1
|
Ravn Berg S, Dikic A, Sharma A, Hagen L, Vågbø CB, Zatula A, Misund K, Waage A, Slupphaug G. Progression of monoclonal gammopathy of undetermined significance to multiple myeloma is associated with enhanced translational quality control and overall loss of surface antigens. J Transl Med 2024; 22:548. [PMID: 38849800 PMCID: PMC11162064 DOI: 10.1186/s12967-024-05345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.
Collapse
Affiliation(s)
- Sigrid Ravn Berg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Aida Dikic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Cathrine Broberg Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Alexey Zatula
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Medical Genetics, St Olavs hospital, N-7491, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Hematology, and Biobank1, St Olavs hospital, N-7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway.
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway.
| |
Collapse
|
2
|
Li J, Jia Z, Wang R, Xiao B, Cai Y, Zhu T, Wang W, Zhang X, Fan S, Fan X, Han W, Lu X. Activated interferon response from DNA damage in multiple myeloma cells contributes to the chemotherapeutic effects of anthracyclines. Front Oncol 2024; 14:1357996. [PMID: 38800411 PMCID: PMC11116600 DOI: 10.3389/fonc.2024.1357996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Multiple myeloma (MM) is a malignant plasma cell disease caused by abnormal proliferation of clonal plasma cells in bone marrow. Upfront identification of tumor subgroups with specific biological markers has the potential to improve biologically-driven therapy. Previously, we established a molecular classification by stratifying multiple myeloma into two subtypes with a different prognosis based on a gene module co-expressed with MCL-1 (MCL1-M). Methods Gene Ontology (GO) analysis with differentially expressed genes was performed to identify signal pathway. Drug sensitivity was analyzed using the OncoPredict algorithm. Drug sensitivity of different myeloma cell lines was detected by CCK8 and flow cytometry. RNA-seq was performed on drug-sensitive cell lines before and after adriamycin treatment. RT-qPCR was used to further verify the sequencing results. The expression of γ-H2AX and dsDNA in sensitive and resistant cell lines was detected by immunofluorescence method. Results In our study, we demonstrated that MCL1-M low MM were more sensitive to anthracyclines. We treated different myeloma cell lines with doxorubicin in vitro and discovered the association of drug sensitivity with IFN signaling. Herein, we demonstrate that the doxorubicin-sensitive myeloma cell line showed significant DNA damage and up-regulated expression of genes related to the IFN response, which was not observed in drug-insensitive cell lines. Discussion Our results suggest that the active IFN signaling pathway may serve as a marker for predicting chemotherapy sensitivity in patients with myeloma. With our MCL1-M molecular classification system, we can screen patients with a potentially good response to the interferon signaling pathway and provide individualized treatment for MM. We propose IFN-a as adjuvant therapy for patients with myeloma sensitive to anthracyclines to further improve the therapeutic effect and prolong the survival of patients.
Collapse
Affiliation(s)
- Jin Li
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhuxia Jia
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Rongxuan Wang
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Bitao Xiao
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Yanan Cai
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Tianshu Zhu
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Weiya Wang
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xinyue Zhang
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Shu Fan
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaolong Fan
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Wenmin Han
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xuzhang Lu
- Department of Hematology, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
3
|
Aksoy O, Lind J, Sunder-Plaßmann V, Vallet S, Podar K. Bone marrow microenvironment- induced regulation of Bcl-2 family members in multiple myeloma (MM): Therapeutic implications. Cytokine 2023; 161:156062. [PMID: 36332463 DOI: 10.1016/j.cyto.2022.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
In Multiple Myeloma (MM) the finely tuned homeostasis of the bone marrow (BM) microenvironment is disrupted. Evasion of programmed cell death (apoptosis) represents a hallmark of cancer. Besides genetic aberrations, the supportive and protective MM BM milieu, which is constituted by cytokines and growth factors, intercellular and cell: extracellular matrix (ECM) interactions and exosomes, in particular, plays a key role in the abundance of pro-survival members of the Bcl-2 family (i.e., Mcl-1, Bcl-2, and Bcl-xL) in tumor cells. Moreover, microenvironmental cues have also an impact on stability- regulating post-translational modifications of anti-apoptotic proteins including de/phosphorylation, polyubiquitination; on their intracellular binding affinities, and localization. Advances of our molecular knowledge on the escape of cancer cells from apoptosis have informed the development of a new class of small molecules that mimic the action of BH3-only proteins. Indeed, approaches to directly target anti-apoptotic Bcl-2 family members are among today's most promising therapeutic strategies and BH3-mimetics (i.e., venetoclax) are currently revolutionizing not only the treatment of CLL and AML, but also hold great therapeutic promise in MM. Furthermore, approaches that activate apoptotic pathways indirectly via modification of the tumor microenvironment have already entered clinical practice. The present review article will summarize our up-to-date knowledge on molecular mechanisms by which the MM BM microenvironment, cytokines, and growth factors in particular, mediates tumor cell evasion from apoptosis. Moreover, it will discuss some of the most promising science- derived therapeutic strategies to overcome Bcl-2- mediated tumor cell survival in order to further improve MM patient outcome.
Collapse
Affiliation(s)
- Osman Aksoy
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Judith Lind
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Vincent Sunder-Plaßmann
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Sonia Vallet
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
| | - Klaus Podar
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria.
| |
Collapse
|
4
|
Immunological Prognostic Factors in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22073587. [PMID: 33808304 PMCID: PMC8036885 DOI: 10.3390/ijms22073587] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm characterized by an abnormal proliferation of clonal, terminally differentiated B lymphocytes. Current approaches for the treatment of MM focus on developing new diagnostic techniques; however, the search for prognostic markers is also crucial. This enables the classification of patients into risk groups and, thus, the selection of the most optimal treatment method. Particular attention should be paid to the possible use of immune factors, as the immune system plays a key role in the formation and course of MM. In this review, we focus on characterizing the components of the immune system that are of prognostic value in MM patients, in order to facilitate the development of new diagnostic and therapeutic directions.
Collapse
|
5
|
CSNK1α1 mediates malignant plasma cell survival. Leukemia 2014; 29:474-82. [PMID: 24962017 DOI: 10.1038/leu.2014.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022]
Abstract
Here we report that targeting casein kinase 1-α1 (CSNK1α1) is a potential novel treatment strategy in multiple myeloma (MM) therapy distinct from proteasome inhibition. CSNK1α1 is expressed in all the tested MM cell lines and patient MM cells, and is not altered during bortezomib-triggered cytotoxicity. Inhibition of CSNK1α1 kinase activity in MM cells with targeted therapy D4476 or small hairpin RNAs triggers cell G0/G1-phase arrest, prolonged G2/M phase and apoptosis. D4476 also induced cytotoxicity in bortezomib-resistant MM cells and enhanced bortezomib-triggered cytotoxicity. CSNK1α1 signaling pathways include CDKN1B, P53 and FADD; gene signatures involved included interferon-α, tumor necrosis factor-α and LIN9. In addition, reduction of Csnk1α1 prevents cMYC/KRAS12V transformation of BaF3 cells independent of interleukin-3. Impartially, reducing Csnk1α1 prevented development of cMYC/KRAS12V-induced plasmacytomas in mice, suggesting that CSNK1α1 may be involved in MM initiation and progression. Our data suggest that targeting CSNK1α1, alone or combined with bortezomib, is a potential novel therapeutic strategy in MM. Moreover, inhibition of CSNK1α1 may prevent the progression of monoclonal gammopathy of undetermined significance to MM.
Collapse
|
6
|
Plesnicar A, Vidmar G, Stabuc B, Kores Plesnicar B. Effects of native human leukocyte interferon-alpha and recombinant human interferon-alpha on P3-X63-Ag8.653 mouse myeloma cell growth. J Int Med Res 2010; 37:1570-6. [PMID: 19930865 DOI: 10.1177/147323000903700535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) remains largely incurable, although traditional chemotherapy and new compounds have been shown to produce a clinical response. Clinical studies were performed to determine the effectiveness of interferon-alpha (IFN-alpha) in MM, which has also recently been shown to function as a survival factor for MM cells. The effects of different doses of native human leukocyte interferon-alpha (nhIFN-alpha), recombinant human interferon-alpha2a (rhIFN-alpha2a) and recombinant human interferon-alpha2b (rhIFN-alpha2b) on in vitro P3-X63-Ag8.653 mouse myeloma cell growth were compared. A statistically significant dose-dependent reduction in cell viability following cell culture with nhIFN-alpha was observed. On the other hand, a statistically significant increase in cell viability was observed following cell culture with rhIFN-alpha2a and rhIFN-alpha2b, but only in relation to the control group and seemingly without dose dependency. These results highlight the importance of the type of human IFN-alpha used in the treatment and study of MM, and suggest that nhIFN-alpha may have a role in future personalized therapy approaches.
Collapse
Affiliation(s)
- Andrej Plesnicar
- University College of Health Studies, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
7
|
Abstract
This article analyzes the conceptual and technological context in which, over a period of 50 years, exploration of the biological and clinical significance of type I interferon has evolved. The elaboration of techniques for production and purification of mouse and human interferons and the establishment of laboratory-size production units have been of crucial importance in this process. Animal experiments have been invaluable for elucidation of mechanisms underlying the in vivo antiviral, anti-tumour and immunomodulatory potential of interferon, but have been of limited help to define the areas of clinical applicability. Proof of principle for applications as they are established today has come from clinical trials performed quite independently of evidence from animal experiments.
Collapse
Affiliation(s)
- Alfons Billiau
- Rega Institute, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Gómez-Benito M, Balsas P, Carvajal-Vergara X, Pandiella A, Anel A, Marzo I, Naval J. Mechanism of apoptosis induced by IFN-alpha in human myeloma cells: role of Jak1 and Bim and potentiation by rapamycin. Cell Signal 2006; 19:844-54. [PMID: 17158029 DOI: 10.1016/j.cellsig.2006.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/16/2006] [Accepted: 10/22/2006] [Indexed: 11/21/2022]
Abstract
Interferon-alpha (IFN-alpha) has been used for the last 20 years in the maintenance therapy of multiple myeloma (MM), though it is only effective in some patients. Congruent with this, IFN-alpha induces apoptosis in some MM cell lines. Understanding the mechanism of IFN-alpha-induced apoptosis could be useful in establishing criteria of eligibility for therapy. Here we show that IFN-alpha-induced apoptosis in the MM cell lines U266 and H929 was completely blocked by a specific inhibitor of Jak1. The mTOR inhibitor rapamycin mitigated apoptosis in U266 but potentiated it in H929 cells. IFN-alpha induced PS exposure, DeltaPsi(m) loss and pro-apoptotic conformational changes of Bak, but not of Bax, and was fully prevented by Mcl-1 overexpression in U266 cells. IFN-alpha treatment caused the release of cytochrome c from mitochondria to cytosol and consequently, a limited proteolytic processing of caspases. Apoptosis induced by IFN-alpha was only slightly prevented by caspase inhibitors. Levels of the BH3-only proteins PUMA and Bim increased during IFN-alpha treatment. Bim increase and apoptosis was prevented by transfection with the siRNA for Bim. PUMA-siRNA transfection reduced electroporation-induced apoptosis but had no effect on apoptosis triggered by IFN-alpha. The potentiating effect of rapamycin on apoptosis in H929 cells was associated to an increase in basal and IFN-alpha-induced Bim levels. Our results indicate that IFN-alpha causes apoptosis in myeloma cells through a moderate triggering of the mitochondrial route initiated by Bim and that mTOR inhibitors may be useful in IFN-alpha maintenance therapy of certain MM patients.
Collapse
Affiliation(s)
- Maria Gómez-Benito
- Departamento de Bioquimica, Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
El Mahou S, Attal M, Jamard B, Constantin A, Cantagrel A, Mazières B, Arnaud C, Laroche M. Do new therapeutic approaches (autotransplants, thalidomide, dexamethasone) improve the survival of patients with multiple myeloma followed in a rheumatology department? Clin Rheumatol 2006; 25:175-82. [PMID: 16328086 DOI: 10.1007/s10067-005-1151-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 01/03/2023]
Abstract
Survival of patients with multiple myeloma (MM) showed no improvement between the 1960s and 1990s. During the last decade, new therapeutic approaches seemed likely to offer hope of prolonging survival. The aim of this study was to examine if this survival increased with the usage of new treatments. The method involves a retrospective study of 123 patients with MM, diagnosed between 1975 and 1999, all receiving treatment. They were divided into two groups: group 1 included 55 patients given the so-called "old treatments" [melphalan-prednisone, cyclophosphamide-prednisone, polychemotherapy (vincristine, melphalan, cyclophosphamide, prednisone (VMCP), VMCP-VBAP)], and group 2 included 68 patients receiving at least one of the so-called "new treatments" (dexamethasone, thalidomide, high-dose chemotherapy followed by autotransplants, bisphosphonates, interferon). The two groups were similar in terms of age, sex ratio and renal impairment, and the percentage of light-chain MM was identical in both groups. Patients who had been given a "new" treatment (group 2) had longer median survival than the patients in group 1 (54 vs 42 months). Independent analysis of each treatment modality showed increased median survival in MM patients treated using autotransplantation compared with untreated patients (125 vs 45 months). Survival was also longer in MM patients treated with thalidomide than in untreated patients (72 vs 42 months). On the other hand, neither bisphosphonates, interferon-alpha nor dexamethasone result in improved survival. Our findings emphasize the increased survival of the MM patients treated with new therapeutic approaches.
Collapse
Affiliation(s)
- S El Mahou
- Rheumatology Department, Rangueil University Hospital, CHU Rangueil, 1 avenue Jean Poulhes, 31059 Toulouse Cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gómez-Benito M, Balsas P, Bosque A, Anel A, Marzo I, Naval J. Apo2L/TRAIL is an indirect mediator of apoptosis induced by interferon-alpha in human myeloma cells. FEBS Lett 2005; 579:6217-22. [PMID: 16246331 DOI: 10.1016/j.febslet.2005.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/04/2005] [Indexed: 11/22/2022]
Abstract
Interferon-alpha (IFN-alpha) is currently used for the therapy of multiple myeloma (MM) though it is only effective in some patients. IFN-alpha induces apoptosis in some MM cell lines and it has been proposed to occur through an autocrine loop involving Apo2L/TRAIL. We have analysed the sensitivity to IFN-alpha and Apo2L/TRAIL of five MM cell lines and found no correlation between the apoptosis inducing ability of both cytokines. IFN-alpha-induced apoptosis in MM cells was not prevented by a caspase-8 selective inhibitor (Z-IETD-fmk) or blocking Apo2L/TRAIL. However, human monocytes treated with IFN-alpha release bioactive Apo2L/TRAIL to culture media which was cytotoxic for MM cells resistant to IFN-alpha. We propose that Apo2L/TRAIL released from IFN-alpha-stimulated blood monocytes would be a major mediator of the anti-myeloma effect of IFN-alpha in vivo.
Collapse
Affiliation(s)
- Maria Gómez-Benito
- Departamento de Bioquimica, Biologia Molecular y Cellular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Hovenga S, Daenen SMGJ, de Wolf JTM, van Imhoff GW, Kluin-Nelemans HC, Sluiter WJ, Vellenga E. Combined thalidomide and cyclophosphamide treatment for refractory or relapsed multiple myeloma patients: a prospective phase II study. Ann Hematol 2004; 84:311-6. [PMID: 15605244 DOI: 10.1007/s00277-004-0981-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Thalidomide is an effective agent for patients with refractory multiple myeloma (MM) with a response rate of 30-40% at doses of 200-800 mg but with considerable side effects. We questioned whether lower doses of thalidomide in combination with a daily dose of cyclophosphamide might be an effective regimen with fewer side effects. We included 38 patients with relapsed or refractory MM. The median doses of thalidomide and cyclophosphamide were 100 and 95 mg/day, respectively. Side effects were observed in all patients, with neurotoxicity as the most troublesome. With a median follow-up of 14 months 84% of the patients responded, including 64% partial responses. The median time of progression-free survival was 30 months and the median overall survival time was 20 months. In conclusion, the results demonstrate that the combination of low-dose thalidomide with a daily dose of cyclophosphamide is an effective regimen with a high overall response rate and manageable side effects.
Collapse
Affiliation(s)
- Sjoerd Hovenga
- Department of Haematology, University Hospital Groningen, P.O. Box 30.001, 9700, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Interferons are agents with antiviral, antiproliferative, and immunomodulatory properties. Interferon-alfa (IFN-alpha) is used in the treatment of hematologic malignancies and solid tumors. IFN-alpha has shown antitumor and antiviral efficacy that are not correlated, one with another. Approval by the US Food and Drug Administration was granted early for the treatment of patients with hairy cell leukemia, acquired immune deficiency syndrome-related Kaposi's sarcoma, and condylomata acuminata. Although IFNs are effective as single agents in certain clinical pathologic entities, increasing experience with these cytokines suggests that their greatest therapeutic potential may be realized in combination with other biological response modifiers, cytotoxics, or antiviral agents. For example, trials combining IFN-alpha with 5-fluorouracil to treat colorectal carcinoma or IFN-alpha with zidovudine to treat acquired immune deficiency disorder showed increased efficacy over IFN-alpha alone. While IFN-alpha appears to be moderately effective in certain diseases, the flu-like syndrome associated with its use is a major limiting factor for its clinical application. Further studies are needed to determine the underlying mechanism of action for IFNs and the most effective combinations and appropriate preclinical models, or intermediate endpoints that will then facilitate the rational use of this agent in combinations based on the mechanisms of action of IFN-alpha.
Collapse
Affiliation(s)
- John Kirkwood
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-2582, USA
| |
Collapse
|
13
|
Grosbois B, Decaux O, Azais I, Facon T, Avet-Loiseau H. Current treatment strategies for multiple myeloma. Eur J Intern Med 2002; 13:85-95. [PMID: 11893464 DOI: 10.1016/s0953-6205(01)00205-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Until 1990, the melphalan-prednisone regimen was the standard treatment for multiple myeloma (MM). The role of alpha-interferon still remains controversial, both in induction therapy and in maintenance therapy. Over the last 10 years, there has been considerable improvement in the treatment of MM. In patients under 65 years of age, high-dose therapy with autografting has clearly demonstrated an advantage over conventional treatment. Bisphosphonates have proved very useful in reducing skeletal events. More recently, an old drug, thalidomide, has shown surprising efficacy in patients with advanced MM. Future trends include the extension of high-dose therapy to older patients and the use of immunotherapy in induction and/or maintenance therapy.
Collapse
Affiliation(s)
- Bernard Grosbois
- Service de Médecine Interne, Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35056, Rennes, France
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Puthier D, Thabard W, Rapp M, Etrillard M, Harousseau J, Bataille R, Amiot M. Interferon alpha extends the survival of human myeloma cells through an upregulation of the Mcl-1 anti-apoptotic molecule. Br J Haematol 2001; 112:358-63. [PMID: 11167829 DOI: 10.1046/j.1365-2141.2001.02575.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently reported that Mcl-1, an anti-apoptotic member of the Bcl-2 family, is upregulated by interleukin (IL)-6 in human myeloma cells through the janus kinase/signal transducers and activators of transduction (JAK/STAT) pathway. In the current study, we have explored the effects of interferon (IFN)-alpha, a cytokine which has been shown to increase myeloma cell survival. Our results demonstrate that IFN-alpha potently upregulates Mcl-1 on both myeloma cell lines and purified native myeloma cells. Of note, this upregulation is not due to an induction of an IL-6 autocrine loop. Furthermore, we showed that IL-6 and IFN-alpha had no additive effect on Mcl-1 upregulation, suggesting that both cytokines act through a common mechanism. Finally, the analysis of signalling transduction pathways strongly suggests that Mcl-1 upregulation induced by IFN-alpha depends on STAT3 activation. Altogether, our data show that IFN-alpha has an IL-6-like effect on human myeloma cells and suggest that it could be deleterious in some patients.
Collapse
Affiliation(s)
- D Puthier
- INSERM U463, Institut de biologie, and Departement d'Hématologie, CHU Nantes, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
16
|
|