1
|
Viana AR, Poleze TC, da S Bruckmann F, Bottari NB, Peroza LR, Rosales I, Zago NS, Schetinger MRC, Krause LMF, Rhoden CRB, Mortari SR. Liposome preparation of alpha-arbutin: stability and toxicity assessment using mouse B16F10 melanoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:879-894. [PMID: 39221705 DOI: 10.1080/15287394.2024.2393308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Melanoma is the most aggressive type of skin cancer, with few therapeutic alternatives following metastasis development. In recent years, drug delivery-associated nanotechnology has shown promising targeted results with diminished adverse effects compared to conventional treatments. This study aimed to (1) examine the effects of plant-derived α-arbutin, a natural compound and (2) compare these findings with bioactively developed liposomes containing α-arbutin utilizing the B16-F10 murine melanoma cell line as a model. Liposomes were obtained through reversed-phase evaporation by applying a spray dryer to assess their stability. The following biologic assays were measured cytotoxicity/antiproliferative (MTT, Neutral Red, and dsDNA PicoGreen). In addition, the levels of melanin and purinergic enzymes were also measured. The production of reactive oxygen species (ROS) and nitric oxide (NO) was determined as a measure of oxidative state. Treatment with nano-liposome containing alpha-arbutin induced a significant 68.4% cytotoxicity, similar to the positive control, in the B16-F10 murine melanoma cell line at 72 hr. Further, arbutin and liposomes containing alpha-arbutin increased levels of ROS and nitrite formation at 72 hr at the highest concentration (100 and 300 µg/ml) of treatments. Arbutin and liposomes containing alpha-arbutin reduced melanin levels at all tested concentrations. In addition, arbutin and alpha-arbutin containing liposomes lowered nucleotides (AMP, ADP, and ATP) and nucleoside (adenosine) levels in melanoma cells. Evidence suggests that α-arbutin containing liposome can be considered as an alternative immunosuppressive agent stimulated in melanoma treatment.
Collapse
Affiliation(s)
- Altevir R Viana
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Thatyana C Poleze
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Franciele da S Bruckmann
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luis R Peroza
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Ingrid Rosales
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Natalia S Zago
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Maria R C Schetinger
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luciana M F Krause
- Department of Morphology, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Cristiano R B Rhoden
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Sergio R Mortari
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| |
Collapse
|
2
|
Hatem S, Kamel AO, Elkheshen SA, Nasr M, Moftah NH, Ragai MH, El Hoffy NM, Elezaby RS. Nano-vesicular systems for melanocytes targeting and melasma treatment: In-vitro characterization, ex-vivo skin retention, and preliminary clinical appraisal. Int J Pharm 2024; 665:124731. [PMID: 39306205 DOI: 10.1016/j.ijpharm.2024.124731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Melasma represents an acquired melanogenesis disorder resulting in skin's hyperpigmentation effect. Although several approaches are adopted for melasma treatment, nanotechnology presents the most convenient one. Therefore, the present work aimed to formulate and characterize three nano-vesicular systems namely, liposomes, penetration enhancer containing vesicles (PEVs) and invasomes to enhance the topical delivery of the skin whitening agent; alpha arbutin (α-arbutin) for the treatment of melasma. Liposomes were prepared according to a 23 full factorial design and the selected formula was further employed for the preparation of PEVs and invasomes. Results showed that the three vesicular systems exhibited nano-sizes ranging from 151.95 to 672.5 nm, negative charges ranging from -12.50 to -28.20 mV, high entrapment efficiencies ranging from 80.59 to 99.53 %, good stability and prolonged-release of α-arbutin for 24 h after dispersion in hydrogel form. The deposition study from the vesicular hydrogel confirmed their effectiveness for the drug's accumulation in the skin reaching an average of 1.6-fold higher in the stratum corneum, 1.6-1.8-fold higher in the epidermis, and 1.6-1.8-fold higher in the dermis compared to the free drug dispersion in hydrogel. A preliminary clinical split-face study on patients suffering from melasma revealed that α-arbutin-loaded liposomes and PEVs in hydrogel forms showed better clinical outcomes compared to the free α-arbutin hydrogel as well as to the previously published α-arbutin encapsulated in chitosan nanoparticles and dispersed in hydrogel form. This delineates the aforementioned nano-vesicular systems as effective and clinically superior delivery means for melasma management.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha H Moftah
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Al- Minia, Egypt
| | - Maha H Ragai
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Al- Minia, Egypt
| | - Nada M El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Ghasemiyeh P, Fazlinejad R, Kiafar MR, Rasekh S, Mokhtarzadegan M, Mohammadi-Samani S. Different therapeutic approaches in melasma: advances and limitations. Front Pharmacol 2024; 15:1337282. [PMID: 38628650 PMCID: PMC11019021 DOI: 10.3389/fphar.2024.1337282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Melasma is a chronic hyperpigmentation skin disorder that is more common in the female gender. Although melasma is a multifactorial skin disorder, however, sun-exposure and genetic predisposition are considered as the main etiologic factors in melasma occurrence. Although numerous topical and systemic therapeutic agents and also non-pharmacologic procedural treatments have been considered in melasma management, however, the commonly available therapeutic options have several limitations including the lack of sufficient clinical effectiveness, risk of relapse, and high rate of unwanted adverse drug reactions. Recruitment of nanotechnology for topical drug delivery in melasma management can lead to enhanced skin penetration, targeted drug delivery to the site of action, longer deposition at the targeted area, and limit systemic absorption and therefore systemic availability and adverse drug reactions. In the current review, first of all, the etiology, pathophysiology, and severity classification of melasma have been considered. Then, various pharmacologic and procedural therapeutic options in melasma treatment have been discussed. Afterward, the usage of various types of nanoparticles for the purpose of topical drug delivery for melasma management was considered. In the end, numerous clinical studies and controlled clinical trials on the assessment of the effectiveness of these novel topical formulations in melasma management are summarized.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinejad
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Kiafar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Khan HMS, Tanveer N, Arshad T, Rasool F, Uddin MN, Kazi M. Encapsulation of alpha arbutin, a depigmenting agent, in nanosized ethosomes: Invitro and invivo human studies. Heliyon 2023; 9:e19326. [PMID: 37681127 PMCID: PMC10481281 DOI: 10.1016/j.heliyon.2023.e19326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Alpha arbutin is a skin-whitening agent in cosmetics. Structurally, it is 4-hydroxyphenyl-α-glucopyranoside. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of whitening agents. The objective of this study was to fabricate an optimized nanostructured ethosomal gel loaded with alpha arbutin for the treatment of skin pigmentation. Different ethosomal suspensions of alpha arbutin were prepared by the cold method. Invitro evaluation included zeta potential, droplet size analysis, polydispersity index, entrapment efficiency (EE), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Stability studies of the optimized ethosomal and control gels were performed for three months under different temperature conditions. The optimized ethosomal gel loaded with alpha arbutin was further analyzed on human volunteers for skin benefits by measuring melanin level, moisture content and elasticity. It was concluded that the optimized formulation had a size, zeta potential, polydispersity index and entrapment efficiency of 196.87 nm, -45.140 mV, 0.217 and 93.458343%, respectively. Scanning electron microscopy (SEM) depicted spherical ethosomal vesicles. Stability data was obtained in terms of pH and conductivity. Rheological analysis revealed non-Newtonian flow. The cumulative drug permeated for ethosomal gel was 78.4%. Moreover, encapsulation of alpha arbutin causes significant improvement in skin melanin, moisture content and elasticity. The overall findings suggested that the arbutin-loaded ethosomal formulation was stable and could be a better approach than conventional formulation for cosmeceutical purposes such as for depigmentation and moisturizing effects.
Collapse
Affiliation(s)
- Haji Muhammad Shoaib Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
| | - Nishma Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
| | - Tahreem Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
| | - Fatima Rasool
- University College of Pharmacy, University of The Punjab, Lahore, Punjab, 05422, Pakistan
| | - Mohammad N. Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010220. [PMID: 36615414 PMCID: PMC9822493 DOI: 10.3390/molecules28010220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.
Collapse
|
6
|
Liu JK. Natural products in cosmetics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:40. [PMID: 36437391 PMCID: PMC9702281 DOI: 10.1007/s13659-022-00363-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 05/14/2023]
Abstract
The global cosmetics market reached US$500 billion in 2017 and is expected to exceed US$800 billion by 2023, at around a 7% annual growth rate. The cosmetics industry is emerging as one of the fastest-growing industries of the past decade. Data shows that the Chinese cosmetics market was US$60 billion in 2021. It is expected to be the world's number one consumer cosmetics market by 2050, with a size of approximately US$450 billion. The influence of social media and the internet has raised awareness of the risks associated with the usage of many chemicals in cosmetics and the health benefits of natural products derived from plants and other natural resources. As a result, the cosmetic industry is now paying more attention to natural products. The present review focus on the possible applications of natural products from various biological sources in skin care cosmetics, including topical care products, fragrances, moisturizers, UV protective, and anti-wrinkle products. In addition, the mechanisms of targets for evaluation of active ingredients in cosmetics and the possible benefits of these bioactive compounds in rejuvenation and health, and their potential role in cosmetics are also discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- Wuhan Institute of Health, Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd., Wuhan, 430074, People's Republic of China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
7
|
Lee J, Noh M, Jang J, Lee JB, Hwang YH, Lee H. Skin Penetration Enhancer-Incorporated Lipid Nanovesicles (SPE-LNV) for Skin Brightening and Wrinkle Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36331-36340. [PMID: 35917318 DOI: 10.1021/acsami.2c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we utilize skin penetration enhancers (SPEs) such as ceramide and fatty acids in lipid nanovesicles to promote the transdermal delivery of active ingredients. These SPE-incorporated lipid nanovesicles (SPE-LNV) interact with the constituents of skin's outermost stratum corneum (SC) layer, enabling even niacinamide and adenosine with high water solubility to effectively permeate through, leading to enhanced skin efficacy. We demonstrate by both in vitro and in vivo skin permeation studies that the SPE-LNV formulation containing both ceramide and fatty acids (LNV-CF) exhibits deeper penetration depth and faster permeation rate compared to conventional lipid nanovesicles (LNV) without SPE as well as LNV-C with only ceramide. Moreover, in vivo clinical trials were also performed to confirm that LNV-CF most effectively mediates the delivery of niacinamide and adenosine, resulting in a substantial decrease in melanin index as well as skin wrinkle compared to the control groups. We envision that the strategy of incorporating both ceramide and fatty acids in lipid nanovesicles offers a simple and convenient route for the rapid and effective delivery of water-soluble active ingredients across the skin barrier layer.
Collapse
Affiliation(s)
- Jihyun Lee
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Minjoo Noh
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Jihui Jang
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Yoon-Ho Hwang
- Department of Chemical Engineering, Soft Matter and Functional Interfaces Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Soft Matter and Functional Interfaces Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, South Korea
| |
Collapse
|
8
|
Hatem S, Elkheshen SA, Kamel AO, Nasr M, Moftah NH, Ragai MH, Elezaby RS, El Hoffy NM. Functionalized chitosan nanoparticles for cutaneous delivery of a skin whitening agent: an approach to clinically augment the therapeutic efficacy for melasma treatment. Drug Deliv 2022; 29:1212-1231. [PMID: 35403519 PMCID: PMC9004510 DOI: 10.1080/10717544.2022.2058652] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The increase in the production of melanin level inside the skin prompts a patient-inconvenient skin color disorder namely; melasma. This arouses the need to develop efficacious treatment modalities, among which are topical nano-delivery systems. This study aimed to formulate functionalized chitosan nanoparticles (CSNPs) in gel form for enhanced topical delivery of alpha-arbutin as a skin whitening agent to treat melasma. Ionic gelation method was employed to prepare α-arbutin-CSNPs utilizing a 24 full factorial design followed by In vitro, Ex vivo and clinical evaluation of the nano-dispersions and their gel forms. Results revealed that the obtained CSNPs were in the nanometer range with positive zeta potential, high entrapment efficiency, good stability characteristics and exhibited sustained release of α-arbutin over 24 h. Ex vivo deposition of CSNPs proved their superiority in accumulating the drug in deep skin layers with no transdermal delivery. DSC and FTIR studies revealed the successful amorphization of α-arbutin into the nanoparticulate system with no interaction between the drug and the carrier system. The comparative split-face clinical study revealed that α-arbutin loaded CSNPs hydrogels showed better therapeutic efficacy compared to the free drug hydrogel in melasma patients, as displayed by the decrease in: modified melasma area and severity index (mMASI) scores, epidermal melanin particle size surface area (MPSA) and the number of epidermal monoclonal mouse anti–melanoma antigen recognized by T cells-1 (MART-1) positive cells which proved that the aforementioned system is a promising modality for melasma treatment.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Seham A. Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amany O. Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha H. Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Maha H Ragai
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Reham S. Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
9
|
Laidmäe I, Meos A, Kjærvik IA, Ingebrigtsen SG, Škalko-Basnet N, Kirsimäe K, Romann T, Joost U, Kisand V, Kogermann K. Electrospun Amphiphilic Nanofibers as Templates for In Situ Preparation of Chloramphenicol-Loaded Liposomes. Pharmaceutics 2021; 13:1742. [PMID: 34834157 PMCID: PMC8624320 DOI: 10.3390/pharmaceutics13111742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
The hydration of phospholipids, electrospun into polymeric nanofibers and used as templates for liposome formation, offers pharmaceutical advantages as it avoids the storage of liposomes as aqueous dispersions. The objective of the present study was to electrospin and characterize amphiphilic nanofibers as templates for the preparation of antibiotic-loaded liposomes and compare this method with the conventional film-hydration method followed by extrusion. The comparison was based on particle size, encapsulation efficiency and drug-release behavior. Chloramphenicol (CAM) was used at different concentrations as a model antibacterial drug. Phosphatidylcoline (PC) with polyvinylpyrrolidone (PVP), using ethanol as a solvent, was found to be successful in fabricating the amphiphilic composite drug-loaded nanofibers as well as liposomes with both methods. The characterization of the nanofiber templates revealed that fiber diameter did not affect the liposome size. According to the optical microscopy results, the immediate hydration of phospholipids deposited on the amphiphilic nanofibers occurred within a few seconds, resulting in the formation of liposomes in water dispersions. The liposomes appeared to aggregate more readily in the concentrated than in the diluted solutions. The drug encapsulation efficiency for the fiber-hydrated liposomes varied between 14.9 and 28.1% and, for film-hydrated liposomes, between 22.0 and 77.1%, depending on the CAM concentrations and additional extrusion steps. The nanofiber hydration method was faster, as less steps were required for the in-situ liposome preparation than in the film-hydration method. The liposomes obtained using nanofiber hydration were smaller and more homogeneous than the conventional liposomes, but less drug was encapsulated.
Collapse
Affiliation(s)
- Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (I.L.); (A.M.)
- Department of Immunology, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Andres Meos
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (I.L.); (A.M.)
| | - Irja Alainezhad Kjærvik
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037, Universitetsvegen 57, 9037 Tromsø, Norway; (I.A.K.); (S.G.I.); (N.Š.-B.)
| | - Sveinung G. Ingebrigtsen
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037, Universitetsvegen 57, 9037 Tromsø, Norway; (I.A.K.); (S.G.I.); (N.Š.-B.)
| | - Nataša Škalko-Basnet
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037, Universitetsvegen 57, 9037 Tromsø, Norway; (I.A.K.); (S.G.I.); (N.Š.-B.)
| | - Kalle Kirsimäe
- Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia;
| | - Tavo Romann
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia;
| | - Urmas Joost
- Institute of Physics, Faculty of Science and Technology, University of Tartu, Ravila 14C, 50411 Tartu, Estonia; (U.J.); (V.K.)
| | - Vambola Kisand
- Institute of Physics, Faculty of Science and Technology, University of Tartu, Ravila 14C, 50411 Tartu, Estonia; (U.J.); (V.K.)
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (I.L.); (A.M.)
| |
Collapse
|
10
|
Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals (Basel) 2021; 14:ph14090837. [PMID: 34577536 PMCID: PMC8471500 DOI: 10.3390/ph14090837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds are a large, heterogeneous group of secondary metabolites found in various plants and herbal substances. From the perspective of dermatology, the most important benefits for human health are their pharmacological effects on oxidation processes, inflammation, vascular pathology, immune response, precancerous and oncological lesions or formations, and microbial growth. Because the nature of phenolic compounds is designed to fit the phytochemical needs of plants and not the biopharmaceutical requirements for a specific route of delivery (dermal or other), their utilization in cutaneous formulations sets challenges to drug development. These are encountered often due to insufficient water solubility, high molecular weight and low permeation and/or high reactivity (inherent for the set of representatives) and subsequent chemical/photochemical instability and ionizability. The inclusion of phenolic phytochemicals in lipid-based nanocarriers (such as nanoemulsions, liposomes and solid lipid nanoparticles) is so far recognized as a strategic physico-chemical approach to improve their in situ stability and introduction to the skin barriers, with a view to enhance bioavailability and therapeutic potency. This current review is focused on recent advances and achievements in this area.
Collapse
|
11
|
Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10071129. [PMID: 34356362 PMCID: PMC8301119 DOI: 10.3390/antiox10071129] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022] Open
Abstract
Arbutin is a compound of hydroquinone and D-glucose, and it has been over 30 years since there have been serious studies on the skin lightening action of this substance. In the meantime, there have been debates and validation studies about the mechanism of action of this substance as well as its skin lightening efficacy and safety. Several analogs or derivatives of arbutin have been developed and studied for their melanin synthesis inhibitory action. Formulations have been developed to improve the stability, transdermal delivery, and release of arbutin, and device usage to promote skin absorption has been developed. Substances that inhibit melanin synthesis synergistically with arbutin have been explored. The skin lightening efficacy of arbutin alone or in combination with other active ingredients has been clinically evaluated. Combined therapy with arbutin and laser could give enhanced depigmenting efficacy. The use of arbutin causes dermatitis rarely, and caution is recommended for the use of arbutin-containing products, especially from the viewpoint that hydroquinone may be generated during product use. Studies on the antioxidant properties of arbutin are emerging, and these antioxidant properties are proposed to contribute to the skin depigmenting action of arbutin. It is hoped that this review will help to understand the pros and cons of arbutin as a cosmetic ingredient, and will lead to future research directions for developing advanced skin lightening and protecting cosmetic products.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
12
|
Bhaskar S, Thng S, Lim S. Engineered Protein Nanocages for Targeted and Enhanced Dermal Melanocyte Cellular Uptake. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sathyamoorthy Bhaskar
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457 Singapore
| | - Steven Thng
- Dermatology Department National Skin Centre 1 Mandalay Road Singapore 308205 Singapore
- Skin Research Institute of Singapore #17-01, 11 Mandalay Road Singapore 308232 Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457 Singapore
| |
Collapse
|
13
|
Nautiyal A, Wairkar S. Management of hyperpigmentation: Current treatments and emerging therapies. Pigment Cell Melanoma Res 2021; 34:1000-1014. [PMID: 33998768 DOI: 10.1111/pcmr.12986] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Hyperpigmentation of the skin refers to a dermatological condition which alters the color of the skin, making it discolored or darkened. The treatments for hyperpigmentation disorders often take very long to show results and have poor patient compliance. The first-line treatment for hyperpigmentation involves topical formulations of conventional agents such as hydroquinone, kojic acid, and glycolic acid followed by oral formulations of therapeutic agents such as tranexamic acid, melatonin, and cysteamine hydrochloride. The second-line approaches include chemical peels and laser therapy given under the observation of expert professionals. However, these therapies pose certain limitations and adverse effects such as erythema, skin peeling, and drying and require long treatment duration to show visible effects. These shortcomings of the conventional treatments provided scope for further research on newer alternatives for managing hyperpigmentation. Some of these therapies include novel formulations such as solid lipid nanocarriers, liposomes, phytochemicals, platelet-rich plasma, microneedling. This review focuses on elaborating on several hyperpigmentation disorders and their mechanisms, the current, novel and emerging treatment options for management of hyperpigmentation.
Collapse
Affiliation(s)
- Avni Nautiyal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| |
Collapse
|
14
|
Saeedi M, Khezri K, Seyed Zakaryaei A, Mohammadamini H. A comprehensive review of the therapeutic potential of α-arbutin. Phytother Res 2021; 35:4136-4154. [PMID: 33724594 DOI: 10.1002/ptr.7076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Cosmetic dermatology preparations such as bleaching agents are ingredients with skin-related biological activities for increasing and improving skin beauty. The possibility of controlling skin hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. Recently, cosmetics containing herbal and botanical ingredients have attracted many interests for consumers of cosmetic products because these preparations are found safer than other preparations with synthetic components. However, high-quality trial studies in larger samples are needed to confirm safety and clinical efficacy of phytotherapeutic agents with high therapeutic index. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside) is a bioactive hydrophilic polyphenol with two isomers including alpha-arbutin (4-hydroxyphenyl-α-glucopyranoside) and β-arbutin (4-hydroxyphenyl-β-glucopyranoside). It is used as a medicinal plant in phytopharmacy. Studies have shown that alpha-arbutin is 10 times more effective than natural arbutin. A comparison of IC50 values showed that α-arbutin (with concentration 2.0 mM) has a more potent inhibitory activity on human tyrosinase against natural arbutin (with higher concentration than 30 mM). A review of recent studies showed that arbutin could be beneficial in treatment of various diseases such as hyperpigmentation disorders, types of cancers, central nervous system disorders, osteoporosis, diabetes, etc. This study was designed to describe the therapeutic efficiencies of arbutin.
Collapse
Affiliation(s)
- Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
15
|
Patel D, Patel B, Thakkar H. Lipid Based Nanocarriers: Promising Drug Delivery System for Topical Application. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Darshana Patel
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| | - Brijesh Patel
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| | - Hetal Thakkar
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| |
Collapse
|
16
|
|
17
|
Kesharwani P, Md S, Alhakamy NA, Hosny KM, Haque A. QbD Enabled Azacitidine Loaded Liposomal Nanoformulation and Its In Vitro Evaluation. Polymers (Basel) 2021; 13:250. [PMID: 33451016 PMCID: PMC7828524 DOI: 10.3390/polym13020250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Azacitidine (AZA), an inhibitor of DNA methyltransferase, is a commonly recognized drug used in clinical treatment for myelodysplastic syndrome and breast cancer. Due to higher aqueous solubility and negative log P of AZA causes poor cancer cell permeation and controlled release. The objective of the present study was to formulate and optimize AZA-loaded liposome (AZA-LIPO) for breast cancer chemotherapy by using Box Behnken design (BBD) and in vitro evaluation using MCF-7 cells. AZA-LIPO were prepared using a thin film hydration technique and characterization study was performed by using FTIR and DSC. The prepared formulations were optimized using BBD and the optimized formulation was further subjected for particle size, surface charges, polydispersity index (PDI), drug loading, entrapment efficiency, TEM, XRD, in-vitro drug release and hemolytic toxicity. The mean particle size of optimized AZA-LIPO was 127 nm. Entrapment efficiency and drug loading of AZA-LIPO was found to be 85.2% ± 0.5 and 6.82 ± 1.6%, respectively. Further, in vitro drug release study showed preliminary burst release in 2 h followed by a sustained release for 36 h in phosphate buffer at different pH (4.0, 5.5, and 7.4) as compared to free drug. Drug release was found to be pH dependent, as the pH was increased, the drug release rate was found to be low. Time-dependent cell viability assay exhibited significant higher cell viability and higher internalization than free AZA in MCF-7 cells. AZA-LIPO were more effective than the free AZA in reducing Bcl2 expression, while increasing pro-apoptotic Bax and caspase-3 activity. The result showed that the formulated biocompatible AZA-LIPO nano-formulations may be used as an efficient anti-cancer drug delivery system for the treatment of breast cancer after establishing preclinical and clinical studies.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 16278, Saudi Arabia;
| |
Collapse
|
18
|
Hatem S, El Hoffy NM, Elezaby RS, Nasr M, Kamel AO, Elkheshen SA. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J Control Release 2019; 300:114-140. [PMID: 30853528 DOI: 10.1016/j.jconrel.2019.03.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022]
Abstract
Antioxidants (AOs) play a crucial role in the protection and maintenance of health and are also integral ingredients in beauty products. Unfortunately, most of them are sensitive due to their instability and insolubility. The use of liposomes to protect AOs and expand their applicability to cosmeceuticals, thereby, is one of the most effective solutions. Notwithstanding their offered advantages for the delivery of AOs, liposomes, in their production and application, present many challenges. Here, we provide a critical review of the major problems complicating the development of liposomes for AO delivery. Along with issues related to preparation techniques and encapsulation efficiency, the loss of protective function and inefficiency of skin permeability are the main disadvantages of liposomes. Corresponding development strategies for resolving these problems, with their respective advantages and drawbacks, are introduced, discussed in some depth, and summarized in these pages as well. Advanced liposomes have a vital role to play in the development and delivery of AOs in practical cosmeceutical product applications.
Collapse
|
20
|
Combining Microbubble Contrast Agent with Pulsed-Laser Irradiation for Transdermal Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10040175. [PMID: 30282960 PMCID: PMC6321619 DOI: 10.3390/pharmaceutics10040175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
The optodynamic process of laser-induced microbubble (MB) cavitation in liquids is utilized in various medical applications. However, how incident laser radiation interacts with MBs as an ultrasound contrast agent is rarely estimated when the liquid already contains stable MBs. The present study investigated the efficacy of the laser-mediated cavitation of albumin-shelled MBs in enhancing transdermal drug delivery. Different types and conditions of laser-mediated inertial cavitation of MBs were first evaluated. A CO2 fractional pulsed laser was selected for combining with MBs in the in vitro and in vivo experiments. The in vitro skin penetration by β-arbutin after 2 h was 2 times greater in the group combining a laser with MBs than in the control group. In small-animal experiments, the whitening effect on the skin of C57BL/6J mice in the group combining a laser with MBs on the skin plus penetrating β-arbutin increased (significantly) by 48.0% at day 11 and 50.0% at day 14, and then tended to stabilize for the remainder of the 20-day experimental period. The present results indicate that combining a CO2 laser with albumin-shelled MBs can increase skin permeability so as to enhance the delivery of β-arbutin to inhibit melanogenesis in mice without damaging the skin.
Collapse
|
21
|
Ha JH, Jeong YJ, Kim AY, Hong IK, Lee NH, Park SN. Preparation and Physicochemical Properties of a Cysteine Derivative‐Loaded Deformable Liposomes in Hydrogel for Enhancing Whitening Effects. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ji Hoon Ha
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Yun Ju Jeong
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - A Young Kim
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - In Ki Hong
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Nan Hee Lee
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Soo Nam Park
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| |
Collapse
|
22
|
In vitro assessment of the cytotoxic, DNA damaging, and cytogenetic effects of hydroquinone in human peripheral blood lymphocytes. Arh Hig Rada Toksikol 2018; 68:322-335. [DOI: 10.1515/aiht-2017-68-3060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study investigated the mechanisms of hydroquinone toxicity and assessed the relationships between its cytotoxic, genotoxic, and cytogenetic effects tested at 8, 140, and 280 μg mL-1 in human peripheral blood lymphocytes exposed for 24 h. The outcomes of the treatments were evaluated using the apoptosis/necrosis assay, the alkaline comet assay, and the cytokinesis-block micronucleus (CBMN) cytome assay. The tested hydroquinone concentrations produced relatively weak cytotoxicity in resting lymphocytes, which mostly died via apoptosis. Hydroquinone’s marked genotoxic effects were detected using the alkaline comet assay. Significantly decreased values of all comet parameters compared to controls indicated specific mechanisms of hydroquinone-DNA interactions. Our results suggest that the two higher hydroquinone concentrations possibly led to cross-linking and adduct formation. Increased levels of DNA breakage measured following exposure to the lowest concentration suggested mechanisms related to oxidative stress and inhibition of topoisomerase II. At 8 μg mL-1, hydroquinone did not significantly affect MN formation. At 140 and 280 μg mL-1, it completely blocked lymphocyte division. The two latter concentrations also led to erythrocyte stabilization and prevented their lysis. At least two facts contribute to this study’s relevance: (I) this is the first study that quantifies the degree of reduction in total comet area measured in lymphocyte DNA after hydroquinone treatment, (II) it is also the first one on a lymphocyte model that adopted the “cytome” protocol in an MN assay and found that lymphocytes exposure even to low hydroquinone concentration resulted in a significant increase of nuclear bud frequency. Considering the limitations of the lymphocyte model, which does not possess intrinsic metabolic activation, in order to unequivocally prove the obtained results further studies using other appropriate cell lines are advised.
Collapse
|
23
|
Ephrem E, Elaissari H, Greige-Gerges H. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge. Int J Pharm 2017; 526:50-68. [DOI: 10.1016/j.ijpharm.2017.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
24
|
Liao AH, Ma WC, Wang CH, Yeh MK. Penetration depth, concentration and efficiency of transdermal α-arbutin delivery after ultrasound treatment with albumin-shelled microbubbles in mice. Drug Deliv 2014; 23:2173-2182. [PMID: 25148541 DOI: 10.3109/10717544.2014.951102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recently, the feasibility and effects of using microbubbles (MBs) as an ultrasound (US) contrast agent for enhancing the penetration in transdermal delivery in vivo have been demonstrated, but the mechanism and efficiency are unclear. This study demonstrates the penetration depth, concentration and efficiency of transdermal α-arbutin delivery during 4 weeks after US treatment with MBs in mice. Experimental animals were randomly divided into the following four groups (n = 5 animals per group): (1) penetrating α-arbutin alone (C), (2) US combined with penetrating α-arbutin, (3) US combined with MBs and penetrating α-arbutin, and (4) US combined with diluted MBs and penetrating α-arbutin (UBD). The penetration depths in agarose phantoms and pigskin were 47 and 84% greater for group UBD, respectively, than for group C. The in vitro skin penetration by 2% α-arbutin after 3 h was 83% greater in group UBD than in group C. The degree of in vivo skin whitening (quantified as the luminosity index) in group UBD significantly increased by 25% after 1 week, 34% after 2 weeks, and then stabilized after 3 weeks at 37% in C57BL/6J mice over a 4-week experimental period. Our results indicate that combined treatment with optimal US and MBs can increase skin permeability so as to enhance α-arbutin delivery to inhibit melanogenesis without damaging the skin in mice.
Collapse
Affiliation(s)
- Ai-Ho Liao
- a Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology , Taipei , Taiwan , ROC.,b Department of Medical Engineering , National Defense Medical Center , Taipei , Taiwan , ROC
| | - Wan-Chun Ma
- a Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology , Taipei , Taiwan , ROC
| | - Chih-Hung Wang
- c Department of Otolaryngology-Head and Neck Surgery , Tri-Service General Hospital, National Defense Medical Center , Taipei , Taiwan , ROC.,d Graduate Institute of Medical Sciences, National Defense Medical Center , Taipei , Taiwan , ROC
| | - Ming-Kung Yeh
- e School of Pharmacy, National Defense Medical Center , Taipei , Taiwan , ROC , and.,f Bureau of Pharmaceutical Affairs, Military of National Defence Medical Affairs Bureau , Taipei , Taiwan , ROC
| |
Collapse
|
25
|
Fong P, Tong HHY, Chao CM. In Silico Prediction of Tyrosinase and Adenylyl Cyclase Inhibitors from Natural Compounds. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although many herbal medicines are effective in the treatment of hyperpigmentation, the potency of different constituents remains unknown. In this work, more than 20,000 herbal ingredients from 453 herbs were docked into the crystal structures of adenylyl cyclase and a human homology tyrosinase model using Surflex-Dock. These two enzymes are responsible for melanin production and inhibition of them may attain a skin-whitening effect superior to currently available agents. The essential drug properties for topical formulation of the herbal ingredients, including skin permeability, sensitization, irritation, corrosive and carcinogenic properties were predicted by Dermwin, Skin Sensitization Alerts (SSA), Skin Irritation Corrosion Rules Estimation Tool (SICRET) and Benigni/Bossa rulebase module of Toxtree. Moreover, similarity ensemble and pharmacophore mapping approaches were used to forecast other potential targets for these herbal compounds by the software, SEArch and PharmMapper. Overall, this study predicted seven compounds to have advanced drug-like properties over the well-known effective tyrosinase inhibitors, arbutin and kojic acid. These seven compounds have the highest potential for further in vitro and in vivo investigation with the aim of developing safe and high-efficacy skin-whitening agents.
Collapse
Affiliation(s)
- Pedro Fong
- School of Health Sciences, Macao Polytechnic Institute, Macao, 999078, China
| | - Henry H. Y. Tong
- School of Health Sciences, Macao Polytechnic Institute, Macao, 999078, China
| | - Chi M. Chao
- School of Health Sciences, Macao Polytechnic Institute, Macao, 999078, China
| |
Collapse
|
26
|
Mehanna MM, Elmaradny HA, Samaha MW. Ciprofloxacin liposomes as vesicular reservoirs for ocular delivery: formulation, optimization, and in vitro characterization. Drug Dev Ind Pharm 2009; 35:583-93. [PMID: 19031311 DOI: 10.1080/03639040802468024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Management of extraocular diseases is mainly limited by the inability to provide long-term drug delivery without avoiding the systemic drug exposure and/or affecting the intraocular structures and poor availability of drugs, which may be overcome by prolonging the contact time with the ocular system, for instance with liposomes. Development and optimization of reverse phase evaporation ciprofloxacin (CPF) HCl liposomes for ocular drug delivery was carried out using a 2(5) full factorial design based on five independent variables. The effects of the studied parameters on drug entrapment efficiency (EE), particle size, and percentage of drug released after 1 and 10 h were investigated. The results obtained pointed out that the molar concentration of cholesterol was the predominant factor that increased the EE% of the drug and the particle size responses. The percentage of drug released after 1 h was significantly controlled by the initial CPF concentration while that after 10 h was controlled by molar cholesterol concentration. The designed liposomes had average particle sizes that ranged from 2.5 to 7.23 microm. In addition, liposomes revealed a fast release during the first hour followed by a more gradual drug release during the 24-h period according to Higuchi diffusion model.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Industrial Pharmacy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | | | | |
Collapse
|
27
|
Bang SH, Han SJ, Kim DH. Hydrolysis of arbutin to hydroquinone by human skin bacteria and its effect on antioxidant activity. J Cosmet Dermatol 2008; 7:189-93. [DOI: 10.1111/j.1473-2165.2008.00387.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|