1
|
Huq AM, Wai LK, Rullah K, Mohd Aluwi MFF, Stanslas J, Jamal JA. Oestrogenic activity of mimosine on MCF-7 breast cancer cell line through the ERα-mediated pathway. Chem Biol Drug Des 2018; 93:222-231. [PMID: 30251480 DOI: 10.1111/cbdd.13404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
Hormone replacement therapy has been a conventional treatment for postmenopausal symptoms in women. However, it has potential risks of breast and endometrial cancers. The aim of this study was to evaluate the oestrogenicity of a plant-based compound, mimosine, in MCF-7 cells by in silico model. Cell viability and proliferation, ERα-SRC1 coactivator activity and expression of specific ERα-dependent marker TFF1 and PGR genes were evaluated. Binding modes of 17β-oestradiol and mimosine at the ERα ligand binding domain were compared using docking and molecular dynamics simulation experiments followed by binding interaction free energy calculation with molecular mechanics/Poisson-Boltzmann surface area. Mimosine showed increased cellular viability (64,450 cells/ml) at 0.1 μM with significant cell proliferation (120.5%) compared to 17β-oestradiol (135.2%). ER antagonist tamoxifen significantly reduced proliferative activity mediated by mimosine (49.9%). Mimosine at 1 μM showed the highest ERα binding activity through increased SRC1 recruitment at 186.9%. It expressed TFF1 (11.1-fold at 0.1 μM) and PGR (13.9-fold at 0.01 μM) genes. ERα-mimosine binding energy was -49.9 kJ/mol, and it interacted with Thr347, Gly521 and His524 of ERα-LBD. The results suggested that mimosine has oestrogenic activity.
Collapse
Affiliation(s)
- Akm Moyeenul Huq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lam Kok Wai
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kamal Rullah
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jamia Azdina Jamal
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Lapraz JC, Hedayat KM, Pauly P. Endobiogeny: a global approach to systems biology (part 2 of 2). Glob Adv Health Med 2014; 2:32-44. [PMID: 24416662 PMCID: PMC3833520 DOI: 10.7453/gahmj.2013.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ENDOBIOGENY AND THE BIOLOGY OF FUNCTIONS ARE BASED ON FOUR SCIENTIFIC CONCEPTS THAT ARE KNOWN AND GENERALLY ACCEPTED: (1) human physiology is complex and multifactorial and exhibits the properties of a system; (2) the endocrine system manages metabolism, which is the basis of the continuity of life; (3) the metabolic activity managed by the endocrine system results in the output of biomarkers that reflect the functional achievement of specific aspects of metabolism; and (4) when biomarkers are related to each other in ratios, it contextualizes one type of function relative to another to which is it linked anatomically, sequentially, chronologically, biochemically, etc.
Collapse
Affiliation(s)
- Jean-Claude Lapraz
- Société internationale de médecine endobiogénique et de physiologie intégrative, Paris, France
| | - Kamyar M Hedayat
- American Society of Endobiogenic Medicine and Integrative physiology, San Diego, California, United States
| | - Patrice Pauly
- Société internationale de médecine endobiogénique et de physiologie intégrative, Paris, France
| |
Collapse
|
3
|
Wolchinsky R, Hod-Marco M, Oved K, Shen-Orr SS, Bendall SC, Nolan GP, Reiter Y. Antigen-dependent integration of opposing proximal TCR-signaling cascades determines the functional fate of T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2014; 192:2109-19. [PMID: 24489091 DOI: 10.4049/jimmunol.1301142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
T cell anergy is a key tolerance mechanism to mitigate unwanted T cell activation against self by rendering lymphocytes functionally inactive following Ag encounter. Ag plays an important role in anergy induction where high supraoptimal doses lead to the unresponsive phenotype. How T cells "measure" Ag dose and how this determines functional output to a given antigenic dose remain unclear. Using multiparametric phospho-flow and mass cytometry, we measured the intracellular phosphorylation-dependent signaling events at a single-cell resolution and studied the phosphorylation levels of key proximal human TCR activation- and inhibition-signaling molecules. We show that the intracellular balance and signal integration between these opposing signaling cascades serve as the molecular switch gauging Ag dose. An Ag density of 100 peptide-MHC complexes/cell was found to be the transition point between dominant activation and inhibition cascades, whereas higher Ag doses induced an anergic functional state. Finally, the neutralization of key inhibitory molecules reversed T cell unresponsiveness and enabled maximal T cell functions, even in the presence of very high Ag doses. This mechanism permits T cells to make integrated "measurements" of Ag dose that determine subsequent functional outcomes.
Collapse
Affiliation(s)
- Ron Wolchinsky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
4
|
Konstorum A, Sprowl SA, Waterman ML, Lander AD, Lowengrub JS. Predicting mechanism of biphasic growth factor action on tumor growth using a multi-species model with feedback control. JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS 2013; 1:459-467. [PMID: 25075381 PMCID: PMC4112130 DOI: 10.1166/jcsmd.2013.1028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A large number of growth factors and drugs are known to act in a biphasic manner: at lower concentrations they cause increased division of target cells, whereas at higher concentrations the mitogenic effect is inhibited. Often, the molecular details of the mitogenic effect of the growth factor are known, whereas the inhibitory effect is not. Hepatoctyte Growth Factor, HGF, has recently been recognized as a strong mitogen that is present in the microenvironment of solid tumors. Recent evidence suggests that HGF acts in a biphasic manner on tumor growth. We build a multi-species model of HGF action on tumor cells using different hypotheses for high dose-HGF activation of a growth inhibitor and show that the shape of the dose-response curve is directly related to the mechanism of inhibitor activation. We thus hypothesize that the shape of a dose-response curve is informative of the molecular action of the growth factor on the growth inhibitor.
Collapse
Affiliation(s)
- Anna Konstorum
- Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
| | - Stephanie A. Sprowl
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Marian L. Waterman
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences III, Irvine, CA 92697-2300, USA
| | - John S. Lowengrub
- Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
- Center for Complex Biological Systems, University of California, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
- Department of Biomedical Engineering, University of California, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA
| |
Collapse
|
5
|
|
6
|
Thong HY, Maibach HI. Hormesis [Biological Effects of Low-Level Exposure (B.E.L.L.E.)] and Dermatology. Cutan Ocul Toxicol 2008; 26:329-41. [DOI: 10.1080/15569520701588814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Thong HY, Maibach HI. Hormesis [biological effects of low level exposures (BELLE)] and dermatology. Dose Response 2008; 6:1-15. [PMID: 18648574 DOI: 10.2203/dose-response.07-029.thong] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hormesis, or biological effects of low level exposures (BELLE), is characterized by nonmonotonic dose response which is biphasic, displaying opposite effects at low and high dose. Its occurrence has been documented across a broad range of biological models and diverse type of exposure. Since hormesis appears to be a relatively common phenomenon in many areas, the objective of this review is to explore its occurrence related to dermatology and its public health and risk assessment implication. Hormesis appears to be a common phenomenon in in-vitro skin biology. However, in vivo data are lacking and the clinical relevance of hormesis has yet to be determined. Better understanding of this phenomenon will likely lead to different strategies for risk assessment process employed in the fields of dermatologic toxicology and pharmacology. We believe that hormesis is a common phenomenon and should be given detailed consideration to its concept and its risk assessment implications, and how these may be incorporated into the experimental and regulatory processes in dermatology. The skin, with its unique characteristics, its accessibility, and the availability of non-invasive bioengineering and DNA microarray technology, will be a good candidate to extend the biology of hormesis.
Collapse
Affiliation(s)
- Haw-Yueh Thong
- Department of Dermatology, School of Medicine, University of California-San Francisco, CA 94143, USA
| | | |
Collapse
|
8
|
Calabrese EJ. Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol 2006; 35:463-582. [PMID: 16422392 DOI: 10.1080/10408440591034502] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article assesses the nature of the dose-response relationship of human tumor cell lines with a wide range of agents including antineoplastics, toxic substances (i.e., environmental pollutants), nonneoplastic drugs, endogenous agonists, and phyto-compounds. Hormetic-like biphasic dose responses were commonly reported and demonstrated in 136 tumor cell lines from over 30 tissue types for over 120 different agents. Quantitative features of these hormetic dose responses were similar, regardless of tumor cell line or agent tested. That is, the magnitude of the responses was generally modest, with maximum stimulatory responses typically not greater than twice the control, while the width of the stimulatory concentration range was usually less than 100-fold. Particular attention was directed to possible molecular mechanisms of the biphasic nature of the dose response, as well as clinical implications in which a low concentration of chemotherapeutic agent may stimulate tumor cell proliferation. Finally, these findings further support the conclusion that hormetic dose responses are broadly generalizable, being independent of biological model, endpoint measured, and stressor agent, and represent a basic feature of biological responsiveness to chemical and physical stressors.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
9
|
Abstract
Epidemiological studies have revealed that high levels of lignans and isoflavonoids are frequently associated with low breast, prostate and colon cancer risk, as well as a low risk of coronary heart disease. These compounds seem to be cancer protective and/or are biomarkers of a 'healthy' diet. All soy protein products consumed by Asian populations have high concentrations of isoflavonoids. In other countries, such as Finland and Sweden, the lignan levels are higher in populations with the lowest risk because of a high consumption of whole-grain rye bread, berries and some vegetables. There is a strong association between fibre intake per kilogram body weight and lignan concentrations in body fluids. Breast cancer has been found to be associated with low lignan levels in the USA, Finland, Sweden and Australia. With regard to prostate and colon cancer, as well as coronary heart disease, the epidemiological data related to phytoestrogens are still very limited.
Collapse
Affiliation(s)
- H Adlercreutz
- Folkhälsan Research Centre, Department of Clinical Chemistry, University of Helsinki, Finland
| |
Collapse
|
10
|
Stewart LV, Thomas ML. Retinoids differentially regulate the proliferation of colon cancer cell lines. Exp Cell Res 1997; 233:321-9. [PMID: 9194494 DOI: 10.1006/excr.1997.3569] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, the proliferative effects of retinoids were examined in the MC-26 and LoVo colon adenocarcinoma cell lines. The proliferation of the LoVo cell line was not altered in the presence of the retinoids all trans-retinoic acid (atRA) and 9-cis-retinoic acid (9-cis-RA). Both retinoids, however, stimulated the growth, as measured by cell proliferation, of MC-26 cells. atRA and 9-cis-RA were equipotent in increasing MC-26 cell proliferation, suggesting that the growth stimulation is mediated by one or more retinoic acid receptors (RARs). To determine the RAR which might be responsible for this growth stimulatory effect, we characterized the RAR subtypes which were present in both cell lines. mRNA for the RAR alpha, RAR beta, and RAR gamma were detected in the MC-26 cell. Of the RARs present in MC-26 cells, the RAR alpha does not mediate the growth stimulatory effects of retinoids, for a selective RAR alpha antagonist was unable to prevent the retinoid-induced increase in MC-26 cell growth. RAR alpha, RAR beta, and RAR gamma mRNA are also expressed in the LoVo cell line; the lack of growth-stimulation by retinoids in LoVo cells, therefore, does not seem to be due to the absence of RARs. The results obtained in these experiments demonstrate that the growth response elicited by retinoids can vary between colon cancer cells and that the differences in response may not be solely determined by the RAR subtypes which are expressed in a colon cancer cell line.
Collapse
Affiliation(s)
- L V Stewart
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77555-1031, USA
| | | |
Collapse
|
11
|
Abstract
Incidences of breast, colorectal and prostate cancer are high in the Western world compared to countries in Asia. We have postulated that the Western diet compared to the semivegetarian diet in some Asian countries may alter hormone production, metabolism or action at the cellular level by some biochemical mechanisms. Our interest has been focused on two groups of hormone-like diphenolic phyto-oestrogens of dietary origin, the lignans and isoflavonoids abundant in plasma of subjects living in areas with low cancer incidence. The precursors of the biologically active compounds detected in man are found in soybean products, whole-grain cereal food, seeds, and berries. The plant lignan and isoflavonoid glycosides are converted by intestinal bacteria to hormone-like compounds. The weakly oestrogenic diphenols formed influence sex-hormone production, metabolism and biological activity, intracellular enzymes, protein synthesis, growth factor action, malignant cell proliferation, differentiation, cell adhesion and angiogenesis in such a way as to make them strong candidates for a role as natural cancer-protective compounds. Their effect on some of the most important steroid biosynthetic enzymes may result in beneficial modulation of hormone concentrations and action in the cells preventing development of cancer. Owing to their oestrogenic activity they reduce hot flushes and vaginal dryness in postmenopausal women and may to some degree inhibit osteoporosis, but alone they may be insufficient for complete protection. Soy intake prevents oxidation of the low-density lipoproteins in vitro when isolated from soy-treated individuals and affect favourably plasma lipid concentrations. Animal experiments provide evidence suggesting that both lignans and isoflavonoids may prevent the development of cancer as well as atherosclerosis. However, in some of these experiments it has not been possible to separate the phyto-oestrogen effect from the effect of other components in the food. The isoflavonoids and lignans may play a significant inhibitory role in cancer development particularly in the promotional phase of the disease, but recent evidence points also to a role in the initiation stage of carcinogenesis. At present, however, no definite recommendations can be made as to the dietary amounts needed for prevention of disease. This review deals with all the above-mentioned aspects of phyto-oestrogens.
Collapse
Affiliation(s)
- H Adlercreutz
- Department of Clinical Chemistry, University of Helsinki, Meilahti Hospital, Finland.
| | | |
Collapse
|