1
|
Álvarez-Barrera L, Rodríguez-Mercado JJ, Mateos-Nava RA, Ocampo-Aguilera NA, Altamirano-Lozano MA. Vanadium(IV) oxide affects embryonic development in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1587-1596. [PMID: 35243760 DOI: 10.1002/tox.23508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Vanadium(V) and vanadium(IV) are the predominant redox forms present in the environment, and epidemiological studies have reported that prenatal vanadium exposure is associated with restricted fetal growth and adverse birth outcomes. However, data about the toxic effects of vanadium(IV) oxide (V2 O4 ) on the development of mammals are still limited. Therefore, in this work, 4.7, 9.4, or 18.7 mg/kg body weight/injection/day V2 O4 was administered through an intraperitoneal (ip) injection to pregnant mice from gestational days 6 to 16. The results showed that V2 O4 produced maternal and embryo-fetal toxicity and external abnormalities in the offspring, such as malrotated and malpositioned hind limbs, hematomas and head injuries. Moreover, the skeletons of the fetuses presented reduced ossification of the cranial bones, including the frontal and parietal bones, corresponding to head injuries observed in the external assessment of the fetuses. These results demonstrate that administration of V2 O4 to pregnant females in the organogenesis period adversely affects embryonic development.
Collapse
Affiliation(s)
- Lucila Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Nydia Angélica Ocampo-Aguilera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Mario Agustín Altamirano-Lozano
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| |
Collapse
|
2
|
Abstract
The vanadium(V) complexes have been investigated as potential anticancer agents which makes it essential to evaluate their toxicity for safe use in the clinic. The large-scale synthesis and the acute oral toxicity in mice of the oxidovanadium(V) Schiff base catecholate complex, abbreviated as [VO(HSHED)dtb] containing a redox-active ligand with tridentate Schiff base (HSHED = N-(salicylideneaminato)-N’-(2-hydroxyethyl)-1,2-ethylenediamine) and dtb = 3,5-di-(t-butyl)catechol ligands were carried out. The body weight, food consumption, water intake as well biomarkers of liver and kidney toxicity of the [VO(HSHED)dtb] were compared to the precursors, sodium orthovanadate, and free ligand. The 10-fold scale-up synthesis of the oxidovanadium(V) complex resulting in the preparation of material in improved yield leading to 2–3 g (79%) material suitable for investigating the toxicity of vanadium complex. No evidence of toxicity was observed in animals when acutely exposed to a single dose of 300 mg/kg for 14 days. The toxicological results obtained with biochemical and hematological analyses did not show significant changes in kidney and liver parameters when compared with reference values. The low oral acute toxicity of the [VO(HSHED)dtb] is attributed to redox chemistry taking place under biological conditions combined with the hydrolytic stability of the oxidovanadium(V) complex. These results document the design of oxidovanadium(V) complexes that have low toxicity but still are antioxidant and anticancer agents.
Collapse
|
3
|
Hu D, Li D, Liu X, Zhou Z, Tang J, Shen Y. Vanadium-based nanomaterials for cancer diagnosis and treatment. ACTA ACUST UNITED AC 2020; 16:014101. [PMID: 33355313 DOI: 10.1088/1748-605x/abb523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past few decades, various vanadium compounds have displayed potential in cancer treatment. However, fast clearness in the body and possible toxicity of vanadium compounds has hindered their further development. Vanadium-based nanomaterials not only overcome these limitations, but take advantage of the internal properties of vanadium in photics and magnetics, which enable them as a multimodal platform for cancer diagnosis and treatment. In this paper, we first introduced the basic biological and pharmacological functions of vanadium compounds in treating cancer. Then, the synthesis routes of three vanadium-based nanomaterials were discussed, including vanadium oxides, 2D vanadium sulfides, carbides and nitrides: VmXn (X = S, C, N) and water-insoluble vanadium salts. Finally, we highlighted the applications of these vanadium-based nanomaterials as tumor therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China. Equal contributor
| | | | | | | | | | | |
Collapse
|
4
|
Brokesh AM, Gaharwar AK. Inorganic Biomaterials for Regenerative Medicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5319-5344. [PMID: 31989815 DOI: 10.1021/acsami.9b17801] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regenerative medicine leverages the innate potential of the human body to efficiently repair and regenerate damaged tissues using engineered biomaterials. By designing responsive biomaterials with the appropriate biophysical and biochemical characteristics, cellular response can be modulated to direct tissue healing. Recently, inorganic biomaterials have been shown to regulate cellular responses including cell-cell and cell-matrix interactions. Moreover, ions released from these mineral-based biomaterials play a vital role in defining cell identity, as well as driving tissue-specific functions. The intrinsic properties of inorganic biomaterials, such as the release of bioactive ions (e.g., Ca, Mg, Sr, Si, B, Fe, Cu, Zn, Cr, Co, Mo, Mn, Au, Ag, V, Eu, and La), can be leveraged to induce phenotypic changes in cells or modulate the immune microenvironment to direct tissue healing and regeneration. Biophysical characteristics of biomaterials, such as topography, charge, size, electrostatic interactions, and stiffness can be modulated by addition of inorganic micro- and nanoparticles to polymeric networks have also been shown to play an important role in their biological response. In this Review, we discuss the recent emergence of inorganic biomaterials to harness the innate regenerative potential of the body. Specifically, we will discuss various biophysical or biochemical effects of inorganic-based materials in directing cellular response for regenerative medicine applications.
Collapse
Affiliation(s)
- Anna M Brokesh
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Material Science and Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Center for Remote Health Technologies and Systems , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
5
|
Attenuation of hyperhomocysteinemia induced vascular dementia by sodium orthovanadate perhaps via PTP1B: Pertinent downstream outcomes. Behav Brain Res 2019; 364:29-40. [DOI: 10.1016/j.bbr.2019.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
|
6
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
7
|
Adebiyi OE, Olopade JO, Olayemi FO. Neuroprotective Effect of Grewia carpinifolia Extract against Vanadium Induced Behavioural Impairment. FOLIA VETERINARIA 2016. [DOI: 10.1515/fv-2016-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Vanadium (V), a heavy metal, has been reported to induce central nervous system toxicity leading to various behavioural impairments. It is characterized by the production of reactive oxygen. The present study was designed to test the possibility of Grewia carpinifolia ethanolic extract in preventing behavioural alterations following acute vanadium toxicity in mice. Twenty five Swiss albino mice (25—27 g) were completely randomized into 5 groups (A—E) of 5 animals each. Group A received distilled water and served as a control; group B, received vitamin E (500 mg.kg−1 b. w. every 72 hours), a known antioxidant orally, along with a daily dose of sodium metavanadate intraperitoneally (i. p.) for 7 days; group C and group D received Grewia carpinifolia leaf extract at 100 and 200 mg.kg−1 b.w orally respectively, along with the sodium metavanadate i. p. for 7 days; while group E received sodium metavanadate i. p. only for 7 days. The behavioural and motor functions were analysed by the open field, negative geotaxis, and hanging wire tests; the daily body and brain weights were recorded. Grewia carpinifolia ethanolic extracts significantly reduced the number of grooming, stretched attend posture, and freezing time that were significantly increased in the vanadium only group and also enhanced the vestibular functions. In addition, the latent time spent on the hanging wire in groups simultaneously administered with the extract and V compared favourably (P > 0.05) with the control groups but a decrease in latent time was observed in the V only group. The results suggest that acute V toxicity results in various behavioural deficits and support a possible role of Grewia carpinifolia as a protective agent against acute vanadium-toxicity with a better result at 200 mg.kg−1 b. w.
Collapse
Affiliation(s)
- O. E. Adebiyi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Nigeria
| | - J. O. Olopade
- Department of Veterinary Anatomy, University of Ibadan, Nigeria
| | - F. O. Olayemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Nigeria
| |
Collapse
|
8
|
Azeez IA, Olopade F, Laperchia C, Andrioli A, Scambi I, Onwuka SK, Bentivoglio M, Olopade JO. Regional Myelin and Axon Damage and Neuroinflammation in the Adult Mouse Brain After Long-Term Postnatal Vanadium Exposure. J Neuropathol Exp Neurol 2016; 75:843-54. [PMID: 27390101 DOI: 10.1093/jnen/nlw058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Environmental exposure to vanadium occurs in areas of persistent burning of fossil fuels; this metal is known to induce oxidative stress and oligodendrocyte damage. Here, we determined whether vanadium exposure (3 mg/kg) in mice during the first 3 postnatal months leads to a sustained neuroinflammatory response. Body weight monitoring, and muscle strength and open field tests showed reduction of body weight gain and locomotor impairment in vanadium-exposed mice. Myelin histochemistry and immunohistochemistry for astrocytes, microglia, and nonphosphorylated neurofilaments revealed striking regional heterogeneity. Myelin damage involved the midline corpus callosum and fibers in cortical gray matter, hippocampus, and diencephalon that were associated with axonal damage. Astrocyte and microglial activation was identified in the same regions and in the internal capsule; however, no overt myelin and axon damage was observed in the latter. Double immunofluorescence revealed induction of high tumor necrosis factor (TNF) immunoreactivity in reactive astrocytes. Western blotting analysis showed significant induction of TNF and interleukin-1β expression. Together these findings show that chronic postnatal vanadium exposure leads to functional deficit and region-dependent myelin damage that does not spare axons. This injury is associated with glial cell activation and proinflammatory cytokine induction, which may reflect both neurotoxic and neuroprotective responses.
Collapse
Affiliation(s)
- Idris A Azeez
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Funmilayo Olopade
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Claudia Laperchia
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Anna Andrioli
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Ilaria Scambi
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Silas K Onwuka
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Marina Bentivoglio
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - James O Olopade
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO).
| |
Collapse
|
9
|
Roberts GK, Stout MD, Sayers B, Fallacara DM, Hejtmancik MR, Waidyanatha S, Hooth MJ. 14-Day Toxicity Studies of Tetravalent and Pentavalent Vanadium Compounds in Harlan Sprague Dawley Rats and B6C3F1/N Mice via Drinking Water Exposure. Toxicol Rep 2016; 3:531-538. [PMID: 28042531 PMCID: PMC5193388 DOI: 10.1016/j.toxrep.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The National Toxicology Program (NTP) performed short-term toxicity studies of tetra- and pentavalent vanadium compounds, vanadyl sulfate and sodium metavanadate, respectively. Due to widespread human exposure and a lack of chronic toxicity data, there is concern for human health following oral exposure to soluble vanadium compounds. OBJECTIVES To compare the potency and toxicological profile of vanadyl sulfate and sodium metavanadate using a short-term in vivo toxicity assay. METHODS Adult male and female Harlan Sprague Dawley (HSD) rats and B6C3F1/N mice, 5 per group, were exposed to vanadyl sulfate or sodium metavanadate, via drinking water, at concentrations of 0, 125, 250, 500, 1000 or 2000 mg/L for 14 days. Water consumption, body weights and clinical observations were recorded throughout the study; organ weights were collected at study termination. RESULTS Lower water consumption, up to -80% at 2000 mg/L, was observed at most exposure concentrations for animals exposed to either vanadyl sulfate or sodium metavanadate and was accompanied by decreased body weights at the highest concentrations for both compounds. Animals in the 1000 and 2000 mg/L sodium metavanadate groups were removed early due to overt toxicity. Thinness was observed in high-dose animals exposed to either compound, while lethargy and abnormal gait were only observed in vanadate-exposed animals. CONCLUSIONS Based on clinical observations and overt toxicity, sodium metavanadate appears to be more toxic than vanadyl sulfate. Differential toxicity cannot be explained by differences in total vanadium intake, based on water consumption, and may be due to differences in disposition or mechanism of toxicity.
Collapse
Affiliation(s)
- Georgia K. Roberts
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Matthew D. Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Brian Sayers
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | | | | | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Michelle J. Hooth
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
10
|
Abdesselem M, Schoeffel M, Maurin I, Ramodiharilafy R, Autret G, Clément O, Tharaux PL, Boilot JP, Gacoin T, Bouzigues C, Alexandrou A. Multifunctional rare-Earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS NANO 2014; 8:11126-11137. [PMID: 25290552 DOI: 10.1021/nn504170x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Collecting information on multiple pathophysiological parameters is essential for understanding complex pathologies, especially given the large interindividual variability. We report here multifunctional nanoparticles which are luminescent probes, oxidant sensors, and contrast agents in magnetic resonance imaging (MRI). Eu(3+) ions in an yttrium vanadate matrix have been demonstrated to emit strong, nonblinking, and stable luminescence. Time- and space-resolved optical oxidant detection is feasible after reversible photoreduction of Eu(3+) to Eu(2+) and reoxidation by oxidants, such as H2O2, leading to a modulation of the luminescence emission. The incorporation of paramagnetic Gd(3+) confers in addition proton relaxation enhancing properties to the system. We synthesized and characterized nanoparticles of either 5 or 30 nm diameter with compositions of GdVO4 and Gd0.6Eu0.4VO4. These particles retain the luminescence and oxidant detection properties of YVO4:Eu. Moreover, the proton relaxivity of GdVO4 and Gd0.6Eu0.4VO4 nanoparticles of 5 nm diameter is higher than that of the commercial Gd(3+) chelate compound Dotarem at 20 MHz. Nuclear magnetic resonance dispersion spectroscopy showed a relaxivity increase above 10 MHz. Complexometric titration indicated that rare-earth leaching is negligible. The 5 nm nanoparticles injected in mice were observed with MRI to concentrate in the liver and the bladder after 30 min. Thus, these multifunctional rare-earth vanadate nanoparticles pave the way for simultaneous optical and magnetic resonance detection, in particular, for in vivo localization evolution and reactive oxygen species detection in a broad range of physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Mouna Abdesselem
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique , CNRS UMR 7645-INSERM U696, 91128 Palaiseau Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mustapha O, Oke B, Offen N, Sirén AL, Olopade J. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:98-111. [PMID: 24927405 DOI: 10.1016/j.etap.2014.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation.
Collapse
Affiliation(s)
- Oluwaseun Mustapha
- Department of Veterinary Anatomy, University of Ibadan, Nigeria; Department of Veterinary Anatomy, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Bankole Oke
- Department of Veterinary Anatomy, University of Ibadan, Nigeria.
| | - Nils Offen
- Department of Neurosurgery, University of Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany.
| | - Anna-Leena Sirén
- Department of Neurosurgery, University of Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany.
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Nigeria; Department of Neurosurgery, University of Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany.
| |
Collapse
|
12
|
Altamirano-Lozano MA, Álvarez-Barrera L, Mateos-Nava RA, Fortoul TI, Rodríguez-Mercado JJ. Potential for genotoxic and reprotoxic effects of vanadium compounds due to occupational and environmental exposures: An article based on a presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15–18, 2012. J Immunotoxicol 2013; 11:19-27. [DOI: 10.3109/1547691x.2013.791734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Cuesta S, Proietto R, García GB. Astrogliosis and HSP 70 activation in neonate rats' brain exposed to sodium metavanadate through lactation. Neurotoxicol Teratol 2013; 37:57-62. [PMID: 23557781 DOI: 10.1016/j.ntt.2013.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 12/16/2022]
Abstract
The effect of sodium metavanadate (NaVO3) exposure on lipid oxidative damage in the CNS of suckling rats was studied. Using histological markers of cellular injury, we also studied the morphological alterations of neurons and astroglial cells in different regions of neonate rats CNS after NaVO3 exposure. Dams of treated litters were intraperitoneally injected with 3mgNaVO3/kgbody weight/day during 12days starting on post-natal day (PND) 10. On the 21st PND, four pups of each litter were sacrificed by decapitation and six brain areas were removed for lipid peroxidation assay by the thiobarbituric acid (TBA) reaction, the other four were transcardially perfused-fixed and their brains were removed and cut with a cryostat. Brain sections were processed for: NADPHd histochemistry and anti-HSP70, anti-GFAP and anti-S100 immunohistochemistry. The relative optical density of the NADPHd stained layers and of S100 (+) astrocytes and the GFAP (+) astrocyte surface area in Cer and Hc were measured. Although MDA levels, S100 immunostaining and NADPHd activity didn't show differences between experimental and control groups, both astrogliosis and HSP70 activation were detected in Cer, while only the former was detected in Hc of V-exposed pups.
Collapse
Affiliation(s)
- Santiago Cuesta
- Morphology Department, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| | | | | |
Collapse
|
14
|
Liu HC, Ting CH, Wen HL, Tsai LK, Hsieh-Li HM, Li H, Lin-Chao S. Sodium vanadate combined with L-ascorbic acid delays disease progression, enhances motor performance, and ameliorates muscle atrophy and weakness in mice with spinal muscular atrophy. BMC Med 2013; 11:38. [PMID: 23409868 PMCID: PMC3682891 DOI: 10.1186/1741-7015-11-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model. METHODS Sodium vanadate (200 μM), L-ascorbic acid (400 μM), or sodium vanadate combined with L-ascorbic acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies, and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and Student's t test for paired variables were used to measure significant differences (P < 0.05) between values. RESULTS Combined treatment protected cells against vanadate-induced cell death with decreasing B cell lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially decreased vanadium accumulation in these organs. CONCLUSIONS Combined treatment beginning at birth and continuing for 1 month conferred protection against neuromuscular damage in mice with milder types of SMA. Further, these mice exhibited enhanced motor performance in adulthood. Therefore, combined treatment could present a feasible treatment option for patients with late-onset SMA.
Collapse
Affiliation(s)
- Huei-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Scibior A, Zaporowska H. Effects of vanadium(V) and/or chromium(III) on L-ascorbic acid and glutathione as well as iron, zinc, and copper levels in rat liver and kidney. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:696-704. [PMID: 17365624 DOI: 10.1080/15287390601187906] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study investigated the selected parameters of the antioxidant system in liver and kidney after in vivo administration of vanadium and/or chromium in rats. Outbred 2-mo-old albino male Wistar rats received drinking water for 12 wk with either sodium metavanadate (SMV; group II); chromium chloride (Cr; group III); or sodium metavanadate and chromium chloride (SMV-Cr; group IV); and group I (control) received deionized water. Chronic treatment with V alone or in combination with Cr produced a significant increase in kidney relative weight. Further, giving rats V alone also led to a significant elevation in liver relative weight. An increase in hepatic Fe concentration and renal Zn content occurred after treatment with V or Cr, respectively. The rats coadministered V and Cr had significantly higher levels of Fe in liver and Zn in kidneys. Simultaneous administration of these two elements resulted in a significant decrease in renal L-ascorbic acid concentration. V given alone significantly decreased GSH content and GSH/GSSG ratio in liver and kidney as well as increased GSSG concentration in liver, whereas Cr alone produced a significant decrease in GSH content in kidney and GSH/GSSG ratio in both organs. In the SMV-Cr-treated group a significant decrease in renal GSH concentration and GSH/GSSG ratio in both organs occurred. A significant increase in liver GSSG content was also found. The observed significant changes in kidney GSH content and in GSH/GSSG ratio in both rat tissues after Cr might result from the pro-oxidant actions of this metal. Thus, oxidative stress, which is a major pathway for V-induced toxicity, might also be associated with Cr(III)-induced adverse effects in rats.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Lublin, Poland.
| | | |
Collapse
|
16
|
Soazo M, Garcia GB. Vanadium exposure through lactation produces behavioral alterations and CNS myelin deficit in neonatal rats. Neurotoxicol Teratol 2007; 29:503-10. [PMID: 17493788 DOI: 10.1016/j.ntt.2007.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/29/2007] [Accepted: 03/07/2007] [Indexed: 11/27/2022]
Abstract
The current study was performed to assess the vanadium(V)-induced developmental toxicity in sucklings of Wistar rats. Dams of treated litters were intraperitoneally injected with 3 mg NaVO(3)/kg body weight/day during 12 days starting on postnatal day (PND) 10. Surface righting reflex, negative geotaxy and hindlimb support tests were performed on pups every 48 h, from 8th to 18th PND. Open field test was performed on the 21st PND. On 22nd PND, some animals were transcardially perfusion-fixed and their brains were removed and cut with a cryostat. Brain sections were processed for myelin histochemistry and for anti-myelin basic protein immunohistochemistry. Delay in eye opening and decreased muscular strength and locomotion were observed in V-exposed pups of both sexes. A decreased myelin staining in corpus callosum and cerebellum in these pups was also observed. Results suggest that vanadium exposure through lactation would induce neurotoxicity in rat developing CNS.
Collapse
Affiliation(s)
- Marina Soazo
- Morphology Department, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario. Suipacha 531, 2000 Rosario, Santa Fe, Argentina
| | | |
Collapse
|
17
|
Opinion of the Scientific Panel on Dietetic products, nutrition and allergies [NDA] related to the Tolerable Upper Intake Level of Vanadium. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Sanchez DJ, Colomina MT, Domingo JL, Corbella J. Prevention by sodium 4,5-dihydroxybenzene-1,3-disulfonate (Tiron) of vanadium-induced behavioral toxicity in rats. Biol Trace Elem Res 1999; 69:249-59. [PMID: 10468162 DOI: 10.1007/bf02783877] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have shown that oral vanadate (V5+) administration results in behavioral toxicity in rats. The chelating agent Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate) is an effective antidote in the removal of vanadium from vanadium-loaded rats. In this study, the protective activity of Tiron on vanadate-induced behavioral toxicity was evaluated in adult rats. Intraperitoneal treatment with Tiron at 235 or 470 mg/kg was initiated after 6 wk of oral sodium metavanadate administration (16 mg/kg/d) and continued for 2 wk. Although vanadate exposure did not result in a significant reduction in the general activity of the animals in an open field, a lower active avoidance acquisition could be observed. However, the vanadate-induced behavioral deficit was reverted by Tiron administration at 470 mg/kg. The present results suggest that Tiron may protect, at least in part, against metavanadate-induced behavioral toxicity.
Collapse
Affiliation(s)
- D J Sanchez
- Laboratory of Toxicology and Environmental Health, School of Medicine, Rovira i Virgili University, San Lorenzo, Spain
| | | | | | | |
Collapse
|
19
|
Abstract
Vanadium is a steel-grey, corrosion-resistant metal, which exists in oxidation states ranging from -1 to +5. Metallic vanadium does not occur in nature, and the most common valence states are +3, +4, and +5. The pentavalent form (VO3-) predominates in extracellular body fluids whereas the quadrivalent form (VO+2) is the most common intracellular form. Because of its hardness and its ability to form alloys, vanadium (i.e., ferrovanadium) is a common component of hard steel alloys used in machines and tools. Although most foods contain low concentrations of vanadium (< 1 ng/g), food is the major source of exposure to vanadium for the general population. High air concentrations of vanadium occur in the occupation setting during boiler-cleaning operations as a result of the presence of vanadium oxides in the dust. The lungs absorb soluble vanadium compounds (V2O5) well, but the absorption of vanadium salts from the gastrointestinal tract is poor. The excretion of vanadium by the kidneys is rapid with a biological half-life of 20-40 hours in the urine. Vanadium is probably an essential trace element, but a vanadium-deficiency disease has not been identified in humans. The estimated daily intake of the US population ranges from 10-60 micrograms V. Vanadyl sulfate is a common supplement used to enhance weight training in athletes at doses up to 60 mg/d. In vitro and animal studies indicate that vanadate and other vanadium compounds increase glucose transport activity and improve glucose metabolism. In general, the toxicity of vanadium compounds is low. Pentavalent compounds are the most toxic and the toxicity of vanadium compounds usually increases as the valence increases. Most of the toxic effects of vanadium compounds result from local irritation of the eyes and upper respiratory tract rather than systemic toxicity. The only clearly documented effect of exposure to vanadium dust is upper respiratory tract irritation characterized by rhinitis, wheezing, nasal hemorrhage, conjunctivitis, cough, sore throat, and chest pain. Case studies have described the onset of asthma after heavy exposure to vanadium compounds, but clinical studies to date have not detected an increased prevalence of asthma in workers exposed to vanadium.
Collapse
|
20
|
Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 1999; 5:273-91. [PMID: 10381252 DOI: 10.1089/acm.1999.5.273] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential role of vanadium in human health is described as a building material of bones and teeth. However, another very interesting and promising application for vanadium in human health emerges from recent studies that evaluated the role of vanadium in the management of diabetes. Vanadium is present in a variety of foods that we commonly eat. Skim milk, lobster, vegetable oils, many vegetables, grains and cereals are rich source of vanadium (>1 ppm). Fruits, meats, fish, butter, cheese, and beverages are relatively poor sources of vanadium. The daily dietary intake in humans has been estimated to vary from 10 microg to 2 mg of elemental vanadium, depending on the environmental sources of this mineral in the air, water, and food of the particular region tested. In animals, vanadium has been shown essential (1-10 microg vanadium per gram of diet). There is only circumstantial evidence that vanadium is essential for humans. However, in doses ranging from 0.083 mmol/d to 0.42 mmol/d, vanadium has shown therapeutic potential in clinical studies with patients of both insulin-dependent diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM) type. Although vanadium has a significant biological potential, it has a poor therapeutic index, and attempts have been made to reduce the dose of vanadium required for therapeutic effectiveness. Organic forms of vanadium, as opposed to the inorganic sulfate salt of vanadium, are recognized as safer, more absorbable, and able to deliver a therapeutic effect up to 50% greater than the inorganic forms. The goal is to provide vanadium with better gastrointestinal absorption, and in a form that is best able to produce the desired biological effects. As a result, numerous organic complexes of vanadium have been developed including bis(maltolato)oxovanadium (BMOV), bis(cysteinamide N-octyl)oxovanadium known as Naglivan, bis(pyrrolidine-N-carbodithioato)oxovanadium, vanadyl-cysteine methyl ester, and bis-glycinato oxovanadium (BGOV). The health benefits of vanadium and the safety and efficacy of the available vanadium supplements are discussed in this review.
Collapse
Affiliation(s)
- V Badmaev
- Sabinsa Corporation, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
21
|
Sekar N, Li J, Shechter Y. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit Rev Biochem Mol Biol 1996; 31:339-59. [PMID: 8994801 DOI: 10.3109/10409239609108721] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium and its compounds exhibit a wide variety of insulin-like effects. In this review, these effects are discussed with respect to the treatment of type I and type II diabetes in animal models, in vitro actions, antineoplastic role, treatment of IDDM and NIDDM patients, toxicity, and the possible mechanism(s) involved. Newly established CytPTK plays a major role in the bioresponses of vanadium. It has a molecular weight of approximately 53 kDa and is active in the presence of Co2+ rather than Mn2+. Among the protein-tyrosine kinase blockers, staurosporine is found to be a potent inhibitor of CytPTK but a poor inhibitor of InsRTK. Vanadium inhibits PTPase activity, and this in turn enhances the activity of protein tyrosine kinases. Our data show that inhibition of PTPase and protein tyrosine kinase activation has a major role in the therapeutic efficacy of vanadium in treating diabetes mellitus.
Collapse
Affiliation(s)
- N Sekar
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
22
|
Abstract
While the essentiality of vanadium for living organisms has yet to be established with certainty, vanadium has become an increasingly important environmental metal. Moreover, in recent years pharmacological interest in vanadium has also increased because of the hypothetical utilization of oral vanadium as an alternative therapy to parenteral insulin in diabetic patients. Adverse effects of vanadium depend on the circulating levels of this element. Among those effects, it is now well established that vanadate (V+5) and vanadyl (V+4) may be reproductive and developmental toxicants in mammals. Decreased fertility, embryolethality, fetotoxicity, and teratogenicity have been reported to occur in rats, mice, and hamsters following vanadium exposure. The reproductive vanadium toxicity, the maternal and embryo/fetal toxicity of this trace element, the perinatal and postnatal effects of vanadium, as well as the prevention by chelating agents of vanadium-induced developmental toxicity are reviewed here. The developmental effects of vanadium in pregnant diabetic rats are also summarized.
Collapse
Affiliation(s)
- J L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Rovira i Virgili, University, Reus, Spain
| |
Collapse
|
23
|
Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL. Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation. Mol Cell Biochem 1995; 153:233-40. [PMID: 8927043 DOI: 10.1007/bf01075942] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The possible use of vanadium compounds in the treatment of diabetic patients is now being evaluated. However, previously to establish the optimal maximum dose for diabetes therapy, it should be taken into account that vanadium is a highly toxic element to man and animals. The toxic effects of vanadium are here reviewed. The tissue vanadium accumulation, which would mean an additional risk of toxicity following prolonged vanadium administration is also discussed. Recently, it has been shown that coadministration of vanadate and TIRON, an effective chelator in the treatment of vanadium intoxication, reduced the tissue accumulation of this element, decreasing the possibility of toxic side effects derived from chronic vanadium administration without diminishing the hypoglycemic effect of vanadium. However, previously to assess the effectiveness of this treatment in diabetic patients, a critical reevaluation of the antidiabetic action of vanadium and its potential toxicity is clearly needed.
Collapse
Affiliation(s)
- J L Domingo
- School of Medicine, 'Rovira i Virgili' University, Reus, Spain
| | | | | | | | | |
Collapse
|
24
|
Hamel FG, Duckworth WC. The relationship between insulin and vanadium metabolism in insulin target tissues. Mol Cell Biochem 1995; 153:95-102. [PMID: 8927053 DOI: 10.1007/bf01075923] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium (V) is an orally effective treatment for diabetes, but relatively little is known about the mechanisms controlling its normal metabolism nor the long term pharmacokinetics of oral administration. We have examined the accumulation of V in various organs from rats fed liquid diet for up to 18 days, containing no additional V, 1.6, 80, or 160 mumole/kg/day as either sodium orthovanadate (SOV) or vanadyl sulfate (VS). V content was assayed using a sensitive neutron activation analysis method. The organs of the nonsupplemented animals contained widely varying concentrations (ng of V/g dry tissue weight) with brain < fat < blood < heart < muscle < lung < liver < testes < spleen < kidney. All organs accumulated V in a dose dependent manner. Not all organs showed steady state amount of V at 18 days, so additional rats were fed SOV or VS, switched to control diet, and assayed at 0, 4 and 8 days. From this data we calculated organ half lives of V. Insulin sensitive tissue tissues, such as liver and fat, had shorter half-lives than tissues that are relatively less insulin sensitive, such as spleen, brain and testes. SOV and VS fed rats showed similar patterns, but VS had somewhat shorter t1/2's. Additional studies of old and young rats fed control diet for 45 days show accumulation of V in spleen and testes. These results indicate that vanadium metabolism varies widely among different organs, and that insulin, either directly or indirectly has effects on the retention of vanadium. This may have impact on the therapeutic use of vanadium in Type I diabetics with no insulin, or Type II patients who may be relatively hyperinsulinemic.
Collapse
Affiliation(s)
- F G Hamel
- Veterans Administration Medical Center, Omaha, NE 68105, USA
| | | |
Collapse
|
25
|
Abstract
Chelating agents such as calcium disodium ethylenediaminetetraacetate (EDTA), 2,3-dimercaptopropanol (BAL), or D-penicillamine (D-PA) have been widely used for the past 4 decades as antidotes for the treatment of acute and chronic metal poisoning. In recent years, meso-2,3-dimercaptosuccinic acid (DMSA), sodium 2,3-dimercapto-1-propanesulfonate (DMPS) and sodium 4,5-dihydroxybenzene-1,3-disulfonate (Tiron) have also shown to be effective to prevent against toxicity induced by a number of heavy metals. The purpose of the present article was to review the protective activity of various chelating agents against the embryotoxic and teratogenic effects of well-known developmental toxicants (arsenic, cadmium, lead, mercury, uranium, and vanadium). DMSA and DMPS were found to be effective in alleviating arsenate- and arsenite-induced teratogenesis, whereas BAL afforded only some protection against arsenic-induced embryo/fetal toxicity. Also, DMSA, DMPS, and Tiopronin were effective in ameliorating methyl mercury-induced developmental toxicity. Although the embryotoxic and teratogenic effects of vanadate were significantly reduced by Tiron, no significant amelioration of uranium-induced embryotoxicity was observed after treatment with this chelator.
Collapse
Affiliation(s)
- J L Domingo
- Laboratory of Toxicology and Biochemistry, School of Medicine, Rovira i Virgili University, Reus, Spain
| |
Collapse
|
26
|
Domingo JL. Metal-induced developmental toxicity in mammals: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1994; 42:123-41. [PMID: 8207750 DOI: 10.1080/15287399409531868] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is well established that certain metals are toxic to embryonic and fetal tissues and can induce teratogenicity in mammals. The main objective of this paper has been to summarize the toxic effects that excesses of certain metals may cause on mammalian development. The reviewed elements have been divided into four groups: (a) metals of greatest toxicological significance (arsenic, cadmium, lead, mercury, and uranium) that are wide-spread in the human environment, (b) essential trace metals (chromium, cobalt, manganese, selenium, and zinc), (c) other metals with evident biological interest (nickel and vanadium), and (d) metals of pharmacological interest (aluminum, gallium, and lithium). A summary of the therapeutic use of chelating agents in the prevention of metal-induced developmental toxicity has also been included. meso-2,3-Dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane-1-sulfonate (DMPS) have been reported to be effective in alleviating arsenic- and mercury-induced teratogenesis, whereas sodium 4,5-dihydroxybenzene-1,3-disulfonate (Tiron) would protect against vanadium- and uranium-induced developmental toxicity.
Collapse
Affiliation(s)
- J L Domingo
- Laboratory of Toxicology and Biochemistry, School of Medicine, Rovira i Virgili University, Reus, Spain
| |
Collapse
|
27
|
Domingo JL, Bosque MA, Luna M, Corbella J. Prevention by Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate) of vanadate-induced developmental toxicity in mice. TERATOLOGY 1993; 48:133-8. [PMID: 8211819 DOI: 10.1002/tera.1420480207] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vanadate is embryotoxic and fetotoxic in golden hamsters, mice and rats. Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate), a chelating agent widely used in analytical chemistry, is an effective antidote in the treatment of oral or parenteral vanadate poisoning. The present study evaluated the effect of administration of Tiron on sodium metavanadate (NaVO3)-induced developmental toxicity in mice. NaVO3 (25 mg/kg, i.p.) was injected on day 12 of gestation, whereas Tiron was injected subcutaneously at 0, 24, 48, and 72 hr after NaVO3 administration. Tiron effectiveness was assessed at dosage levels of 0, 250, 500, and 1,000 mg/kg. Cesarean sections were performed on gestation day 18. All live fetuses were examined for external, internal, and skeletal malformations and variations. Amelioration by Tiron of NaVO3 developmental toxicity was evidenced by a significant decrease in the number of resorbed fetuses, an increase in the mean fetal weight, and a reduction in the incidence of the skeletal variations caused by NaVO3. According to these results, Tiron offers encouragement with regard to its therapeutic potential for pregnant women exposed to vanadate. However, further investigations, including the effect of increasing the time interval between acute vanadate exposure and initiation of Tiron therapy, are required.
Collapse
Affiliation(s)
- J L Domingo
- Laboratory of Toxicology and Biochemistry, School of Medicine, Rovira i Virgili University, Reus, Spain
| | | | | | | |
Collapse
|
28
|
Gómez M, Sánchez DJ, Domingo JL, Corbella J. Embryotoxic and teratogenic effects of intraperitoneally administered metavanadate in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1992; 37:47-56. [PMID: 1522613 DOI: 10.1080/15287399209531656] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metavanadate was evaluated for developmental toxicity in pregnant Swiss mice. Sodium metavanadate (NaVO3) was administered intraperitoneally on d 6-15 of gestation at doses of 0, 2, 4, or 8 mg/kg/d. On gestation d 18, all live fetuses were examined for external, visceral, and skeletal malformations and variations. Maternal toxicity was observed at 2, 4, and 8 mg/kg/d as evidenced by decreased weight gain during treatment. Increased resorptions and dead fetuses, increased percentage postimplantation loss, and reduced fetal body weight per litter were observed at 4 and 8 mg/kg/d. There were no significant increases in the type or incidence of external and skeletal anomalies, but a significant increase in the incidence of cleft palate was detected at 8 mg/kg/d. The lowest-observed-adverse-effect level (LOAEL) for maternal toxicity was 2 mg NaVO3/kg/d, while 2 mg/kg/d was also the no-observed-adverse-effect level (NOAEL) for significant developmental toxicity.
Collapse
Affiliation(s)
- M Gómez
- Laboratory of Toxicology and Biochemistry, School of Medicine, University of Barcelona, Reus, Spain
| | | | | | | |
Collapse
|