1
|
Zhou Y, Zhang A, Fang C, Yuan L, Shao A, Xu Y, Zhou D. Oxidative stress in pituitary neuroendocrine tumors: Affecting the tumor microenvironment and becoming a new target for pituitary neuroendocrine tumor therapy. CNS Neurosci Ther 2023; 29:2744-2759. [PMID: 37341156 PMCID: PMC10493678 DOI: 10.1111/cns.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Pituitary adenomas (PAs), or pituitary neuroendocrine tumors (PitNETs), are commonly found in the anterior pituitary gland. Although the majority of PitNETs are benign and stable, several tumors have malignant characteristics. The tumor microenvironment (TME) plays an important role in the process of tumorigenesis and is composed of several types of cells. Various cells in the TME are significantly affected by oxidative stress. It has been reported that immunotherapeutic strategies have good effects in several cancers. However, the clinical potential of immunotherapies in PitNETs has not yet been fully discussed. Oxidative stress can regulate PitNET cells and immune cells in the TME, thus affecting the immune status of the TME of PitNETs. Therefore, modulation of oxidative stress-regulated immune cells using a combination of several agents and the immune system to suppress PitNETs is a promising therapeutic direction. In this review, we systematically analyzed the oxidative stress process within PitNET cells and various immune cells to elucidate the potential value of immunotherapy.
Collapse
Affiliation(s)
- Yuhang Zhou
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yuan
- School of Public Health, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Danyang Zhou
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
2
|
Abstract
Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence.
Collapse
|
3
|
Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland. PLoS One 2011; 6:e29402. [PMID: 22216273 PMCID: PMC3247256 DOI: 10.1371/journal.pone.0029402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway.
Collapse
|
4
|
Renner U, De Santana EC, Gerez J, Fröhlich B, Haedo M, Pereda MP, Onofri C, Stalla GK, Arzt E. Intrapituitary expression and regulation of the gp130 cytokine interleukin-6 and its implication in pituitary physiology and pathophysiology. Ann N Y Acad Sci 2009; 1153:89-97. [PMID: 19236332 DOI: 10.1111/j.1749-6632.2008.03970.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-6, a member of the gp130 cytokine family, is sometimes designated as an "endocrine" cytokine because of its strong regulatory influence on hormone production. Systemically acting IL-6 derived from immune cells is a potent stimulator of the hypothalamus-pituitary-adrenal axis and therefore plays an important role in modulating immune-neuroendocrine interactions during inflammatory or infectious processes. However, IL-6 is also produced within the anterior pituitary by so-called folliculostellate (FS) cells and is also synthesized in and released by tumor cells in pituitary adenomas. Growth factors (e.g., transforming growth factor-beta), neuropeptides (e.g., pituitary adenylate cyclase-activating polypeptide), or hormones (e.g., glucocorticoids) regulate IL-6 production both in FS and pituitary tumor cells. Interestingly, components of the innate immune system, such as toll-like receptor 4 and nucleotide-binding oligomerization domains (NODs), are expressed in FS and pituitary tumor cells. Therefore, cell-wall components of bacteria (lipopolysaccharide, muramyl dipeptide, diamino pimelic acid) stimulate IL-6 production in normal and tumoral pituitary. The intrinsic IL-6 production by FS cells in normal anterior pituitary may participate in immune-neuroendocrine interactions during inflammatory processes. In pituitary adenomas, IL-6 stimulates hormone secretion, tumor cell proliferation, and the production of angiogenic factors, such as vascular endothelial growth factor-A, suggesting an important role of IL-6 in the pathophysiology and progression of pituitary adenomas.
Collapse
Affiliation(s)
- Ulrich Renner
- Max Planck Institute of Psychiatry, Neuroendocrinology Group, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Folliculo-stellate cells (FS-cells) are star-shaped and follicle-forming cells in the anterior pituitary gland that were first identified by electron microscopy as non-endocrine agranular cells. Light microscopy has revealed many of their cytophysiological features and the FS-cell is known to be positive for S-100 protein, a marker for FS-cells. So far, functions ascribed to FS-cells include the formation of an extensive and complex tridimentional network, scavenger activity by engulfing degenerated cells, paracrine regulation of endocrine cells by producing various growth factors and cytokines, such as interleukin-6, leukemia inhibitory factor, basic fibroblastic growth factor, vascular endothelial cell growth factor and follistatin, and large-scale inter-cellular communication by means of their long cytoplasmic processes and gap junctions. Moreover, their multi-potential characteristics and other cytological features support the possibility of them becoming organ-specific stem cells. This concept is yet to be resolved, however. In this review, we focus on these features of FS-cells along with some futuristic approaches.
Collapse
Affiliation(s)
- S Devnath
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | |
Collapse
|
6
|
Hori S, Hayashi N, Fukuoka J, Kurimoto M, Hamada H, Miyajima K, Nagai S, Endo S. Folliculostellate cell tumor in pituitary gland. Neuropathology 2008; 29:78-80. [PMID: 18498288 DOI: 10.1111/j.1440-1789.2008.00921.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 33-year-old woman presented with visual field defects. Magnetic resonance imaging demonstrated a pituitary tumor with suprasellar extension. The tumor was partially removed by trans-sphenoidal surgery. Histologically, the tumor was composed of fascicles of spindle cells which were immunohistochemically positive for S-100 protein, Galectin-3, vimentin and EMA. Based on the morphology and immunostaining pattern, diagnosis of folliculostellate cell tumor in the pituitary gland was given.
Collapse
Affiliation(s)
- Satoshi Hori
- Department of Neurosurgery, Faculty of Medicine, University of Toyama, Toyama University Hospital, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yokoyama K, Mogi C, Miura K, Kuroda K, Inoue K. Somatotropes maintain their immature cells through Insulin-like growth factor I (IGF-I). Endocr Pathol 2007; 18:174-81. [PMID: 18058266 DOI: 10.1007/s12022-007-0016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A pituitary tumor is considered to be composed of a heterogeneous population of hormone-producing endocrine cells, folliculo-stellate (FS) cells, and potential hormone-inactive progenitor cells to maintain a microenvironment such as that in angiogenesis for tumor development cooperatively. However, the system that maintains such a heterogeneous cell population has not been clarified yet. In the present study, we examined the mechanism for maintaining a heterogeneous cell population using two rat cell lines, MtT/S and MtT/E cells, which are known growth hormone (GH)-producing cells, and their progenitor cells, respectively. We found that conditioned medium of MtT/S cells could stimulate the growth of MtT/E cells. In addition, GH and insulin-like growth factor I (IGF-I) stimulated the growth of MtT/E cells. The messenger RNAs (mRNAs) of receptors for IGF-I and GH were expressed in the MtT/E cells. Moreover, IGF-I receptor inhibitor AG1024 could abolish the growth stimulatory activity in the conditioned medium of MtT/S cells. Therefore, we concluded that somatotropes (MtT/S) maintain their progenitor cells (MtT/E) through the GH-IGF-I signaling and IGF-I directly, which might be involved in the maintenance of progenitors of GH-producing cells and might contribute to pituitary tumor development.
Collapse
Affiliation(s)
- Kotaro Yokoyama
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama, 338-8570, Japan
| | | | | | | | | |
Collapse
|
8
|
Giacomini D, Acuña M, Gerez J, Nagashima AC, Silberstein S, Páez-Pereda M, Labeur M, Theodoropoulou M, Renner U, Stalla GK, Arzt E. Pituitary action of cytokines: focus on BMP-4 and gp130 family. Neuroendocrinology 2007; 85:94-100. [PMID: 17337883 DOI: 10.1159/000100428] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/18/2007] [Indexed: 11/19/2022]
Abstract
The anterior pituitary can develop benign tumors of different sizes, classified as micro- and macroadenomas, frequently associated with high levels of hormone production, leading to different associated syndromes like Cushing's disease, acromegaly or prolactinomas. Much work has been done in order to understand the signaling pathways and the factors and hormones involved in the pituitary tumorigenic process. In recent years, much evidence has been collected and it is now well documented that cytokines of the gp130 family, such as interleukin-6, that use gp130 as a common signaling protein stimulate not only the proliferation but also the hormone secretion of pituitary cells. Experiments in vivo have shown that the overexpression of the gp130 receptor resulted in pituitary abnormal growth. Moreover, it has been recently described that bone morphogenetic protein-4 (BMP-4), a member of the TGF-beta family, has a stimulatory role on lactosomatotropic cells promoting the development of prolactinomas but it has an inhibitory action on the corticotropic lineage. This inhibitory action prevents Cushing's disease progression. Furthermore, BMP-4 mediates the antiproliferative action of retinoic acid in these cells. The present review highlights the most recent work about gp130 and TGF-beta cytokine families and their role in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Damiana Giacomini
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ooi GT, Tawadros N, Escalona RM. Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol 2004; 228:1-21. [PMID: 15541569 DOI: 10.1016/j.mce.2004.07.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
The pituitary gland is an important component of the endocrine system, and together with the hypothalamus, exerts considerable influence over the functions of other endocrine glands. The hypothalamus either positively or negatively regulates hormonal productions in the pituitary through its release of various trophic hormones which act on specific cell types in the pituitary to secrete a variety of pituitary hormones that are important for growth and development, metabolism, reproductive and nervous system functions. The pituitary is divided into three sections-the anterior lobe which constitute the majority of the pituitary mass and is composed primarily of five hormone-producing cell types (thyrotropes, lactotropes, corticotropes, somatotropes and gonadotropes) each secreting thyrotropin, prolactin, ACTH, growth hormone and gonadotropins (FSH and LH) respectively. There is also a sixth cell type in the anterior lobe-the non-endocrine, agranular, folliculostellate cells. The intermediate lobe produces melanocyte-stimulating hormone and endorphins, whereas the posterior lobe secretes anti-diuretic hormone (vasopressin) and oxytocin. Representative cell lines of all the six cell types of the anterior pituitary have been established and have provided valuable information on genealogy of the various cell lineages, endocrine feedback control of hormone synthesis and secretions, intrapituitary interactions between the various cell types, as well as the role of specific transcription factors that determine each differentiated cell phenotype. In this review, we will discuss the morphology and function of the cell types that make up the anterior pituitary, and the characteristics of the various functional anterior pituitary cell systems that have been established to be representative of each anterior pituitary cell lineage.
Collapse
Affiliation(s)
- Guck T Ooi
- Prince Henry's Institute of Medical Research, Monash Medical Centre, Block E, Level 4, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
10
|
Castro CP, Giacomini D, Nagashima AC, Onofri C, Graciarena M, Kobayashi K, Páez-Pereda M, Renner U, Stalla GK, Arzt E. Reduced expression of the cytokine transducer gp130 inhibits hormone secretion, cell growth, and tumor development of pituitary lactosomatotrophic GH3 cells. Endocrinology 2003; 144:693-700. [PMID: 12538632 DOI: 10.1210/en.2002-220891] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two of the most potent cytokines that regulate anterior pituitary cell function are leukemia inhibitory factor and IL-6. These and others like IL-11 and ciliary neurotrophic factor are referred to as the gp130 cytokines because they share the gp130 glycoprotein as a common receptor initial signal transducer. We and others have shown that gp130 cytokines and their receptors are expressed and functional in normal and tumoral anterior pituitary cells. To study the role of gp130 cytokines in tumorigenic process, we generated gp130 cDNA gp130 sense and gp130 antisense (gp130-AS) transfected stable clones derived from lactosomatotroph GH3 cells. We examined hormone secretion and cell proliferation of these clones as well as their tumorigenic properties in athymic nude mice. Although gp130-AS clones, which have low gp130 levels and impaired signal transducer and activator of transcription 3 activity and suppressor of cytokine signaling-3 expression, showed reduced proliferation and hormone secretion (GH and prolactin) in response to gp130 cytokines, they had a normal response to gp130-independent stimuli. Moreover, gp130-AS clones showed a severely impaired in vivo tumor development. In contrast, the overexpressing gp130 clones (gp130 sense) showed no differences, compared with cells transfected with control vector. Thus, the present study provides new evidence supporting a link between gp130 and pituitary abnormal growth.
Collapse
Affiliation(s)
- Carolina Perez Castro
- Departamento de Fisiología y Biología Molecular y Celular, Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Arzt E. gp130 cytokine signaling in the pituitary gland: a paradigm for cytokine–neuro-endocrine pathways. J Clin Invest 2001. [DOI: 10.1172/jci200114660] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Arzt E. gp130 cytokine signaling in the pituitary gland: a paradigm for cytokine-neuro-endocrine pathways. J Clin Invest 2001; 108:1729-33. [PMID: 11748253 PMCID: PMC209477 DOI: 10.1172/jci14660] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- E Arzt
- Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exacias y Naturales, Universidad de Buenos Aires and Argentine National Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Perez Castro C, Nagashima AC, Pereda MP, Goldberg V, Chervin A, Largen P, Renner U, Stalla GK, Arzt E. The gp130 cytokines interleukin-11 and ciliary neurotropic factor regulate through specific receptors the function and growth of lactosomatotropic and folliculostellate pituitary cell lines. Endocrinology 2000; 141:1746-53. [PMID: 10803585 DOI: 10.1210/endo.141.5.7442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two of the most potent cytokines regulating anterior pituitary cell function are leukemia inhibitory factor and interleukin-6 (IL-6), which belong to the cytokine receptor family using the common gp130 signal transducer. We studied the actions of two other members of this family, IL-11 and ciliary neurotropic factor (CNTF), on folliculostellate (FS) cells (TtT/GF cell line) and lactosomatotropic cells (GH3 cell line). The messenger RNA (mRNA) for the alpha-chain specific for the IL-11 receptor (1.7 kb) and CNTF receptor (2 kb) are expressed on both cell types. In addition, we detected CNTF receptor mRNA in normal rat anterior pituitary cells. IL-11 (1.25-5 nM) dose dependently stimulated the proliferation of FS cells. CNTF, at doses from 0.4-2 nM, also significantly stimulated the growth of these cells. In addition, both cytokines significantly stimulated proliferation of lactosomatotropic GH3 cells, and CNTF stimulated hormone production (GH and PRL) at 24 h by these cells. At 16-72 h, IL-11 stimulates the secretion of the angiogenic factor vascular endothelial growth factor by FS cells. In addition, both GH3 and FS cells express CNTF mRNA. These data suggest that IL-11 and CNTF may act as growth and regulatory factors in anterior pituitary cells.
Collapse
Affiliation(s)
- C Perez Castro
- Department de Biología, FCEN, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Inoue K, Couch EF, Takano K, Ogawa S. The structure and function of folliculo-stellate cells in the anterior pituitary gland. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:205-18. [PMID: 10495875 DOI: 10.1679/aohc.62.205] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The folliculo-stellate cells (FS cells) in the anterior pituitary gland are characterized by their star-like appearance and their ability to form follicles. Although FS cells do not produce any pituitary hormones, their special tendency to surrounding endocrine cells with their long cytoplasmic processes suggests that they regulate endocrine cells by intercellular communication. In spite of many morphological and cytophysiological studies recently performed, a precise understanding of the major functions of FS cells in the pituitary gland remains obscure. We review here the morphological characteristics of FS cells and their suspected functions in the anterior pituitary gland. It is well established that the FS cell produces many kinds of growth factors, i.e., fibroblast growth factor, vascular endothelial cell growth factor and interleukin 6. The biological significances of these growth factors in the anterior pituitary gland are also discussed in this paper. The origin and differentiation of FS cells, especially the possibility that the FS cell is a kind of stem cell which has the potential to differentiate into endocrine cells, is also presented.
Collapse
Affiliation(s)
- K Inoue
- Department of Regulation Biology, Faculty of Science, Saitama University, Urawa, Japan.
| | | | | | | |
Collapse
|
15
|
Arzt E, Pereda MP, Castro CP, Pagotto U, Renner U, Stalla GK. Pathophysiological role of the cytokine network in the anterior pituitary gland. Front Neuroendocrinol 1999; 20:71-95. [PMID: 9882537 DOI: 10.1006/frne.1998.0176] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence has demonstrated that cytokines and other growth factors act in the anterior pituitary gland. Using the traditional criteria employed to determine autocrine or paracrine functions our review shows that, in addition to their role as lymphocyte messengers, certain cytokines are autocrine or paracrine regulators of anterior pituitary function and growth. The cytokines known to regulate and/or be expressed in the anterior pituitary include the inflammatory cytokine family (IL-1 and its endogenous antagonist, IL-1ra; TNF-alpha, and IL-6), the Th1-cytokines (IL-2 and IFN-gamma), and other cytokines such as LIF, MIF, and TGF-beta. This review examines at the cellular, molecular, and physiological levels whether: (1) each cytokine alters some aspect of pituitary physiology; (2) receptors for the cytokine are expressed in the gland; and (3) the cytokine is produced in the anterior pituitary. Should physiological stimuli regulate pituitary cytokine production, this would constitute additional proof of their autocrine/paracrine role. In this context, we analyze in this review the current literature on the actions of cytokines known to regulate anterior pituitary hormone secretion, selecting the in vivo studies that support the direct action of the cytokine in the anterior pituitary. Further support for direct regulatory action is provided by in vitro studies, in explant cultures or pituitary cell lines. The cytokine receptors that have been demonstrated in the pituitary of several species are also discussed. The endogenous production of the homologous cytokines and the regulation of this expression are analyzed. The evidence indicating that cytokines also regulate the growth and proliferation of pituitary cells is reviewed. This action is particularly important since it suggests that intrinsically produced cytokines may play a role in the pathogenesis of pituitary adenomas. The complex cell to cell communication involved in the action of these factors is discussed.
Collapse
Affiliation(s)
- E Arzt
- Dept. de Biología, FCEN, Buenos Aires, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Renner U, Gloddek J, Pereda MP, Arzt E, Stalla GK. Regulation and role of intrapituitary IL-6 production by folliculostellate cells. Domest Anim Endocrinol 1998; 15:353-62. [PMID: 9785039 DOI: 10.1016/s0739-7240(98)00027-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Interleukin-6, mainly produced by monocytes and macrophages is known to influence the secretion of anterior pituitary hormones and is, therefore, considered to play an important role in the interaction between the immune system and the endocrine system. However, IL-6 represents not only a lymphocyte message but is also produced within the anterior pituitary. Folliculostellate (FS) cells have been identified as the source of the intrapituitary IL-6 production in the normal pituitary, whereas in pituitary adenomas IL-6 is produced by the tumor cells themselves. The present review summarizes the knowledge about the regulation of the intrapituitary IL-6 synthesis and release in FS cells. Moreover, the possible roles of the intrinsic IL-6 production for function and growth of normal and adenomatous endocrine pituitary cells are discussed.
Collapse
Affiliation(s)
- U Renner
- Max-Planck-Institute of Psychiatry, Department of Endocrinology, Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
Pereda MP, Goldberg V, Chervín A, Carrizo G, Molina A, Andrada J, Sauer J, Renner U, Stalla GK, Arzt E. Interleukin-2 (IL-2) and IL-6 regulate c-fos protooncogene expression in human pituitary adenoma explants. Mol Cell Endocrinol 1996; 124:33-42. [PMID: 9027322 DOI: 10.1016/s0303-7207(96)03924-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously shown that interleukin-2 (IL-2) and IL-6, which are expressed in the anterior pituitary, affect anterior pituitary cell proliferation in normal rats and cell lines. Here we examined their effects on the c-fos expression by human anterior pituitary adenomas. Adenoma cells in culture do not express c-fos mRNA. In adenoma explants, however, c-fos expression was detected and was regulated by IL-2 or IL-6. In different tumors (ACTH-, PRL-, GH-secreting and non functioning adenomas), these interleukins had inhibitory or stimulatory effects but the kind of response does not seem to be associated to tumor type or size. Using blocking antibodies, we observed that intrinsic IL-2 and IL-6 regulate c-fos expression in the same way. Our data suggest that IL-2 and IL-6 are not only involved in the regulation of pituitary adenoma function but may also, given the role of c-fos in cell proliferation, be implicated in the development of human pituitary adenomas.
Collapse
Affiliation(s)
- M P Pereda
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|