Schaffrinna T, Milman V, Winkler B. Pathway for a martensitic quartz-coesite transition.
Sci Rep 2024;
14:3760. [PMID:
38355665 PMCID:
PMC10866905 DOI:
10.1038/s41598-024-54088-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
An atomistic pathway for a strain-induced subsolidus martensitic transition between quartz and coesite was found by computing the set of the smallest atomic displacements required to transform a quartz structure into a coesite structure. A minimal transformation cell with 24 [Formula: see text] formula units is sufficient to describe the diffusionless martensitic transition from quartz to coesite. We identified two families of invariant shear planes during the martensitic transition, near the {10[Formula: see text]1} and {12[Formula: see text]2} set of planes, in agreement with the orientation of planar defect structures observed in quartz samples which experienced hypervelocity impacts. We calculated the reaction barrier using density functional theory and found that the barrier of 150 meV/atom is pressure invariant from ambient pressure up to 5 GPa, while the mean principal stress limiting the stability of strained quartz is [Formula: see text] 2 GPa. The model calculations quantitatively confirm that coesite can be formed in strained quartz at pressures significantly below the hydrostatic equilibrium transition pressure.
Collapse