1
|
O'Brien MJ, Ansari A. Critical Involvement of TFIIB in Viral Pathogenesis. Front Mol Biosci 2021; 8:669044. [PMID: 33996913 PMCID: PMC8119876 DOI: 10.3389/fmolb.2021.669044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Viral infections and the harm they cause to their host are a perpetual threat to living organisms. Pathogenesis and subsequent spread of infection requires replication of the viral genome and expression of structural and non-structural proteins of the virus. Generally, viruses use transcription and translation machinery of the host cell to achieve this objective. The viral genome encodes transcriptional regulators that alter the expression of viral and host genes by manipulating initiation and termination steps of transcription. The regulation of the initiation step is often through interactions of viral factors with gene specific factors as well as general transcription factors (GTFs). Among the GTFs, TFIIB (Transcription Factor IIB) is a frequent target during viral pathogenesis. TFIIB is utilized by a plethora of viruses including human immunodeficiency virus, herpes simplex virus, vaccinia virus, Thogoto virus, hepatitis virus, Epstein-Barr virus and gammaherpesviruses to alter gene expression. A number of viral transcriptional regulators exhibit a direct interaction with host TFIIB in order to accomplish expression of their genes and to repress host transcription. Some viruses have evolved proteins with a three-dimensional structure very similar to TFIIB, demonstrating the importance of TFIIB for viral persistence. Upon viral infection, host transcription is selectively altered with viral transcription benefitting. The nature of viral utilization of TFIIB for expression of its own genes, along with selective repression of host antiviral genes and downregulation of general host transcription, makes TFIIB a potential candidate for antiviral therapies.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Doyle SL, Shirey KA, McGettrick AF, Kenny EF, Carpenter S, Caffrey BE, Gargan S, Quinn SR, Caamaño JH, Moynagh P, Vogel SN, O'Neill LA. Nuclear factor κB2 p52 protein has a role in antiviral immunity through IκB kinase epsilon-dependent induction of Sp1 protein and interleukin 15. J Biol Chem 2013; 288:25066-25075. [PMID: 23873932 DOI: 10.1074/jbc.m113.469122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we describe a previously unreported function for NFκB2, an NFκB family transcription factor, in antiviral immunity. NFκB2 is induced in response to poly(I:C), a mimic of viral dsRNA. Poly(I:C), acting via TLR3, induces p52-dependent transactivation of a reporter gene in a manner that requires the kinase activity of IκB kinase ε (IKKε) and the transactivating potential of RelA/p65. We identify a novel NFκB2 binding site in the promoter of the transcription factor Sp1 that is required for Sp1 gene transcription activated by poly(I:C). We show that Sp1 is required for IL-15 induction by both poly(I:C) and respiratory syncytial virus, a response that also requires NFκB2 and IKKε. Our study identifies NFκB2 as a target for IKKε in antiviral immunity and describes, for the first time, a role for NFκB2 in the regulation of gene expression in response to viral infection.
Collapse
Affiliation(s)
- Sarah L Doyle
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland,.
| | - Kari Ann Shirey
- the Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, Maryland 21201
| | - Anne F McGettrick
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Elaine F Kenny
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Susan Carpenter
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Brian E Caffrey
- the Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Siobhan Gargan
- the Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland, and
| | - Susan R Quinn
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Jorge H Caamaño
- the Institute for BioMedical Research-Medical Research Council (IBR-MRC) Centre for Immune Regulation, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul Moynagh
- the Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland, and
| | - Stefanie N Vogel
- the Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, Maryland 21201
| | - Luke A O'Neill
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J Virol 2010; 84:3528-41. [PMID: 20071566 DOI: 10.1128/jvi.02161-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, largely manifested as central nervous system (CNS) disorders. The principal site of manifestations in the mouse model is the fetal brain's neural progenitor cell (NPC)-rich subventricular zone. Our previous human NPC studies found these cells to be fully permissive for HCMV and a useful in vitro model system. In continuing work, we observed that under culture conditions favoring maintenance of multipotency, infection caused NPCs to quickly and abnormally differentiate. This phenotypic change required active viral transcription. Whole-genome expression analysis found rapid downregulation of genes that maintain multipotency and establish NPCs' neural identity. Quantitative PCR, Western blot, and immunofluorescence assays confirmed that the mRNA and protein levels of four hallmark NPC proteins (nestin, doublecortin, sex-determining homeobox 2, and glial fibrillary acidic protein) were decreased by HCMV infection. The decreases required active viral replication and were due, at least in part, to proteasomal degradation. Our results suggest that HCMV infection causes in utero CNS defects by inducing both premature and abnormal differentiation of NPCs.
Collapse
|