1
|
Kim MH, Kim MO, Heo JS, Kim JS, Han HJ. Acetylcholine inhibits long-term hypoxia-induced apoptosis by suppressing the oxidative stress-mediated MAPKs activation as well as regulation of Bcl-2, c-IAPs, and caspase-3 in mouse embryonic stem cells. Apoptosis 2008; 13:295-304. [PMID: 18049903 DOI: 10.1007/s10495-007-0160-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study examined the effect of acetylcholine (ACh) on the hypoxia-induced apoptosis of mouse embryonic stem (ES) cells. Hypoxia (60 h) decreased both the cell viability and level of [3H] thymidine incorporation, which were prevented by a pretreatment with ACh. However, the atropine (ACh receptor [AChR] inhibitor) treatment blocked the protective effect of ACh. Hypoxia (90 min) increased the intracellular level of reactive oxygen species (ROS). On the other hand, ACh inhibited the hypoxia-induced increase in ROS, which was blocked by an atropine treatment. Subsequently, the hypoxia-induced ROS increased the level of p38 mitogen activated protein kinase (MAPK) and Jun-N-terminal kinase (JNK) phosphorylation, which were inhibited by the ACh pretreatment. Moreover, hypoxic exposure (90 min) increased the level of nuclear factor-kappa B (NF-kappa B) phosphorylation, which was blocked by a pretreatment with SB 203580 (p38 MAPK inhibitor) or SP 600125 (JNK inhibitor). However, hypoxia (60 h) decreased the protein levels of Bcl-2 and c-IAPs (cellular inhibitor of apoptosis proteins) but increased the level of caspase-3 activation. All these effects were inhibited by a pretreatment with ACh. In conclusion, ACh prevented the hypoxia-induced apoptosis of mouse ES cells by inhibiting the ROS-mediated p38 MAPK and JNK activation as well as the regulation of Bcl-2, c-IAPs, and caspase-3.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Rehabilitation Science, Graduate school of Daegu University, Daegu 705-714, Korea
| | | | | | | | | |
Collapse
|
2
|
Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H. Structural roles of acetylcholinesterase variants in biology and pathology. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:672-86. [PMID: 10491113 DOI: 10.1046/j.1432-1327.1999.00693.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apart from its catalytic function in hydrolyzing acetylcholine, acetylcholinesterase (AChE) affects cell proliferation, differentiation and responses to various insults, including stress. These responses are at least in part specific to the three C-terminal variants of AChE which are produced by alternative splicing of the single ACHE gene. 'Synaptic' AChE-S constitutes the principal multimeric enzyme in brain and muscle; soluble, monomeric 'readthrough' AChE-R appears in embryonic and tumor cells and is induced under psychological, chemical and physical stress; and glypiated dimers of erythrocytic AChE-E associate with red blood cell membranes. We postulate that the homology of AChE to the cell adhesion proteins, gliotactin, glutactin and the neurexins, which have more established functions in nervous system development, is the basis of its morphogenic functions. Competition between AChE variants and their homologs on interactions with the corresponding protein partners would inevitably modify cellular signaling. This can explain why AChE-S exerts process extension from cultured amphibian, avian and mammalian glia and neurons in a manner that is C-terminus-dependent, refractory to several active site inhibitors and, in certain cases, redundant to the function of AChE-like proteins. Structural functions of AChE variants can explain their proliferative and developmental roles in blood, bone, retinal and neuronal cells. Moreover, the association of AChE excess with amyloid plaques in the degenerating human brain and with progressive cognitive and neuromotor deficiencies observed in AChE-transgenic animal models most likely reflects the combined contributions of catalytic and structural roles.
Collapse
Affiliation(s)
- D Grisaru
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University, Jerusalem, 91904 Israel
| | | | | | | | | |
Collapse
|
3
|
Sutherland D, McClellan JS, Milner D, Soong W, Axon N, Sanders M, Hester A, Kao YH, Poczatek T, Routt S, Pezzementi L. Two cholinesterase activities and genes are present in amphioxus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1997; 277:213-29. [PMID: 9062997 DOI: 10.1002/(sici)1097-010x(19970215)277:3<213::aid-jez3>3.0.co;2-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To obtain information about the evolution of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the vertebrates, we investigated the cholinesterase (ChE) activity of the cephalochordate amphioxus (Branchiostoma floridae and Branchiostoma lanceolatum). On the basis of evidence from enzymology, pharmacology, and molecular biology, we conclude that amphioxus possesses two ChE activities and two ChE genes. Two covalent inhibitors of cholinesterases were able to pharmacologically isolate the two activities as drug-sensitive ChE and drug-resistant ChE. Kinetically, in terms of substrate specificity, the drug-sensitive ChE resembles vertebrate AChE, and the drug-resistant ChE resembles the BuChE of cartilaginous and bony fish or the intermediate ChE of protostome invertebrates. We also used the polymerase chain reaction with degenerate oligonucleotide primers and genomic DNA to obtain clones of 1,574 and 1,011 bp corresponding to two cholinesterase genes from amphioxus, which we designated as ChE1 and ChE2. ChE2 codes for an enzyme with an acyl-binding pocket sequence, a portion of the protein that plays an important role in determining substrate specificity, typical of invertebrate ChE. ChE1, which contains a 503-bp intron, encodes a protein with a novel acyl binding site. Phylogenetic analysis of the sequences suggests that the two genes are a result of a duplication event in the lineage leading to amphioxus. We discuss the relevance of our results to the evolution of the cholinesterases in the chordates. Previously, we reported that amphioxus contained a single cholinesterase activity with properties intermediate to AChE and BuChE (Pezzementi et al. [1991] In: Cholinesterases: Structure, Function, Mechanism, Genetics and Cell Biology. J. Massoulié et al., eds. ACS: Washington, D.C., pp. 24-31).
Collapse
Affiliation(s)
- D Sutherland
- Division of Science and Mathematics, Birmingham-Southern College, Alabama 35254, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Buznikov GA, Shmukler YB, Lauder JM. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol 1996; 16:537-59. [PMID: 8956008 DOI: 10.1007/bf02152056] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. Classical neurotransmitters (such as acetylcholine, biogenic amines, and GABA) are functionally active throughout ontogenesis. 2. Based on accumulated evidence, reviewed herein, we present an hypothetical scheme describing developmental changes in this functional activity, from the stage of maturing oocytes through neuronal differentiation. This scheme reflects not only the spatio-temporal sequence of these changes, but also the genesis of neurotransmitter functions, from "protosynapses" in oocytes and cleaving embryos to the development of functional neuronal synapses. 3. Thus, it appears that neurotransmitters participate in various forms of intra- and intercellular signalling throughout all stages of ontogenesis.
Collapse
Affiliation(s)
- G A Buznikov
- N.N. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
5
|
Sanders M, Mathews B, Sutherland D, Soong W, Giles H, Pezzementi L. Biochemical and molecular characterization of acetylcholinesterase from the hagfish Myxine glutinosa. Comp Biochem Physiol B Biochem Mol Biol 1996; 115:97-109. [PMID: 8896335 DOI: 10.1016/0305-0491(96)00088-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To obtain information about the evolution of the cholinesterases, we investigated the cholinesterase activity of an agnathan vertebrate, the hagfish Myxine glutinosa. On the basis of evidence from enzymology, pharmacology, and molecular biology, we conclude that the cholinesterase activity is due to acetylcholinesterase (AChE). The enzyme hydrolyzes acetylthiocholine preferentially and exhibits substrate inhibition. The hydrolysis of both acetylthiocholine and butyrylthiocholine are inhibited in parallel by cholinesterase inhibitors, with the AChE-specific drug BW284c51 being the most potent; however, this drug and propidium, a peripheral anionic site ligand, are much weaker inhibitors of the hagfish enzyme than of Torpedo AChE. We used sequential extraction, collagenase digestion, and velocity sedimentation on sucrose gradients to determine that the AChE from the skeletal muscle of the hagfish is present in both globular and asymmetric forms. We also used the polymerase chain reaction with degenerate oligonucleotide probes and genomic DNA to obtain a 1 kb gene fragment for hagfish AChE. The enzyme has an acyl binding site typical of other vertebrate AChE, but lacks two aromatic residues implicated in the function of the peripheral anionic subsite. We discuss the relevance of our findings to the evolution of the cholinesterases in the vertebrates.
Collapse
Affiliation(s)
- M Sanders
- Division of Science and Mathematics, Birmingham-Southern College, AL 35254, USA
| | | | | | | | | | | |
Collapse
|
6
|
Schwarz M, Glick D, Loewenstein Y, Soreq H. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacol Ther 1995; 67:283-322. [PMID: 7494866 DOI: 10.1016/0163-7258(95)00019-d] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The acetylcholine hydrolyzing enzyme, acetylcholinesterase, primarily functions in nerve conduction, yet it appears in several guises, due to tissue-specific expression, alternative mRNA splicing and variable aggregation modes. The closely related enzyme, butyrylcholinesterase, most likely serves as a scavenger of toxins to protect acetylcholine binding proteins. One or both of the cholinesterases probably also plays a non-catalytic role(s) as a surface element on cells to direct intercellular interactions. The two enzymes are subject to inhibition by a wide variety of synthetic (e.g., organophosphorus and carbamate insecticides) and natural (e.g., glycoalkaloids) anticholinesterases that can compromise these functions. Butyrylcholinesterase may function, as well, to degrade several drugs of interest, notably aspirin, cocaine and cocaine-like local anesthetics. The widespread occurrence of butyrylcholinesterase mutants with modified activity further complicates this picture, in ways that are only now being dissected through the use of site-directed mutagenesis and heterologous expression of recombinant cholinesterases.
Collapse
Affiliation(s)
- M Schwarz
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
7
|
Loewenstein Y, Gnatt A, Neville LF, Zakut H, Soreq H. Structure-function relationship studies in human cholinesterases reveal genomic origins for individual variations in cholinergic drug responses. Prog Neuropsychopharmacol Biol Psychiatry 1993; 17:905-26. [PMID: 8278601 DOI: 10.1016/0278-5846(93)90019-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Due to their involvement in the termination of neurotransmission at cholinergic synapses and neuromuscular junctions, cholinesterases are the target proteins for numerous drugs of neuro-psychopharmacology importance. 2. In order to perform structure-function relationship studies on human cholinesterases with respect to such drugs, a set of expression vectors was engineered, all of which include cloned cDNA inserts encoding various forms of human acetyl- and butyrylcholinesterase. These vectors were designed to be transcribed in vitro into their corresponding mRNA products which, when microinjected into Xenopus oocytes, are efficiently translated to yield their catalytically active enzymes, each with its distinct substrate specificity and sensitivity to selective inhibitors. 3. A fully automated microtiter plate assay for evaluating the inhibition of said enzymes by tested cholinergic drugs and/or poisons has been developed, in conjunction with computerized data analysis, which offers prediction of such inhibition data on the authentic human enzymes and their natural or mutagenized variants. 4. Thus, it was found that asp70-->gly substitution renders butyrylcholinesterase succinylcholine insensitive and resistant to oxime reactivation while ser 425-->Pro with gly70 gives rise to the "atypical" butyrylcholinesterase phenotype, abolishing dibucaine binding. 5. Furthermore, differences in cholinesterase affinities to physostigmine, ecothiophate and bambuterol were shown in these natural variants. 6. Definition of key residues important for drug interactions may initiate rational design of more specific cholinesterase inhibitors, with fewer side effects. This, in turn, offers therapeutic potential in the treatment of clinical syndromes such as Alzheimer's and Parkinson's disease, glaucoma and myasthenia gravis.
Collapse
Affiliation(s)
- Y Loewenstein
- Dept. of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
8
|
Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol 1993; 41:31-91. [PMID: 8321908 DOI: 10.1016/0301-0082(93)90040-y] [Citation(s) in RCA: 836] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Ben Aziz-Aloya R, Sternfeld M, Soreq H. Promoter elements and alternative splicing in the human ACHE gene. PROGRESS IN BRAIN RESEARCH 1993; 98:147-53. [PMID: 8248502 DOI: 10.1016/s0079-6123(08)62392-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R Ben Aziz-Aloya
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
10
|
Abstract
The current status of the pharmacology of central cholinergic transmission is reviewed. Particular attention is paid to the compounds that have been or are potential candidates as therapeutic agents for the treatment of mental disorders, particularly senile dementia. Compounds affecting acetylcholine synthesis, storage and release, affecting the enzyme acetylcholinesterase, acting on nicotinic cholinergic receptors, as well as compounds acting on muscarinic cholinergic receptors are reviewed. It is concluded that the most promising approaches for the development of new therapeutic agents might be specific acetylcholinesterase inhibitors and compounds with specific action at only one of the muscarinic cholinergic receptor subtypes.
Collapse
Affiliation(s)
- J M Palacios
- Preclinical Research, Sandoz Pharma Ltd., Basle, Switzerland
| | | | | |
Collapse
|
11
|
Neville LF, Gnatt A, Loewenstein Y, Soreq H. Aspartate-70 to glycine substitution confers resistance to naturally occurring and synthetic anionic-site ligands on in-ovo produced human butyrylcholinesterase. J Neurosci Res 1990; 27:452-60. [PMID: 2079709 DOI: 10.1002/jnr.490270404] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The "atypical" allelic variant of human butyrylcholinesterase (BuChE) can be characterized by its failure to bind the local anesthetic dibucaine, the muscle relaxant succinylcholine, and the naturally occurring steroidal alkaloid solanidine, all assumed to bind to the charged anionic site component within the normal BuChE enzyme. A single nucleotide substitution conferring a change of aspartate-70 into glycine was recently reported in the CHE gene encoding BuChE from several individuals having the "atypical" BuChE phenotype, whereas in two other DNA samples, this mutation appeared together with a second alteration conferring a change of serine-425 into proline. To separately assess the contribution of each of these mutations toward anionic site interactions in BuChE, three transcription constructs were engineered with each of these substitutions alone or both of them together. Xenopus oocyte microinjection of normal or mutated synthetic BuChEmRNA transcripts was employed in conjunction with biochemical analyzes of the resultant recombinant BuChE variants. The presence of the Gly-70 mutation alone was found to render the enzyme resistant to 100 microM solanidine and 5 mM succinylcholine; concentrations sufficient to inhibit the "normal," Asp-70 containing BuChE by over 50%. Furthermore, when completely inhibited by the organophosphorous poison diisopropylfluorophosphate (DFP), Gly-70 BuChE failed to be reactivated by 10 mM of the cholinesterase-specific oxime pyridine 2-aldoxime methiodide (2-PAM); a concentration restoring about 50% of activity in the "normal" Asp-70 recombinant enzyme. The Pro-425 mutation alone had no apparent influence on BuChE interactions with any of these ligands. However, it conferred synergistic effects on some of the anionic site changes induced by the Gly-70 mutation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L F Neville
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
12
|
Seidman S, Soreq H. Coinjection of Xenopus oocytes with cDNA-produced and native mRNAs: a molecular biological approach to the tissue-specific processing of human cholinesterases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1990; 32:107-39. [PMID: 2079403 DOI: 10.1016/s0074-7742(08)60581-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S Seidman
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
13
|
Soreq H, Zakut H. Expression and in vivo amplification of the human acetylcholinesterase and butyrylcholinesterase genes. PROGRESS IN BRAIN RESEARCH 1990; 84:51-61. [PMID: 2267318 DOI: 10.1016/s0079-6123(08)60888-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- H Soreq
- Department of Biological Chemistry, The Life Sciences Institute, Hebrew University, Jerusalem, Israel
| | | |
Collapse
|