1
|
Kim JS, Ri US, Ri JS, Jo CM, Kim CJ, Yun UH, Ri Hyon-Gwang. Improvement of the recombinant phytase expression by intermittent feeding of glucose during the induction phase of methylotrophic yeast Pichia pastoris. Braz J Microbiol 2024; 55:2107-2117. [PMID: 38777992 PMCID: PMC11405571 DOI: 10.1007/s42770-024-01385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE For growth of methylotrophic yeast, glycerol is usually used as a carbon source. Glucose is used in some cases, but not widely consumed due to strong repressive effect on AOX1 promoter. However, glucose is still considered as a carbon source of choice since it has low production cost and guarantees growth rate comparable to glycerol. RESULTS In flask cultivation of the recombinant yeast, Pichia pastoris GS115(pPIC9K-appA38M), while methanol induction point(OD600) and methanol concentration significantly affected the phytase expression, glucose addition in induction phase could enhance phytase expression. The optimal flask cultivation conditions illustrated by Response Surface Methodology were 10.37 OD600 induction point, 2.02 h before methanol feeding, 1.16% methanol concentration and 40.36μL glucose feeding amount(for 20 mL culture volume) in which the expressed phytase activity was 613.4 ± 10.2U/mL, the highest activity in flask cultivation. In bioreactor fermentation, the intermittent glucose feeding showed several advantageous results such as 68 h longer activity increment, 149.2% higher cell density and 200.1% higher activity compared to the sole methanol feeding method. These results implied that remaining glucose at induction point might exhibit a positive effect on the phytase expression. CONCLUSION Glucose intermittent feeding could be exploited for economic phytase production and the other recombinant protein expression by P. pastoris GS115.
Collapse
Affiliation(s)
- Ju-Song Kim
- Advanced Technology Development Center, Bioindustry Research Institute, KIM IL SUNG University, Ryongnam Dong, Pyongyang, Democratic People's Republic of Korea
| | - Un-Song Ri
- Advanced Technology Development Center, Bioindustry Research Institute, KIM IL SUNG University, Ryongnam Dong, Pyongyang, Democratic People's Republic of Korea.
| | - Jong-Sim Ri
- Advanced Technology Development Center, Bioindustry Research Institute, KIM IL SUNG University, Ryongnam Dong, Pyongyang, Democratic People's Republic of Korea
| | - Chol-Man Jo
- Advanced Technology Development Center, Bioindustry Research Institute, KIM IL SUNG University, Ryongnam Dong, Pyongyang, Democratic People's Republic of Korea
| | - Chol-Jin Kim
- Advanced Technology Development Center, Bioindustry Research Institute, KIM IL SUNG University, Ryongnam Dong, Pyongyang, Democratic People's Republic of Korea
| | - Un-Hui Yun
- Advanced Technology Development Center, Bioindustry Research Institute, KIM IL SUNG University, Ryongnam Dong, Pyongyang, Democratic People's Republic of Korea
| | - Ri Hyon-Gwang
- Advanced Technology Development Center, Bioindustry Research Institute, KIM IL SUNG University, Ryongnam Dong, Pyongyang, Democratic People's Republic of Korea
| |
Collapse
|
2
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. J Fungi (Basel) 2020; 6:jof6040384. [PMID: 33371491 PMCID: PMC7767570 DOI: 10.3390/jof6040384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
Phytase is an enzyme that breaks down phytates to release phosphorus in an available form. This enzyme plays an important role in animals, especially monogastric animals. It serves to improve phytate digestion along with phosphorus absorption, which are required for optimal growth performance and health. In this study, five mushroom species (Amauroderma rugosum SDBR-CMU-A83, Ganoderma mastoporum SDBR-CMU-NK0244, Marusmius sp.1 SDBR-CMU-NK0215, Pholiota adiposa SDBR-CMU-R32 and Piptoporellus triqueter SDBR-CMU-P234) out of 27 mushroom species displayed positive phytase production by agar plate assay. Consequently, these five mushroom species were selected for determination of their potential ability to produce phytase under solid-state fermentation using five agricultural residues (coffee parchment, oil palm empty fruit bunches, rice bran, sawdust, and water hyacinth) as substrates. The highest yield of phytase production (17.02 ± 0.92 units/gram dry substrate) was obtained after one week of fermentation. Optimization for phytase production was determined by statistical approaches using a Plackett-Burman design to screen ten parameters of relevant substrate components. Two significant parameters, the amount of water hyacinth and the moisture content, were found to affect the production process of phytase. Furthermore, the optimal temperature, pH value, and fermentation period were evaluated. The results indicated that the highest degree of phytase production at 53.66 ± 1.68 units/gram dry substrate (3.15-fold increase) was obtained in water hyacinth containing 85% moisture content by addition with a suitable basal liquid medium at a pH value of 6.5 after being incubated at 30 °C for seven days. The crude phytase of P. adiposa was precipitated and the precipitated extract was then used to determine partial characterizations. The precipitated extract displayed high activities after exposure to conditions of 42 °C and pH 5.0. Furthermore, Fe2+ enhanced phytase activity and precipitated extract displayed the best stability at a pH value of 8.0 and a temperature of 4 °C.
Collapse
|
4
|
Jatuwong K, Suwannarach N, Kumla J, Penkhrue W, Kakumyan P, Lumyong S. Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Front Microbiol 2020; 11:188. [PMID: 32117182 PMCID: PMC7034034 DOI: 10.3389/fmicb.2020.00188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37-67°C, respectively. The crystal structure of phytase has been studied in Aspergillus. Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment.
Collapse
Affiliation(s)
- Kritsana Jatuwong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Ph.D. Degree Program in Applied Microbiology, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Watsana Penkhrue
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
5
|
Shanthi V, Roymon MG. Isolation, Identification and Partial Optimization of Novel Xylanolytic Bacterial Isolates from Bhilai-Durg Region, Chhattisgarh, India. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1333. [PMID: 31457021 PMCID: PMC6697829 DOI: 10.15171/ijb.1333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 11/22/2022]
Abstract
Background Plant biomass and agricultural waste products disposal is a serious problem in agriculture based countries. These wastes, usually rich in xylan can be satisfactorily converted to industrially important and useful products by efficient biotechnological application of potent xylanase producing bacteria which generally have high temperature and pH optima. Objective The aim was to isolate and identify xylanolytic bacterial isolates from Bhilai-Durg region of Chhattisgarh, India which was otherwise unexplored for isolation of thermoalkalophilic xylanase producing bacteria. Partial scale up of process development was performed. Materials and Methods Xyalanse producing bacteria were isolated from probable samples following three stages of screening procedures. The potent isolates were identified and various parameters affecting xylanase production were optimized using the conventional one-factor-at-a-time approach. Results Two potent indigenous bacterial isolates belonged to genus Bacillus and designated as Bacillus sp. MCC2728 and Bacillus sp. MCC2727 were isolated from forest soils with the ability to degrade xylan. Significant differences were observed in their morphology and phenotypic characters amongst themselves and with its closest type strains implying the novelty of the two isolates. After optimization, maximum xylanase levels were obtained at pH 9.0, 55 °C for Bacillus sp. MCC2728 and 50 °C for Bacillus sp. MCC2727, 5% inoculum, agitation speed (150 rpm). Yeast extract and peptone are best nitrogen sources and wheat bran, the best carbon source. The GenBank/EMBL/DDBJ accession numbers of strains Bacillus sp. MCC2728 and Bacillus sp. MCC2727 are KP742971 and KT444621 respectively. Wheat bran, Yeast extract and peptone proved to be the best carbon and nitrogen sources respectively and xylose as an additive was found to be contributing to maximize the xylanase yields. Conclusion Two potent thermoalkalophilic novel bacterial isolates were successfully isolated with xylan degrading ability which may be used as promising xylanase producing candidates for various industrial purposes using agricultural based waste residues.
Collapse
Affiliation(s)
- Vasamsetty Shanthi
- Department of Microbiology, St. Thomas College, Bhilai, Chhattisgarh, India
| | | |
Collapse
|
6
|
Pramanik K, Kundu S, Banerjee S, Ghosh PK, Maiti TK. Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases. 3 Biotech 2018; 8:262. [PMID: 29805952 PMCID: PMC5960462 DOI: 10.1007/s13205-018-1287-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that "DG-DP-LG" was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.
Collapse
Affiliation(s)
- Krishnendu Pramanik
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Shreyasi Kundu
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Sandipan Banerjee
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Pallab Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| |
Collapse
|
7
|
Greppi A, Krych Ł, Costantini A, Rantsiou K, Hounhouigan DJ, Arneborg N, Cocolin L, Jespersen L. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Int J Food Microbiol 2015; 205:81-9. [PMID: 25910031 DOI: 10.1016/j.ijfoodmicro.2015.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity.
Collapse
Affiliation(s)
- Anna Greppi
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy.
| | - Łukasz Krych
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Denmark
| | - Antonella Costantini
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy
| | - Kalliopi Rantsiou
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy
| | - D Joseph Hounhouigan
- Département de Nutrition et Sciences Alimentaires, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Benin
| | - Nils Arneborg
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Denmark
| | - Luca Cocolin
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy
| | - Lene Jespersen
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens. Appl Environ Microbiol 2013; 80:943-50. [PMID: 24271165 DOI: 10.1128/aem.03155-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.
Collapse
|
9
|
Kumar V, Singh G, Verma AK, Agrawal S. In silico characterization of histidine Acid phytase sequences. Enzyme Res 2012; 2012:845465. [PMID: 23304454 PMCID: PMC3523131 DOI: 10.1155/2012/845465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
Histidine acid phytases (HAPhy) are widely distributed enzymes among bacteria, fungi, plants, and some animal tissues. They have a significant role as an animal feed enzyme and in the solubilization of insoluble phosphates and minerals present in the form of phytic acid complex. A set of 50 reference protein sequences representing HAPhy were retrieved from NCBI protein database and characterized for various biochemical properties, multiple sequence alignment (MSA), homology search, phylogenetic analysis, motifs, and superfamily search. MSA using MEGA5 revealed the presence of conserved sequences at N-terminal "RHGXRXP" and C-terminal "HD." Phylogenetic tree analysis indicates the presence of three clusters representing different HAPhy, that is, PhyA, PhyB, and AppA. Analysis of 10 commonly distributed motifs in the sequences indicates the presence of signature sequence for each class. Motif 1 "SPFCDLFTHEEWIQYDYLQSLGKYYGYGAGNPLGPAQGIGF" was present in 38 protein sequences representing clusters 1 (PhyA) and 2 (PhyB). Cluster 3 (AppA) contains motif 9 "KKGCPQSGQVAIIADVDERTRKTGEAFAAGLAPDCAITVHTQADTSSPDP" as a signature sequence. All sequences belong to histidine acid phosphatase family as resulted from superfamily search. No conserved sequence representing 3- or 6-phytase could be identified using multiple sequence alignment. This in silico analysis might contribute in the classification and future genetic engineering of this most diverse class of phytase.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biochemistry, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India
- Akal School of Biotechnology, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Gopal Singh
- Department of Biochemistry, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - A. K. Verma
- Department of Biochemistry, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - Sanjeev Agrawal
- Department of Biochemistry, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| |
Collapse
|
10
|
Fathallh Eida M, Nagaoka T, Wasaki J, Kouno K. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts. Microbes Environ 2012; 28:71-80. [PMID: 23100024 PMCID: PMC4070677 DOI: 10.1264/jsme2.me12083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.
Collapse
|
11
|
|
12
|
Improving Phytase Enzyme Activity in a Recombinant phyA Mutant Phytase from Aspergillus niger N25 by Error-Prone PCR. Appl Biochem Biotechnol 2011; 166:549-62. [DOI: 10.1007/s12010-011-9447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/26/2011] [Indexed: 01/17/2023]
|
13
|
Differential Phytate Utilization in Candida species. Mycopathologia 2011; 172:473-9. [DOI: 10.1007/s11046-011-9453-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023]
|
14
|
Pandee P, Summpunn P, Wiyakrutta S, Isarangkul D, Meevootisom V. A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J Microbiol 2011; 49:257-64. [PMID: 21538247 DOI: 10.1007/s12275-011-0369-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/03/2010] [Indexed: 11/28/2022]
Abstract
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K (m) and V (max) for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe(2+), Fe(3+), and Al(3+). When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).
Collapse
Affiliation(s)
- Patcharaporn Pandee
- Department of Biotechnology, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
15
|
Nuobariene L, Hansen A, Jespersen L, Arneborg N. Phytase-active yeasts from grain-based food and beer. J Appl Microbiol 2011; 110:1370-80. [DOI: 10.1111/j.1365-2672.2011.04988.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
A novel thermostable phytase from the fungus Aspergillus aculeatus RCEF 4894: gene cloning and expression in Pichia pastoris. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0506-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Li R, Zhao J, Sun C, Lu W, Guo C, Xiao K. Biochemical properties, molecular characterizations, functions, and application perspectives of phytases. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11703-010-0103-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Rao D, Rao K, Reddy T, Reddy V. Molecular characterization, physicochemical properties, known and potential applications of phytases: An overview. Crit Rev Biotechnol 2009; 29:182-98. [DOI: 10.1080/07388550902919571] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
In MJ, Seo SW, Kim DC, Oh NS. Purification and biochemical properties of an extracellular acid phytase produced by the Saccharomyces cerevisiae CY strain. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Hill JE, Kysela D, Elimelech M. Isolation and assessment of phytate-hydrolysing bacteria from the DelMarVa Peninsula. Environ Microbiol 2007; 9:3100-7. [DOI: 10.1111/j.1462-2920.2007.01420.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Casey A, Walsh G. Identification and characterization of a phytase of potential commercial interest. J Biotechnol 2004; 110:313-22. [PMID: 15163521 DOI: 10.1016/j.jbiotec.2004.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 03/15/2004] [Accepted: 03/19/2004] [Indexed: 11/23/2022]
Abstract
Phytases catalyse the hydrolytic degradation of phytic acid and its salts and are added to monogastric animal feed to ameliorate the negative environmental and nutritional consequences of dietary phytate. Screening of 58 microbial strains identified a phytase produced by Rhizopus oligosporus ATCC 22959 that displayed physicochemical characteristics likely to render it of potential industrial interest. The 124 kDa enzyme was purified to homogeneity by anion exchange chromatography, gel filtration and chromatofocusing. The monomeric glycosylated enzyme (30.5% total carbohydrate) displayed maximum activity at 65 degrees C and pH 5.0. It displayed a Km of 10.4 microM, a Vmax of 1.32 nmols(-1) and a Kcat of 51 s(-1). It is acid tolerant, retaining full activity after incubation at pH 2.0 for 6h. HPLC analysis indicated the enzyme's ability to almost completely degrade phytate. Substrate specificity studies showed its ability to dephosphorylate several additional phosphorylated molecules. Activity was unaffected or moderately stimulated by a range of metal ions with only Ca2+ exerting a modest (13%) inhibitory effect. The enzyme is significantly more thermostable at 80 degrees C and retains a significantly greater proportion of maximal activity at physiological temperatures than do two commercial phytases tested for comparative purposes. This may render it of industrial interest.
Collapse
Affiliation(s)
- Anne Casey
- Industrial Biochemistry Program, Department of Chemical & Environmental Sciences, University of Limerick, Limerick City, Ireland
| | | |
Collapse
|
23
|
Konietzny U, Greiner R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 2002. [DOI: 10.1046/j.1365-2621.2002.00617.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
|