstract
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Many of these applications involve complex glycoproteins and antibodies with relatively high production needs. These demands have driven the development of a variety of improvements in protein expression technology, particularly involving mammalian and microbial culture systems.
Collapse
Affiliation(s)
- Dana C Andersen
- Cell Culture & Fermentation Research & Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
15
|
Barnes LM, Bentley CM, Dickson AJ. Characterization of the stability of recombinant protein production in the GS-NS0 expression system. Biotechnol Bioeng 2001; 73:261-70. [PMID: 11283909 DOI: 10.1002/bit.1059] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The GS-NS0 system is an important mammalian expression system used largely within industry for the high-level expression of recombinant proteins for therapeutic use. It is essential that the productivity of this system remains stable throughout culture expansion for the successful long-term production of recombinant proteins. Here we present a study of the stability of recombinant protein production from unamplified GS-NS0 cell lines over extended period of continuous culture. The cell lines used in this study were generated by the transfection of NS0 cells with DNA encoding for a secreted recombinant protein and by two subsequent rounds of limiting dilution cloning prior to analysis of stability. The stability of recombinant protein production was assessed at intervals over a period of 134 days using repeated batch culture in shake flasks. Heterogeneous stability was identified. The productivity of some clones remained consistent throughout 134 days of continuous culture. Others exhibit rapid and progressive loss of productivity. Analysis of the causal relationships underlying stability indicates that the initial transfectant determines the susceptibility to loss or retention of productivity. Selection of production clones on the basis of growth and productivity alone will not predict stability during long-term culture. Our research indicates that stable high-producing clones can readily be obtained from use of the GS-NS0 system in the absence of amplification but there may be molecular features of the original transfectants that could serve as very important predictive indicators of the stability of recombinant protein production.
Collapse
Affiliation(s)
- L M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | | | | |
Collapse
|
16
|
Barnes LM, Bentley CM, Dickson AJ. Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 2000; 32:109-23. [PMID: 19002973 PMCID: PMC3449689 DOI: 10.1023/a:1008170710003] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The production of recombinant proteins using mammalian cell expression systems is of growing importance within biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression system.Glutamine synthetase catalyses the formation ofglutamine from glutamate and ammonia. NS0 cellscontain extremely low levels of endogenous glutaminesynthetase activity, therefore exogenous glutaminesynthetase can be used efficiently as a selectablemarker to identify successful transfectants in theabsence of glutamine in the media. In addition, theinclusion of methionine sulphoximine, an inhibitor ofglutamine synthetase activity, enables furtherselection of those clones producing relatively highlevels of transfected glutamine synthetase and henceany heterologous gene which is coupled to it. Theglutamine synthetase system technology has been usedfor research and development purposes during thisdecade and its importance is clearly demonstrated nowthat two therapeutic products produced using thissystem have reached the market place.
Collapse
Affiliation(s)
- L M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT (Author for correspondence)
| | | | | |
Collapse
|
17
|
Abstract
Progress in diverse scientific fields has been realized partly by the continued refinement of mammalian gene expression vectors. A growing understanding of biological processes now allows the design of vector components to meet specific objectives. Thus, gene expression in a tissue-selective or ubiquitous manner may be accomplished by selecting appropriate promoter/enhancer elements; stabilization of labile mRNAs may be effected through removal of 3' untranslated regions or fusion to heterologous stabilizing sequences; protein targeting to selected tissues or different organelles is carried out using specific signal sequences; fusion moieties effect the detection, enhanced yield, surface expression, prolongation of half-life, and facile purification of recombinant proteins; and careful tailoring of the codon content of heterologous genes enhances protein production from poorly translated transcripts. The use of viral as well as nonviral genetic elements in vectors allows the stable replication of episomal elements without the need for chromosomal integration. The development of baculovirus vectors for both transient and stable gene expression in mammalian cells has expanded the utility of such vectors for a broad range of cell types. Internal ribosome entry sites are now widely used in many applications that require coexpression of different genes. Progress in gene targeting techniques is likely to transform gene expression and amplification in mammalian cells into a considerably less labor-intensive operation. Future progress in the elucidation of eukaryotic protein degradation pathways holds promise for developing methods to minimize proteolysis of specific recombinant proteins in mammalian cells and tissues.
Collapse
Affiliation(s)
- S C Makrides
- EIC Laboratories, Inc., Norwood, Massachusetts, 02062, USA
| |
Collapse
|