1
|
Besio R, Gioia R, Cossu F, Monzani E, Nicolis S, Cucca L, Profumo A, Casella L, Tenni R, Bolognesi M, Rossi A, Forlino A. Kinetic and structural evidences on human prolidase pathological mutants suggest strategies for enzyme functional rescue. PLoS One 2013; 8:e58792. [PMID: 23516557 PMCID: PMC3596340 DOI: 10.1371/journal.pone.0058792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/06/2013] [Indexed: 12/17/2022] Open
Abstract
Prolidase is the only human enzyme responsible for the digestion of iminodipeptides containing proline or hydroxyproline at their C-terminal end, being a key player in extracellular matrix remodeling. Prolidase deficiency (PD) is an intractable loss of function disease, characterized by mutations in the prolidase gene. The exact causes of activity impairment in mutant prolidase are still unknown. We generated three recombinant prolidase forms, hRecProl-231delY, hRecProl-E412K and hRecProl-G448R, reproducing three mutations identified in homozygous PD patients. The enzymes showed very low catalytic efficiency, thermal instability and changes in protein conformation. No variation of Mn(II) cofactor affinity was detected for hRecProl-E412K; a compromised ability to bind the cofactor was found in hRecProl-231delY and Mn(II) was totally absent in hRecProl-G448R. Furthermore, local structure perturbations for all three mutants were predicted by in silico analysis. Our biochemical investigation of the three causative alleles identified in perturbed folding/instability, and in consequent partial prolidase degradation, the main reasons for enzyme inactivity. Based on the above considerations we were able to rescue part of the prolidase activity in patients’ fibroblasts through the induction of Heath Shock Proteins expression, hinting at new promising avenues for PD treatment.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Roberta Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Federica Cossu
- Department of BioSciences, CNR-IBF and CIMAINA, University of Milano, Milano, Italy
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Lucia Cucca
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Ruggero Tenni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Martino Bolognesi
- Department of BioSciences, CNR-IBF and CIMAINA, University of Milano, Milano, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
2
|
Vasan RS, Larson MG, Aragam J, Wang TJ, Mitchell GF, Kathiresan S, Newton-Cheh C, Vita JA, Keyes MJ, O'Donnell CJ, Levy D, Benjamin EJ. Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study. BMC MEDICAL GENETICS 2007; 8 Suppl 1:S2. [PMID: 17903301 PMCID: PMC1995617 DOI: 10.1186/1471-2350-8-s1-s2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Echocardiographic left ventricular (LV) measurements, exercise responses to standardized treadmill test (ETT) and brachial artery (BA) vascular function are heritable traits that are associated with cardiovascular disease risk. We conducted a genome-wide association study (GWAS) in the community-based Framingham Heart Study. METHODS We estimated multivariable-adjusted residuals for quantitative echocardiography, ETT and BA function traits. Echocardiography residuals were averaged across 4 examinations and included LV mass, diastolic and systolic dimensions, wall thickness, fractional shortening, left atrial and aortic root size. ETT measures (single exam) included systolic blood pressure and heart rate responses during exercise stage 2, and at 3 minutes post-exercise. BA measures (single exam) included vessel diameter, flow-mediated dilation (FMD), and baseline and hyperemic flow responses. Generalized estimating equations (GEE), family-based association tests (FBAT) and variance-components linkage were used to relate multivariable-adjusted trait residuals to 70,987 SNPs (Human 100K GeneChip, Affymetrix) restricted to autosomal SNPs with minor allele frequency > or =0.10, genotype call rate > or =0.80, and Hardy-Weinberg equilibrium p > or = 0.001. RESULTS We summarize results from 17 traits in up to 1238 related middle-aged to elderly men and women. Results of all association and linkage analyses are web-posted at http://ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite. We confirmed modest-to-strong heritabilities (estimates 0.30-0.52) for several Echo, ETT and BA function traits. Overall, p < 10(-5) in either GEE or FBAT models were observed for 21 SNPs (nine for echocardiography, eleven for ETT and one for BA function). The top SNPs associated were (GEE results): LV diastolic dimension, rs1379659 (SLIT2, p = 1.17*10(-7)); LV systolic dimension, rs10504543 (KCNB2, p = 5.18*10(-6)); LV mass, rs10498091 (p = 5.68*10(-6)); Left atrial size, rs1935881 (FAM5C, p = 6.56*10(-6)); exercise heart rate, rs6847149 (NOLA1, p = 2.74*10(-6)); exercise systolic blood pressure, rs2553268 (WRN, p = 6.3*10(-6)); BA baseline flow, rs3814219 (OBFC1, 9.48*10(-7)), and FMD, rs4148686 (CFTR, p = 1.13*10(-5)). Several SNPs are reasonable biological candidates, with some being related to multiple traits suggesting pleiotropy. The peak LOD score was for LV mass (4.38; chromosome 5); the 1.5 LOD support interval included NRG2. CONCLUSION In hypothesis-generating GWAS of echocardiography, ETT and BA vascular function in a moderate-sized community-based sample, we identified several SNPs that are candidates for replication attempts and we provide a web-based GWAS resource for the research community.
Collapse
Affiliation(s)
- Ramachandran S Vasan
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Martin G Larson
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | | | - Thomas J Wang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sekar Kathiresan
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Christopher Newton-Cheh
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Joseph A Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Michelle J Keyes
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Christopher J O'Donnell
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emelia J Benjamin
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 2001; 81:1461-97. [PMID: 11581494 DOI: 10.1152/physrev.2001.81.4.1461] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the eukaryotic cell an intrinsic mechanism is present providing the ability to defend itself against external stressors from various sources. This defense mechanism probably evolved from the presence of a group of chaperones, playing a crucial role in governing proper protein assembly, folding, and transport. Upregulation of the synthesis of a number of these proteins upon environmental stress establishes a unique defense system to maintain cellular protein homeostasis and to ensure survival of the cell. In the cardiovascular system this enhanced protein synthesis leads to a transient but powerful increase in tolerance to such endangering situations as ischemia, hypoxia, oxidative injury, and endotoxemia. These so-called heat shock proteins interfere with several physiological processes within several cell organelles and, for proper functioning, are translocated to different compartments following stress-induced synthesis. In this review we describe the physiological role of heat shock proteins and discuss their protective potential against various stress agents in the cardiovascular system.
Collapse
Affiliation(s)
- L H Snoeckx
- Department of Physiology, Faculty of Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|