1
|
Garrido MP, Hernandez A, Vega M, Araya E, Romero C. Conventional and new proposals of GnRH therapy for ovarian, breast, and prostatic cancers. Front Endocrinol (Lausanne) 2023; 14:1143261. [PMID: 37056674 PMCID: PMC10086188 DOI: 10.3389/fendo.2023.1143261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
For many years, luteinizing hormone-releasing hormone or gonadotropin-releasing hormone (GnRH) analogs have been used to treat androgen or estrogen-dependent tumors. However, emerging evidence shows that the GnRH receptor (GnRH-R) is overexpressed in several cancer cells, including ovarian, endometrial, and prostate cancer cells, suggesting that GnRH analogs could exert direct antitumoral actions in tumoral tissues that express GnRH-R. Another recent approach based on this knowledge was the use of GnRH peptides for developing specific targeted therapies, improving the delivery and accumulation of drugs in tumoral cells, and decreasing most side effects of current treatments. In this review, we discuss the conventional uses of GnRH analogs, together with the recent advances in GnRH-based drug delivery for ovarian, breast, and prostatic cancer cells.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Hernandez
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Chronic Pancreatitis in Females is Not Associated With Adverse Pregnancy Outcomes: A Retrospective Analysis. J Clin Gastroenterol 2022; 57:531-536. [PMID: 35470319 DOI: 10.1097/mcg.0000000000001711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/18/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND The effects of chronic pancreatitis (CP) on pregnancy and vice versa have not been studied well. We aimed to study the impact of CP on pregnancy-related outcomes and the effect of pregnancy on clinical profile of CP. STUDY AND GOALS We did a retrospective analysis of all female patients of CP of child-bearing age (above 18 y). The pregnancy-related outcomes of patients with CP were compared with the age-matched 115 controls from the low-risk pregnancy group identified using a simplified antepartum high-risk pregnancy scoring form. The clinical course of CP during pregnancy was compared with the pre-pregnancy course. RESULTS Among the 338 eligible patients, 46 patients were included after exclusions. All these 46 patients had at least 1 conception and 41 had at least 1 completed pregnancy with a total of 117 conceptions and 96 completed pregnancies. The pregnancy-related outcomes in patients with CP like abortions (21.7% vs. 11.3%;P=0.087), preterm deliveries (14.6% vs. 10.4%;P=0.47), antepartum course (82.7% vs. 82.6%;P=0.58), stillbirths (4.9% vs. 4.3%;P=0.88), cesarean section (36.6% vs. 34%;P=0.849) were comparable with controls. There was overall improvement in the severity and frequency of pain during pregnancy as compared with the pre-pregnancy symptoms (P=0.001). CONCLUSION CP is not associated with adverse pregnancy outcomes. Also, there is trend toward improvement in the clinical symptoms because of CP during the pregnancy.
Collapse
|
3
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Ranđelović I, Schuster S, Kapuvári B, Fossati G, Steinkühler C, Mező G, Tóvári J. Improved In Vivo Anti-Tumor and Anti-Metastatic Effect of GnRH-III-Daunorubicin Analogs on Colorectal and Breast Carcinoma Bearing Mice. Int J Mol Sci 2019; 20:E4763. [PMID: 31557968 PMCID: PMC6801585 DOI: 10.3390/ijms20194763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety for drug delivery systems. The anti-tumor activity of the previously developed GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] conjugate and the novel synthesized GnRH-III-[2ΔHis,3d-Tic,4Lys(Bu),8Lys(Dau=Aoa)] conjugate, containing the anti-cancer drug daunorubicin, were evaluated. Here, we demonstrate that both GnRH-III-Dau conjugates possess an efficient growth inhibitory effect on more than 20 cancer cell lines, whereby the biological activity is strongly connected to the expression of gonadotropin-releasing hormone receptors (GnRH-R). The novel conjugate showed a higher in vitro anti-proliferative activity and a higher uptake capacity. Moreover, the treatment with GnRH-III-Dau conjugates cause a significant in vivo tumor growth and metastases inhibitory effect in three different orthotopic models, including 4T1 mice and MDA-MB-231 human breast carcinoma, as well as HT-29 human colorectal cancer bearing BALB/s and SCID mice, while toxic side-effects were substantially reduced in comparison to the treatment with the free drug. These findings illustrate that our novel lead compound is a highly promising candidate for targeted tumor therapy in both colon cancer and metastatic breast cancer.
Collapse
Affiliation(s)
- Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Bence Kapuvári
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco SpA, 20092 Cinisello Balsamo (Milan), Italy.
| | | | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| |
Collapse
|
5
|
Roy J, Kaake M, Low PS. Small molecule targeted NIR dye conjugate for imaging LHRH receptor positive cancers. Oncotarget 2019; 10:152-160. [PMID: 30719210 PMCID: PMC6349437 DOI: 10.18632/oncotarget.26520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
Overexpression of Luteinizing Hormone Releasing Hormone Receptor (LHRH-R) in various cancers and restricted expression of the receptor in healthy cells qualifies it as a valuable cancer biomarker. Previously, LHRH-R targeted peptides have been utilized to deliver attached payloads to LHRH-R expressing cancers. We report here for the first time the utilization of a small molecule non-peptidic ligand (BOEPL) of LHRH-R to deliver attached payloads to LHRH-R positive tumors. For this purpose, we linked the BOEPL ligand to a near infrared dye via various linkers. In vitro, these conjugates demonstrated low nanomolar binding affinity and in vivo they exhibited receptor-mediated uptake specifically in tumor tissue. Moreover, tumor uptake could be blocked by administration of excess unlabeled conjugate, and time course experiments showed retention of the dye conjugate in the tumor up to 12 h post injection. Because uptake of BOEPL-targeted NIR dye conjugates by nonmalignant organs/tissues was negligible and since the transient presence of targeted NIR dye in the kidneys was a result of clearance mechanism, we suggest that a BOEPL-targeted NIR dye might constitute a useful agent for fluorescence-guided surgery of LHRH-R positive cancers. Moreover, our results also provide proof of concept that BOEPL can be successfully used to deliver attached payloads to LHRH-R positive tumors in vivo.
Collapse
Affiliation(s)
- Jyoti Roy
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Miranda Kaake
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Philip S Low
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Popovics P, Schally AV, Szalontay L, Block NL, Rick FG. Targeted cytotoxic analog of luteinizing hormone-releasing hormone (LHRH), AEZS-108 (AN-152), inhibits the growth of DU-145 human castration-resistant prostate cancer in vivo and in vitro through elevating p21 and ROS levels. Oncotarget 2015; 5:4567-78. [PMID: 24994120 PMCID: PMC4147346 DOI: 10.18632/oncotarget.2146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Management of castration-resistant prostate cancer (CRPC) is challenging due to lack of efficacious therapy. Luteinizing hormone-releasing hormone (LHRH) analogs appear to act directly on cells based on the LHRH receptors on human prostate adenocarcinoma cells. We explored anticancer activity of a cytotoxic analog of LHRH, AEZS-108, consisting of LHRH agonist linked to doxorubicin. Nude mice bearing DU-145 tumors were used to compare antitumor effects of AEZS-108 with its individual constituents or their unconjugated combination. The tumor growth inhibition of conjugate was greatest among treatment groups (90.5% inhibition vs. 41% by [D-Lys(6)]LHRH+DOX). The presence of LHRH receptors on DU-145 cells was confirmed by immunocytochemistry. In vitro, AEZS-108 significantly inhibited cell proliferation (61.2% inhibition) and elevated apoptosis rates (by 46%). By the detection of the inherent doxorubicin fluorescence, unconjugated doxorubicin was seen in the nucleus; the conjugate was perinuclear and at cell membrane. Autophagy, visualized by GFP-tagged p62 reporter, was increased by AEZS-108 (7.9-fold vs. 5.3-fold by DOX+[D-Lys(6)]LHRH. AEZS-108 more effectively increased reactive oxygen species (ROS, 2-fold vs. 1.4-fold by DOX+[D-Lys(6)]LHRH) and levels of the apoptotic regulator p21 in vivo and in vitro. We demonstrate robust inhibitory effects of the targeted cytotoxic LHRH analog, AEZS-108, on LHRHR positive castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Cardiovascular Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL; Department of Medicine III, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Andrew V Schally
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL; Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL; Endocrinology University of Miami, Miller School of Medicine, Miami, FL
| | - Luca Szalontay
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL
| | - Norman L Block
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL; Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL
| | - Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| |
Collapse
|
7
|
Liu SV, Tsao-Wei DD, Xiong S, Groshen S, Dorff TB, Quinn DI, Tai YC, Engel J, Hawes D, Schally AV, Pinski JK. Phase I, dose-escalation study of the targeted cytotoxic LHRH analog AEZS-108 in patients with castration- and taxane-resistant prostate cancer. Clin Cancer Res 2014; 20:6277-83. [PMID: 25278449 DOI: 10.1158/1078-0432.ccr-14-0489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE AEZS-108, formerly AN-152, is a cytotoxic hybrid molecule consisting of a luteinizing hormone-releasing hormone (LHRH) agonist moiety covalently coupled to doxorubicin, allowing it to deliver doxorubicin selectively to cells expressing LHRH receptors. LHRH receptors are expressed on the cell membrane of many tumors, including prostate cancer. This phase I study determined the maximum tolerated dose (MTD) of AEZS-108 in men with taxane- and castration-resistant prostate cancer (CRPC) while providing additional information on the safety profile and efficacy of this agent. EXPERIMENTAL DESIGN AEZS-108 was administered as an intravenous infusion every 21 days until progression or unacceptable toxicity in cohorts of 3 or 6 patients until the MTD was reached. Blood was collected for capture of circulating tumor cells (CTC) to visualize internalization of AEZS-108, an autofluorescent molecule. RESULTS The MTD of AEZS-108 in this cohort was 210 mg/m(2), which was lower than that seen in a phase I study conducted in women with endometrial or ovarian cancers. The dose-limiting toxicity was persistent neutropenia. Three patients had a PSA response with an additional 10 patients maintaining PSA stable disease. Of the 10 patients evaluable by RECIST criteria, 9 achieved stable disease. AEZS-108 internalization in CTCs was routinely visualized using its autofluorescence. CONCLUSION These findings show that AEZS-108 has an acceptable safety profile and a signal of efficacy, lowering PSA in heavily pretreated patients with prostate cancer, and that internalization of AEZS-108 in prostate cancer CTCs may be a viable pharmacodynamic marker. A phase II study in men with prostate cancer is ongoing.
Collapse
Affiliation(s)
- Stephen V Liu
- Department of Medicine, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Denice D Tsao-Wei
- Department of Preventive Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Shigang Xiong
- Department of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Susan Groshen
- Department of Preventive Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Tanya B Dorff
- Department of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - David I Quinn
- Department of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Yu-Chong Tai
- California Institute of Technology, Pasadena, California
| | | | - Debra Hawes
- Department of Pathology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Andrew V Schally
- VA Medical Center and University of Miami Miller School of Medicine, Departments of Pathology and Medicine, Division of Hematology and Oncology and Endocrinology, Miami, Florida
| | - Jacek K Pinski
- Department of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
8
|
Jia P, Zhao Y, Wu S, Wu J, Gao S, Tong Y, Wang Y. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect. PLoS One 2013; 8:e79384. [PMID: 24223939 PMCID: PMC3817058 DOI: 10.1371/journal.pone.0079384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH), as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R), was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.
Collapse
Affiliation(s)
- Peiyuan Jia
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shaoping Wu
- Beijing Center of Disease Prevention and Control, Beijing, China
| | - Junhua Wu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shan Gao
- Beijing Center of Disease Prevention and Control, Beijing, China
| | - Ying Tong
- Beijing Center of Disease Prevention and Control, Beijing, China
| | - Yuxia Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Limonta P, Montagnani Marelli M, Mai S, Motta M, Martini L, Moretti RM. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev 2012; 33:784-811. [PMID: 22778172 DOI: 10.1210/er.2012-1014] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crucial role of pituitary GnRH receptors (GnRH-R) in the control of reproductive functions is well established. These receptors are the target of GnRH agonists (through receptor desensitization) and antagonists (through receptor blockade) for the treatment of steroid-dependent pathologies, including hormone-dependent tumors. It has also become increasingly clear that GnRH-R are expressed in cancer tissues, either related (i.e. prostate, breast, endometrial, and ovarian cancers) or unrelated (i.e. melanoma, glioblastoma, lung, and pancreatic cancers) to the reproductive system. In hormone-related tumors, GnRH-R appear to be expressed even when the tumor has escaped steroid dependence (such as castration-resistant prostate cancer). These receptors are coupled to a G(αi)-mediated intracellular signaling pathway. Activation of tumor GnRH-R by means of GnRH agonists elicits a strong antiproliferative, antimetastatic, and antiangiogenic (more recently demonstrated) activity. Interestingly, GnRH antagonists have also been shown to elicit a direct antitumor effect; thus, these compounds behave as antagonists of GnRH-R at the pituitary level and as agonists of the same receptors expressed in tumors. According to the ligand-induced selective-signaling theory, GnRH-R might assume various conformations, endowed with different activities for GnRH analogs and with different intracellular signaling pathways, according to the cell context. Based on these consistent experimental observations, tumor GnRH-R are now considered a very interesting candidate for novel molecular, GnRH analog-based, targeted strategies for the treatment of tumors expressing these receptors. These agents include GnRH agonists and antagonists, GnRH analog-based cytotoxic (i.e. doxorubicin) or nutraceutic (i.e. curcumin) hybrids, and GnRH-R-targeted nanoparticles delivering anticancer compounds.
Collapse
Affiliation(s)
- Patrizia Limonta
- Section of Biomedicine and Endocrinology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Matsui S, Yasui T, Tani A, Kunimi K, Uemura H, Yamamoto S, Kuwahara A, Matsuzaki T, Tsuchiya N, Yuzurihara M, Kase Y, Irahara M. Changes in insulin sensitivity during GnRH agonist treatment in premenopausal women with leiomyoma. Clin Chim Acta 2012; 413:960-5. [DOI: 10.1016/j.cca.2012.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/05/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
11
|
Liu SV, Liu S, Pinski J. Luteinizing hormone-releasing hormone receptor targeted agents for prostate cancer. Expert Opin Investig Drugs 2011; 20:769-78. [DOI: 10.1517/13543784.2011.574611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Liu SV, Schally AV, Hawes D, Xiong S, Fazli L, Gleave M, Cai J, Groshen S, Brands F, Engel J, Pinski J. Expression of Receptors for Luteinizing Hormone-Releasing Hormone (LH-RH) in Prostate Cancers following Therapy with LH-RH Agonists. Clin Cancer Res 2010; 16:4675-80. [DOI: 10.1158/1078-0432.ccr-10-1113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wang L, Cao H, Jiang N, Zhang N, Zhang J, Hou R, Chen C, Wang Y, Li X, Li D, Ji Q. Differential expression of gonadotropin-releasing hormone (GnRH) in pancreas during rat pregnancy. Endocrine 2009; 36:538-45. [PMID: 19856133 DOI: 10.1007/s12020-009-9264-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
Abstract
Many studies have shown that there is a relationship between gonadotropin-releasing hormone (GnRH) and glucose metabolism, but little is known about the effects of GnRH on the pancreas. Our experiment investigated the effect of GnRH on pancreatic islet cell in Sprague-Dawley (SD) rats fed with high-cholesterol diet before and during pregnancy. We found that although high-cholesterol diet led to no significant difference of GnRH mRNA levels in pancreas in nonpregnant rats, it led to a marked increase of those in pregnant rats. Furthermore, in rats fed with standard laboratory chow, no significant differences were apparent in GnRH mRNA levels before and during gestation; however, when fed with high-cholesterol diet, the GnRH mRNA levels increased significantly in pregnant rats. As results indicated both diets could lead to increase of PG mRNA in pancreas of pregnant rats. It is also demonstrated that the GnRH mRNA levels are positively associated with PG mRNA levels. Moreover, our data showed a significant increase in fasting insulin level in the Gestation group compared with Control. Such changes were contrary to the changes of GnRH level in the pancreas. This may imply that GnRH influences hormones secretion in the pancreas by autocrine and paracrine effects on islet cells.
Collapse
Affiliation(s)
- Li Wang
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schottelius M, Berger S, Poethko T, Schwaiger M, Wester HJ. Development of Novel68Ga- and18F-Labeled GnRH-I Analogues with High GnRHR-Targeting Efficiency. Bioconjug Chem 2008; 19:1256-68. [DOI: 10.1021/bc800058k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margret Schottelius
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Sebastian Berger
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Thorsten Poethko
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Hans-Jürgen Wester
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| |
Collapse
|
15
|
Luteinizing Hormone-Releasing Hormone I (LHRH-I) and Its Metabolite in Peripheral Tissues. Exp Biol Med (Maywood) 2008; 233:123-30. [DOI: 10.3181/0707-mr-201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Luteinizing hormone-releasing hormone (LHRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotropin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of many structural variants with a variety of roles in both the brain and peripheral tissues. Enormous interest has been focused on LHRH-I and LHRH-II and their cognate receptors as targets for designing therapies to treat cancers of the reproductive system. LHRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15) that cleaves the hormone at the fifth and sixth bond of the decapeptide (Tyr5-Gly6) to form LHRH-( 1 – 5 ). We have previously reported that the autoregulation of LHRH gene expression can also be mediated by its processed peptide, LHRH-( 1 – 5 ). Furthermore, LHRH-( 1 – 5 ) has also been shown to be involved in cell proliferation. This review will focus on the possible roles of LHRH and its processed peptide, LHRH-( 1 – 5 ), in non-hypothalamic tissues.
Collapse
|
16
|
Keller G, Schally AV, Gaiser T, Nagy A, Baker B, Halmos G, Engel JB. Receptors for luteinizing hormone releasing hormone expressed on human renal cell carcinomas can be used for targeted chemotherapy with cytotoxic luteinizing hormone releasing hormone analogues. Clin Cancer Res 2006; 11:5549-57. [PMID: 16061872 DOI: 10.1158/1078-0432.ccr-04-2464] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the expression of luteinizing hormone releasing hormone (LHRH) receptors in specimens and cell lines of human renal cell carcinoma (RCC) and to evaluate the antitumor efficacy of targeted therapy with a cytotoxic analogue of LHRH, AN-207, in vivo. AN-207, consisting of [D-Lys(6)] LHRH linked to a cytotoxic radical, 2-pyrrolinodoxorubicin (AN-201), binds with high affinity to LHRH receptors and can be targeted to tumors expressing these receptors. EXPERIMENTAL DESIGN The expression of LHRH receptors was investigated in 28 surgically removed specimens of human renal cell carcinoma (RCC) by immunohistochemistry and in three human RCC cell lines A-498, ACHN, and 786-0 by radioreceptor assays, Western immunoblotting, and reverse transcription-PCR analysis. Antitumor efficacy of AN-207 was examined in experimental models of these cell lines. RESULTS Positive staining for LHRH receptors was found in all (28 of 28) of the examined human RCC specimens. mRNA for LHRH receptor, receptor protein, and LHRH binding sites were detected in all three cell lines. AN-207 significantly (P < 0.05) inhibited the growth of A-498, ACHN, and 786-0 xenografts in vivo producing a 67.8% to 73.8% decrease in tumor volume and a 62.2% to 77.3% reduction in tumor weight. Nontargeted cytotoxic radical AN-201 had no significant antitumor effects. Blockade of LHRH receptors by an excess of LHRH agonist Decapeptyl suppressed tumor inhibitory effects of AN-207. CONCLUSIONS Our findings indicate that LHRH receptors are expressed in human RCC specimens and can be used for targeted chemotherapy with cytotoxic LHRH analogues.
Collapse
Affiliation(s)
- Gunhild Keller
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112-1262, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Qi L, Nett TM, Allen MC, Sha X, Harrison GS, Frederick BA, Crawford ED, Glode LM. Binding and cytotoxicity of conjugated and recombinant fusion proteins targeted to the gonadotropin-releasing hormone receptor. Cancer Res 2004; 64:2090-5. [PMID: 15026348 DOI: 10.1158/0008-5472.can-3192-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pokeweed antiviral protein (PAP) is a plant-derived, highly potent ribosome inactivating protein that causes inhibition of protein translation and rapid cell death. We and others have delivered this protein to various cell types, including cancer cells, using hormones to specifically target cells bearing the hormone receptor. Here, we compare binding and cytotoxicity of GnRH-PAP hormonotoxins prepared either by protein conjugation (GnRH-PAP conjugate) or through recombinant DNA technology (GnRH-PAP fusion). Although GnRH-PAP conjugate protein bound specifically to and caused cell death in cells bearing the gonadotropin-releasing hormone (GnRH) receptor, we could not detect binding or cytotoxicity using two different versions of the fusion protein in receptor-positive cells. We conclude that generation of an active GnRH-PAP fusion protein may not be feasible either because both ends of the GnRH molecule are required for receptor binding, but only the NH(2) terminus is free in the fusion protein and/or that more potent analogues of GnRH (inclusion of which is not feasible in the fusion protein) are needed for efficient targeting. In contrast, the GnRH-PAP conjugate shows promise as a novel anticancer agent, capable of targeting cancer cells expressing the GnRH receptor such as prostate, breast, ovarian, endometrial, and pancreatic cells. It may also be useful as a therapeutic agent to eliminate pituitary gonadotrophs, eliminating the need for chronic GnRH analogue administration to treat hormone-sensitive diseases.
Collapse
Affiliation(s)
- Lin Qi
- Department of Medicine, Division of Medical Oncology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ganepola GAP, Gritsman AY, Asimakopulos N, Yiengpruksawan A. Are Pancreatic Tumors Hormone Dependent?: A Case Report of Unusual, Rapidly Growing Pancreatic Tumor during Pregnancy, Its Possible Relationship to Female Sex Hormones, and Review of the Literature. Am Surg 1999. [DOI: 10.1177/000313489906500202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The occurrence of a pancreatic tumor in a young patient is rare. However, when one identifies a pancreatic mass during pregnancy and particularly when the lesion is located in the tail of the pancreas, “unusual tumors” of the pancreas should be considered. The management of these tumors during pregnancy presents unusual challenges because of rapid tumor growth probably related to elevated levels of sex hormones. An immunohistochemical study was done to evaluate for hormone receptors of the tissue removed from the tumor. We present a case of a 37-year-old female patient in her 4th week of pregnancy who was found to have a pancreatic mass; she was followed with ultrasonography. At the 23rd week of gestation, the tumor increased in size to more than 12 cm and required resection. Immunohistochemical studies were done to evaluate receptors for progesterone, estrogen, PS2-estrogen-related protein, pancreatic polypeptide antigen, flow cytometry, DNA ploidy, and proliferative activity in tumor cells. Pathology showed a low-grade multiloculated mucinous cystic neoplasm of the pancreas. There was a positivity for progesterone receptor and PS2-estrogen-related protein but not for estrogen receptor in the tumor. We conclude that a pancreatic mass detected during pregnancy requires a different consideration for its management. Early tissue diagnosis with CT or ultrasound-guided biopsy is essential. Even those lesions diagnosed as benign would require early intervention because of their rapid growth, probably influenced by female sex hormones.
Collapse
Affiliation(s)
- G. A. P. Ganepola
- Departments of Surgery, The Valley Hospital, Ridgewood, New Jersey
- Department of Clinical Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Andrey Y. Gritsman
- Departments of Pathology, The Valley Hospital, Ridgewood, New Jersey
- University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Nicholas Asimakopulos
- Departments of Obstetrics and Gynecology, The Valley Hospital, Ridgewood, New Jersey
| | | |
Collapse
|