1
|
Serine protease inhibitor Kazal type 1 and epidermal growth factor receptor are expressed in pancreatic tubular adenocarcinoma, intraductal papillary mucinous neoplasm, and pancreatic intraepithelial neoplasia. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 20:620-7. [PMID: 23475261 DOI: 10.1007/s00534-012-0587-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Serine protease inhibitor Kazal type 1 (SPINK1) is expressed in normal human pancreatic acinar cells and in a variety of tumors, and binds to the epidermal growth factor receptor (EGFR), mediating cell proliferation through the mitogen-activated protein kinase cascade in pancreatic cancer cell lines. Here, we aimed to assess SPINK1 and EGFR expression in various neoplastic lesions, including tissues demonstrating precancerous changes. METHODS Surgical specimens of pancreatic ductal adenocarcinoma (n = 23), intraductal papillary mucinous neoplasm (IPMN;n = 21), pancreatic neoplasms other than ductal adenocarcinoma (n = 8), chronic pancreatitis (n = 11), and pancreatic intraepithelial neoplasia (PanIN) lesions within the resected specimens were analyzed immunohistochemically for SPINK1 and EGFR expression. RESULTS Sixty-five PanIN-1A, 32 PanIN-1B, 17 PanIN-2, and 6 PanIN-3 were identified. Both SPINK1 and EGFR were expressed in almost all PanIN lesions. All tubular ductal adenocarcinoma, IPMN, and mucinous cystadenocarcinoma samples (neoplasms of ductal origin) expressed SPINK1, whereas acinar cell carcinoma, anaplastic carcinoma, adenosquamous carcinoma, insulinoma, and islet cell carcinoma did not. EGFR was expressed in 87 % of tubular adenocarcinoma and 48 % of IPMN lesions. Among IPMN lesions, malignant lesions (IPMC) expressed EGFR more often than benign lesions (IPMA) did. Scattered expression of EGFR was observed in normal pancreatic ducts and within the tubular complex within chronic pancreatitis lesions. CONCLUSIONS These results indicate that SPINK1 plays a role as a growth factor, signaling through the EGFR pathway in pancreatic ductal adenocarcinoma and neoplasms, and that the EGFR is involved in the malignant transformation of IPMN.
Collapse
|
2
|
Fahmy K, Gonzalez A, Arafa M, Peixoto P, Bellahcène A, Turtoi A, Delvenne P, Thiry M, Castronovo V, Peulen O. Myoferlin plays a key role in VEGFA secretion and impacts tumor-associated angiogenesis in human pancreas cancer. Int J Cancer 2015; 138:652-63. [PMID: 26311411 DOI: 10.1002/ijc.29820] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 01/14/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the most deadly forms of cancers with no satisfactory treatment to date. Recent studies have identified myoferlin, a ferlin family member, in human pancreas adenocarcinoma where its expression was associated to a bad prognosis. However, the function of myoferlin in pancreas adenocarcinoma has not been reported. In other cell types, myoferlin is involved in several key plasma membrane processes such as fusion, repair, endocytosis and tyrosine kinase receptor activity. In this study, we showed that myoferlin silencing in BxPC-3 human pancreatic cancer cells resulted in the inhibition of cell proliferation in vitro and in a significant reduction of the tumor volume in chick chorioallantoic membrane assay. In addition to be smaller, the tumors formed by the myoferlin-silenced cells showed a marked absence of functional blood vessels. We further demonstrated that this effect was due, at least in part, to an inhibition of VEGFA secretion by BxPC-3 myoferlin-silenced cells. Using immunofluorescence and electron microscopy, we linked the decreased VEGFA secretion to an impairment of VEGFA exocytosis. The clinical relevance of our results was further strengthened by a significant correlation between myoferlin expression in a series of human pancreatic malignant lesions and their angiogenic status evaluated by the determination of the blood vessel density.
Collapse
Affiliation(s)
- Karim Fahmy
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Arnaud Gonzalez
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Mohammad Arafa
- Department of Pathology, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Paul Peixoto
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marc Thiry
- Laboratory of Cell Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|
3
|
Ling S, Feng T, Jia K, Tian Y, Li Y. Inflammation to cancer: The molecular biology in the pancreas (Review). Oncol Lett 2014; 7:1747-1754. [PMID: 24932227 PMCID: PMC4049733 DOI: 10.3892/ol.2014.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 03/11/2014] [Indexed: 02/07/2023] Open
Abstract
Inflammatory responses are known to be correlated with cancer initiation and progression, and exploration of the route from inflammation to cancer makes a great contribution in elucidating the mechanisms underlying cancer development. Pancreatic cancer (PC) is a lethal disease with a low radical-resection rate and a poor prognosis. As chronic pancreatitis is considered to be a significant etiological factor for PC development, the current review aims to describe the molecular pathways from inflammation to pancreatic carcinogenesis, in support of the strategies for the prevention, diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Sunbin Ling
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Tingting Feng
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Kaiqi Jia
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yu Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yan Li
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, Liaoning 116044, P.R. China ; College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
4
|
Wang B, Wang XB, Chen LY, Huang L, Dong RZ. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis. Biochem Biophys Res Commun 2013; 437:1-6. [PMID: 23743198 DOI: 10.1016/j.bbrc.2013.05.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.
Collapse
Affiliation(s)
- Bing Wang
- Department of Abdominal Surgical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | | | | | | | | |
Collapse
|
5
|
Awasthi N, Zhang C, Hinz S, Schwarz MA, Schwarz RE. Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:12. [PMID: 23497499 PMCID: PMC3618297 DOI: 10.1186/1756-9966-32-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/20/2013] [Indexed: 12/19/2022]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies and tends to be relatively resistant to conventional therapies. Activated Ras oncogene mutations are found in up to 90% of PDAC, leading to activation of the Ras/Raf/MEK/ERK signaling pathway. Sorafenib is a multikinase inhibitor of the Ras/Raf/MEK/ERK pathway and of tumor angiogenesis. Endothelial monocyte activating polypeptide II (EMAP) enhances gemcitabine effects in PDAC. Antitumor activity of sorafenib was evaluated in combination with gemcitabine (Gem) and the antiangiogenic agent EMAP in experimental PDAC. Methods Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. Animal survival studies were performed in murine PDAC xenografts. Results Sorafenib decreased phospho-MEK, phospho-ERK1/2, phospho-p70S6K and phospho-4EBP-1 expression in PDAC cells. Sorafenib inhibited in vitro proliferation of all four PDAC cell lines tested. Additive effects on cell proliferation inhibition were observed in the gemcitabine-sorafenib combination in PDAC cells, and in combinations of sorafenib or EMAP with gemcitabine in endothelial (HUVEC) and fibroblast (WI-38) cells. Sorafenib, alone or in combination with gemcitabine and EMAP, induced apoptosis in HUVECs and WI-38 cells as observed via increased expression of cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and caspase-3 proteins. Compared to controls (median survival: 22 days), animal survival increased after Gem therapy (29 days) but not in sorafenib (23 days) or EMAP therapy alone (25 days). Further increases in survival occurred in combination therapy groups Gem+sorafenib (30 days, p=0.004), Gem+EMAP (33 days, p=0.002), and Gem+sorafenib+EMAP (36 days, p=0.004), but not after the sorafenib+EMAP combination (24 days). Conclusions These findings demonstrate that the addition of a polymechanistic antiangiogenic agent such as EMAP can enhance the combination treatment effects of sorafenib and cytotoxic PDAC therapy.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
6
|
Awasthi N, Yen PL, Schwarz MA, Schwarz RE. The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to enhance chemotherapy and antiangiogenic response in pancreatic cancer. J Cell Biochem 2012; 113:784-91. [PMID: 22020918 DOI: 10.1002/jcb.23405] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gemcitabine has limited clinical benefits for pancreatic ductal adenocarcinoma (PDAC). The phosphatidylinositol-3-kinase (PI3K)/AKT and mammalian target of rapamycin (mTOR) signaling pathways are frequently dysregulated in PDAC. We investigated the effects of NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, in combination with gemcitabine and endothelial monocyte activating polypeptide II (EMAP) in experimental PDAC. Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. Animal survival experiments were performed in murine xenografts. BEZ235 caused a decrease in phospho-AKT and phospho-mTOR expression in PDAC (AsPC-1), endothelial (HUVECs), and fibroblast (WI-38) cells. BEZ235 inhibited in vitro proliferation of all four PDAC cell lines tested. Additive effects on proliferation inhibition were observed in the BEZ235-gemcitabine combination in PDAC cells and in combination of BEZ235 or EMAP with gemcitabine in HUVECs and WI-38 cells. BEZ235, alone or in combination with gemcitabine and EMAP, induced apoptosis in AsPC-1, HUVECs, and WI-38 cells as observed by increased expression of cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and caspase-3 proteins. Compared to controls (median survival: 16 days), animal survival increased after BEZ235 and EMAP therapy alone (both 21 days) and gemcitabine monotherapy (28 days). Further increases in survival occurred in combination therapy groups BEZ235 + gemcitabine (30 days, P = 0.007), BEZ235 + EMAP (27 days, P = 0.02), gemcitabine + EMAP (31 days, P = 0.001), and BEZ235 + gemcitabine + EMAP (33 days, P = 0.004). BEZ235 has experimental PDAC antitumor activity in vitro and in vivo that is further enhanced by combination of gemcitabine and EMAP. These findings demonstrate advantages of combination therapy strategies targeting multiple pathways in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
7
|
Subramaniam D, Periyasamy G, Ponnurangam S, Chakrabarti D, Sugumar A, Padigaru M, Weir SJ, Balakrishnan A, Sharma S, Anant S. CDK-4 inhibitor P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis. Mol Cancer Ther 2012; 11:1598-608. [PMID: 22532602 DOI: 10.1158/1535-7163.mct-12-0102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite advances in molecular pathogenesis, pancreatic cancer remains a major unsolved health problem. It is a rapidly invasive, metastatic tumor that is resistant to standard therapies. The phosphatidylinositol-3-kinase/Akt and mTOR signaling pathways are frequently dysregulated in pancreatic cancer. Gemcitabine is the mainstay treatment for metastatic pancreatic cancer. P276 is a novel CDK inhibitor that induces G(2)/M arrest and inhibits tumor growth in vivo models. Here, we determined that P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis, a mechanism-mediated through inhibition of Akt-mTOR signaling. In vitro, the combination of P276 and gemcitabine resulted in a dose- and time-dependent inhibition of proliferation and colony formation of pancreatic cancer cells but not with normal pancreatic ductal cells. This combination also induced apoptosis, as seen by activated caspase-3 and increased Bax/Bcl2 ratio. Gene profiling studies showed that this combination downregulated Akt-mTOR signaling pathway, which was confirmed by Western blot analyses. There was also a downregulation of VEGF and interleukin-8 expression suggesting effects on angiogenesis pathway. In vivo, intraperitoneal administration of the P276-Gem combination significantly suppressed the growth of pancreatic cancer tumor xenografts. There was a reduction in CD31-positive blood vessels and reduced VEGF expression, again suggesting an effect on angiogenesis. Taken together, these data suggest that P276-Gem combination is a novel potent therapeutic agent that can target the Akt-mTOR signaling pathway to inhibit both tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
9
|
IDA S, OHMURAYA M, HIROTA M, OZAKI N, HIRAMATSU S, UEHARA H, TAKAMORI H, ARAKI K, BABA H, YAMAMURA KI. Chronic Pancreatitis in Mice by Treatment with Choline-Deficient Ethionine-Supplemented Diet. Exp Anim 2010; 59:421-9. [DOI: 10.1538/expanim.59.421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Satoshi IDA
- Insitute of Resource Development and Analysis, Kumamoto University
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto University
| | - Masaki OHMURAYA
- Insitute of Resource Development and Analysis, Kumamoto University
- Priority Organization for Innovation and Excellence, Kumamoto University
| | | | - Nobuyuki OZAKI
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto University
| | - Sayaka HIRAMATSU
- Insitute of Resource Development and Analysis, Kumamoto University
| | - Hitoshi UEHARA
- Insitute of Resource Development and Analysis, Kumamoto University
| | - Hiroshi TAKAMORI
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto University
| | - Kimi ARAKI
- Insitute of Resource Development and Analysis, Kumamoto University
| | - Hideo BABA
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto University
| | | |
Collapse
|
10
|
Ozaki N, Ohmuraya M, Hirota M, Ida S, Wang J, Takamori H, Higashiyama S, Baba H, Yamamura KI. Serine protease inhibitor Kazal type 1 promotes proliferation of pancreatic cancer cells through the epidermal growth factor receptor. Mol Cancer Res 2009; 7:1572-81. [PMID: 19737965 DOI: 10.1158/1541-7786.mcr-08-0567] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serine protease inhibitor, Kazal type 1 (SPINK1) is expressed not only in normal human pancreatic acinar cells but also in a variety of pancreatic ductal neoplasms. There are structural similarities between SPINK1 and epidermal growth factor (EGF). Hence, we hypothesized that SPINK1 binds to EGF receptor (EGFR) to activate its downstream signaling. We first showed that SPINK1 induced proliferation of NIH 3T3 cells and pancreatic cancer cell lines. We showed that SPINK1 coprecipitated with EGFR in an immunoprecipitation experiment and that the binding affinity of SPINK1 to EGFR was about half of that of EGF using quartz-crystal microbalance (QCM) technique. As expected, EGFR and its downstream molecules, signal transducer and activator of transcription 3, v-Akt murine thymoma viral oncogene homologue, and extracellular signal-regulated kinase 1/2, were phosphorylated by SPINK1 as well as EGF. To determine which pathway is the most important for cell growth, we further analyzed the effect of inhibitors. Growth stimulation by EGF or SPINK1 was completely inhibited by EGFR and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor but not by Janus-activated kinase and phosphoinositide 3-kinase inhibitors. To further analyze the clinical importance of SPINK1 in the development of pancreatic cancer, we examined the expression of SPINK1 and EGFR in pancreatic tubular adenocarcinomas and pancreatic intraepithelial neoplasm. Both SPNK1 and EGFR were coexpressed not only in the early stage of cancer, PanIN-1A, but also in advanced stages. Taken together, these results suggest that SPINK1 stimulates the proliferation of pancreatic cancer cells through the EGFR/mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- Nobuyuki Ozaki
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Orlichenko L, Weller SG, Cao H, Krueger EW, Awoniyi M, Beznoussenko G, Buccione R, McNiven MA. Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol Biol Cell 2009; 20:4140-52. [PMID: 19641024 DOI: 10.1091/mbc.e08-10-1043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Remodeling of cell-cell contacts through the internalization of adherens junction proteins is an important event during both normal development and the process of tumor cell metastasis. Here we show that the integrity of tumor cell-cell contacts is disrupted after epidermal growth factor (EGF) stimulation through caveolae-mediated endocytosis of the adherens junction protein E-cadherin. Caveolin-1 and E-cadherin closely associated at cell borders and in internalized structures upon stimulation with EGF. Furthermore, preventing caveolae assembly through reduction of caveolin-1 protein or expression of a caveolin-1 tyrosine phospho-mutant resulted in the accumulation of E-cadherin at cell borders and the formation of tightly adherent cells. Most striking was the fact that exogenous expression of caveolin-1 in tumor cells that contain tight, well-defined, borders resulted in a dramatic dispersal of these cells. Together, these findings provide new insights into how cells might disassemble cell-cell contacts to help mediate the remodeling of adherens junctions, and tumor cell metastasis and invasion.
Collapse
Affiliation(s)
- Lidiya Orlichenko
- Mayo Clinic, Department of Biochemistry and Molecular Biology and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mayr U, Werder AV, Seidler B, Reindl W, Bajbouj M, Schmid RM, Schneider G, Saur D. RCAS-Mediated Retroviral Gene Delivery: A Versatile Tool for the Study of Gene Function in a Mouse Model of Pancreatic Cancer. Hum Gene Ther 2008; 19:896-906. [DOI: 10.1089/hum.2008.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Ulrich Mayr
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Alexander von Werder
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Barbara Seidler
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Wolfgang Reindl
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Monther Bajbouj
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Roland M. Schmid
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Günter Schneider
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
13
|
Ali S, Banerjee S, Ahmad A, El-Rayes BF, Philip PA, Sarkar FH. Apoptosis-inducing effect of erlotinib is potentiated by 3,3'-diindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. Mol Cancer Ther 2008; 7:1708-19. [PMID: 18566242 DOI: 10.1158/1535-7163.mct-08-0354] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockade of epidermal growth factor receptor (EGFR) by EGFR tyrosine kinase inhibitors is insufficient for effective antitumor activity because of independently activated survival pathways. A multitargeted approach may therefore improve the outcome of anti-EGFR therapies. In the present study, we determined the effects of 3,3'-diindolylmethane (Bioresponse BR-DIM referred to as B-DIM), a formulated DIM with greater bioavailability on cell viability and apoptosis with erlotinib in vitro and in vivo using an orthotopic animal tumor model. BxPC-3 and MIAPaCa cells with varying levels of EGFR and nuclear factor-kappaB (NF-kappaB) DNA-binding activity were treated with B-DIM (20 micromol/L), erlotinib (2 micromol/L), and the combination. Cell survival and apoptosis was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and histone-DNA ELISA. Electrophoretic mobility shift assay was used to evaluate NF-kappaB DNA-binding activity. We found significant reduction in cell viability by both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and clonogenic assays, induction of apoptosis, down-regulation of EGFR phosphorylation, NF-kappaB DNA-binding activity, and expression of antiapoptotic genes in BxPC-3 cells when treated with the combination of erlotinib and B-DIM compared with either agent alone. In contrast, no such effect was observed in MIAPaCa cells by similar treatment. Most importantly, these in vitro results were recapitulated in animal model showing that B-DIM in combination with erlotinib was much more effective as an antitumor agent compared with either agent alone. These results suggest that the utilization of B-DIM could be a useful strategy for achieving better treatment outcome in patients with activated status of EGFR and NF-kappaB in their tumors.
Collapse
Affiliation(s)
- Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
14
|
Shirk AJ, Kuver R. Epidermal growth factor mediates detachment from and invasion through collagen I and Matrigel in Capan-1 pancreatic cancer cells. BMC Gastroenterol 2005; 5:12. [PMID: 15801978 PMCID: PMC1079814 DOI: 10.1186/1471-230x-5-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 03/31/2005] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma is a highly invasive neoplasm. Epidermal growth factor (EGF) and its receptor are over expressed in pancreatic cancer, and expression correlates with invasion and metastasis. We hypothesized that EGF receptor and integrin signalling pathways interact in mediating cellular adhesion and invasion in pancreatic cancer, and that invasiveness correlates temporally with detachment from extracellular matrix. METHODS We tested this hypothesis by investigating the role of EGF in mediating adhesion to and invasion through collagen I and Matrigel in the metastatic pancreatic adenocarcinoma cell line Capan-1. Adhesion and invasion were measured using in vitro assays of fluorescently-labeled cells. Adhesion and invasion assays were also performed in the primary pancreatic adenocarcinoma cell line MIA PaCa-2. RESULTS EGF inhibited adhesion to collagen I and Matrigel in Capan-1 cells. The loss of adhesion was reversed by AG825, an inhibitor of erbB2 receptor signalling and by wortmannin, a PI3K inhibitor, but not by the protein synthesis inhibitor cycloheximide. EGF stimulated invasion through collagen I and Matrigel at concentrations and time courses similar to those mediating detachment from these extracellular matrix components. Adhesion to collagen I was different in MIA PaCa-2 cells, with no significant change elicited following EGF treatment, whereas treatment with the EGF family member heregulin-alpha elicited a marked increase in adhesion. Invasion through Matrigel in response to EGF, however, was similar to that observed in Capan-1 cells. CONCLUSION An inverse relationship exists between adhesion and invasion capabilities in Capan-1 cells but not in MIA PaCa-2 cells. EGF receptor signalling involving the erbB2 and PI3K pathways plays a role in mediating these events in Capan-1 cells.
Collapse
Affiliation(s)
- Andrew J Shirk
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, and the Puget Sound Veterans Administration Health Care System, Seattle Division, Seattle, Washington USA
| | - Rahul Kuver
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, and the Puget Sound Veterans Administration Health Care System, Seattle Division, Seattle, Washington USA
| |
Collapse
|
15
|
Kobari M, Kullenberg B, Björkman A, Matsuno S, Ihse I, Axelson J. The inhibitory effect of an EGF receptor-specific tyrosine kinase inhibitor on pancreatic cancer cell lines was more potent than inhibitory antibodies against the receptors for EGF and IGF I. INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1998; 24:85-95. [PMID: 9816541 DOI: 10.1007/bf02788565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONCLUSION Epidermal growth factor (EGF) increased the cell number of the two pancreatic cancer cell lines, MiaPaCa-2 and LN-36, in vitro. A blockade of the EGF-R tyrosine kinase with tyrphostin was more efficient in reducing the cell number than inhibiting receptor antibodies. IGF-1 increased the cell number, and blockade of the IGF-1-R initially decreased the cell number that later was followed by an increase in LN-36. BACKGROUND/AIM The receptors and ligands of EGF and insulin-like growth factor-1 (IGF-1) are overexpressed in pancreatic cancer tissue. The aim of the present experiments was to study the effects of EGF and IGF-1 on the cell number in two pancreatic cancer cell lines. MATERIAL AND METHODS MiaPaCa-2 cells were grown in 0.2% fetal calf serum (FCS) and the newly established LN-36 cells in serum-free medium (SFM). The cell number was measured with the XTT method. The effects of EGF and IGF-1 were studied in combination with inhibiting receptor antibodies and an EGF-R-specific tyrosine kinase inhibitor, tyrphostin B56. RESULTS MiaPaCa-2 responded with increased cell number to stimulation with EGF, and at 10(-8) M or higher concentrations a dose-response pattern was seen. Administration of B56 to MiaPaCa-2 decreased the cell number by 87%. The inhibiting EGF-R-Ab only inhibited EGF-induced increase in cell number. IGF-1 doubled the cell number of MiaPaCa-2 and increased the cell growth induced by EGF. The inhibiting IGF-1-R-Ab reduced the cell number by 10%. The LN-36 cell line responded to EGF with an increased cell number with a maximum at 5 x 10(-9) M after 96 h. B56 reduced the cell number by 90% at 10(-5) M, with less effect during stimulation with EGF. In contrast to B56, the inhibiting EGF-R-Ab in the same experiment did not reduce the cell number. LN-36 responded to IGF-1 with an increased cell number, but EGF-stimulated growth was not influenced. The inhibiting IGF-1-R-Ab reduced the cell number and suppressed the IGF-1 stimulated increase after 24 h and later it induced an increased cell number.
Collapse
Affiliation(s)
- M Kobari
- Department of Surgery, University Hospital, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Liu N, Furukawa T, Kobari M, Tsao MS. Comparative phenotypic studies of duct epithelial cell lines derived from normal human pancreas and pancreatic carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:263-9. [PMID: 9665487 PMCID: PMC1852927 DOI: 10.1016/s0002-9440(10)65567-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have investigated the mRNA/protein expression of several tyrosine kinase receptors, growth factors, and p16INK4A cyclin inhibitor in cell lines derived from normal human pancreatic duct epithelium (HPDE) and compared them with those of five pancreatic ductal carcinoma cell lines. Cultured HPDE cells express low levels of epidermal growth factor receptor (EGFR), erbB2, transforming growth factor (TGF)-alpha, Met/hepatocyte growth factor receptor (HGFR), vascular endothelial growth factor (VEGF), and keratinocyte growth factor (KGF). They also expressed high levels of amphiregulin but did not express EGF and cripto. The expression levels were similar in primary normal HPDE cells and those expressing transfected E6E7 genes of human papilloma virus-16, but their immortalization appeared to enhance the expression of EGFR and Met/HGFR. In comparison, pancreatic carcinoma cell lines commonly demonstrated overexpression of EGFR, erbB2, TGF-alpha, Met/HGFR, VEGF, and KGF, but they consistently showed marked down-regulation of amphiregulin mRNA expression. In contrast to all carcinoma cell lines that showed deletions of the p16 gene, HPDE cells consistently demonstrated normal p16 genotype and its mRNA expression. This is the first report that compares the phenotypic expression of cultured pancreatic ductal carcinoma cells with epithelial cell lines derived from normal human pancreatic ducts. The findings confirm that malignant transformation of human pancreatic duct cells commonly results in a deregulation of expression of various growth factors and receptors.
Collapse
Affiliation(s)
- N Liu
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, Toronto Hospital/Princess Margaret Hospital and University of Toronto, Canada
| | | | | | | |
Collapse
|