1
|
Raman-Nair J, Cron G, MacLeod K, Lacoste B. Sex-Specific Acute Cerebrovascular Responses to Photothrombotic Stroke in Mice. eNeuro 2024; 11:ENEURO.0400-22.2023. [PMID: 38164600 PMCID: PMC10849032 DOI: 10.1523/eneuro.0400-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanisms underlying cerebrovascular stroke outcomes are poorly understood, and the effects of biological sex on cerebrovascular regulation post-stroke have yet to be fully comprehended. Here, we explore the overlapping roles of gonadal sex hormones and rho-kinase (ROCK), two important modulators of cerebrovascular tone, on the acute cerebrovascular response to photothrombotic (PT) focal ischemia in mice. Male mice were gonadectomized and female mice were ovariectomized to remove gonadal hormones, whereas control ("intact") animals received a sham surgery prior to stroke induction. Intact wild-type (WT) males showed a delayed drop in cerebral blood flow (CBF) compared with intact WT females, whereby maximal CBF drop was observed 48 h following stroke. Gonadectomy in males did not alter this response. However, ovariectomy in WT females produced a "male-like" phenotype. Intact Rock2+/- males also showed the same phenotypic response, which was not altered by gonadectomy. Alternatively, intact Rock2+/- females showed a significant difference in CBF values compared with intact WT females, displaying higher CBF values immediately post-stroke and showing a maximal CBF drop 48 h post-stroke. This pattern was not altered by ovariectomy. Altogether, these data illustrate sex differences in acute CBF responses to PT stroke, which seem to involve gonadal female sex hormones and ROCK2. Overall, this study provides a framework for exploring sex differences in acute CBF responses to focal ischemic stroke in mice.
Collapse
Affiliation(s)
- Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Gregory Cron
- Neurology Department, Stanford University, Stanford 94305, California
| | - Kathleen MacLeod
- Pharmaceutical Sciences, University of British Colombia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
2
|
Li J, Yan Z, Wang Q, Wei S, Liu Q, Liu T, Hu Z. Pretreatment with remote ischemic conditioning attenuates testicular damage after testicular ischemia and reperfusion injury in rats. PLoS One 2023; 18:e0287987. [PMID: 37883446 PMCID: PMC10602300 DOI: 10.1371/journal.pone.0287987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/17/2023] [Indexed: 10/28/2023] Open
Abstract
Testicular torsion is a urological emergency. However, surgical detorsion of the torsed spermatic cord can cause testicular reperfusion injury. Although remote ischemic preconditioning (RIPC) has been convincingly shown to protect organs against ischemia/reperfusion (I/R) injury, little is known regarding the effect of RIPC on testicular torsion/detorsion-induced reperfusion injury. Therefore, we aimed to evaluate the effect of RIPC on testes after testicular I/R injury in a rat model in vivo. Male Sprague-Dawley rats were randomly classified into 4 groups: sham-operated (sham), testicular I/R (TI/R), or remote liver (RIPC liver) and limb (RIPC limb) ischemic preconditioning groups. Testis I/R was induced by 3 h of right spermatic cord torsion (720° clockwise), and reperfusion was allowed for 3 hours. In the RIPC group, four cycles of 5 min of ischemia and 5 min of reperfusion were completed 30 min prior to testicular torsion. The ERK1/2 inhibitor U0126 was administered intravenously at the beginning of reperfusion (1 mg/kg). The testes were taken for the oxidative stress evaluations, histology, apoptosis, immunohistochemical and western blotting analysis. Remote liver and limb ischemic preconditioning attenuated ipsilateral and contralateral testicular damage after testicular I/R injury. For example. RIPC reduced testicular swelling and oxidative stress, lessened structural damage, and inhibited the testicular inflammatory response and apoptosis. Furthermore, RIPC treatment enhanced testicular ERK1/2 phosphorylation postI/R. Inhibition of ERK1/2 activity using U0126 eliminated the protection offered by RIPC. Our data demonstrate for the first time that RIPC protects testes against testicular I/R injury via activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Jiaxue Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibing Yan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qifeng Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quanhua Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Heart Failure after Cardiac Surgery: The Role of Halogenated Agents, Myocardial Conditioning and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23031360. [PMID: 35163284 PMCID: PMC8836224 DOI: 10.3390/ijms23031360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/07/2022] Open
Abstract
Heart disease requires a surgical approach sometimes. Cardiac-surgery patients develop heart failure associated with ischemia induced during extracorporeal circulation. This complication could be decreased with anesthetic drugs. The cardioprotective effects of halogenated agents are based on pre- and postconditioning (sevoflurane, desflurane, or isoflurane) compared to intravenous hypnotics (propofol). We tried to put light on the shadows walking through the line of the halogenated anesthetic drugs’ effects in several enzymatic routes and oxidative stress, waiting for the final results of the ACDHUVV-16 clinical trial regarding the genetic modulation of this kind of drugs.
Collapse
|
4
|
Nieuwenhuijs-Moeke GJ, Bosch DJ, Leuvenink HG. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int J Mol Sci 2021; 22:ijms22052727. [PMID: 33800423 PMCID: PMC7962839 DOI: 10.3390/ijms22052727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Dirk J. Bosch
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Henri G.D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
5
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Gómez-Mendoza DP, Marques FD, Melo-Braga MN, Sprenger RR, Sinisterra RD, Kjeldsen F, Santos RA, Verano-Braga T. Angiotensin-(1-7) oral treatment after experimental myocardial infarction leads to downregulation of CXCR4. J Proteomics 2019; 208:103486. [DOI: 10.1016/j.jprot.2019.103486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 11/27/2022]
|
7
|
Agnic I, Filipovic N, Vukojevic K, Saraga-Babic M, Grkovic I. Isoflurane post-conditioning influences myocardial infarct healing in rats. Biotech Histochem 2018; 93:354-363. [DOI: 10.1080/10520295.2018.1443507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- I Agnic
- Department of Anaesthesiology, University Hospital Split, Split
| | - N Filipovic
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Split
| | - K Vukojevic
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Split
- Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, University of Split School of Medicine, Split, Croatia
| | - M Saraga-Babic
- Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, University of Split School of Medicine, Split, Croatia
| | - I Grkovic
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Split
| |
Collapse
|
8
|
Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4805493. [PMID: 29670681 PMCID: PMC5836441 DOI: 10.1155/2018/4805493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/29/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Oxygen deficit (hypoxia) is a major feature of cardiorespiratory diseases characterized by diaphragm dysfunction, yet the putative role of hypoxic stress as a driver of diaphragm dysfunction is understudied. We explored the cellular and functional consequences of sustained hypoxic stress in a mouse model. Adult male mice were exposed to 8 hours of normoxia, or hypoxia (FiO2 = 0.10) with or without antioxidant pretreatment (N-acetyl cysteine, 200 mg/kg i.p.). Ventilation and metabolism were measured. Diaphragm muscle contractile function, myofibre size and distribution, gene expression, protein signalling cascades, and oxidative stress (TBARS) were determined. Hypoxia caused pronounced diaphragm muscle weakness, unrelated to increased respiratory muscle work. Hypoxia increased diaphragm HIF-1α protein content and activated MAPK, mTOR, Akt, and FoxO3a signalling pathways, largely favouring protein synthesis. Hypoxia increased diaphragm lipid peroxidation, indicative of oxidative stress. FoxO3 and MuRF-1 gene expression were increased. Diaphragm 20S proteasome activity and muscle fibre size and distribution were unaffected by acute hypoxia. Pretreatment with N-acetyl cysteine substantially enhanced cell survival signalling, prevented hypoxia-induced diaphragm oxidative stress, and prevented hypoxia-induced diaphragm dysfunction. Hypoxia is a potent driver of diaphragm weakness, causing myofibre dysfunction without attendant atrophy. N-acetyl cysteine protects the hypoxic diaphragm and may have application as a potential adjunctive therapy.
Collapse
|
9
|
Ma L, Zhu J, Gao Q, Rebecchi MJ, Wang Q, Liu L. Restoring Pharmacologic Preconditioning in the Aging Heart: Role of Mitophagy/Autophagy. J Gerontol A Biol Sci Med Sci 2017; 72:489-498. [PMID: 27565512 DOI: 10.1093/gerona/glw168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
We previously reported that pretreatment with the potent antioxidant TEMPOL improves mitochondrial function and restores preconditioning in the aging heart. Because mitophagy is implicated in cardiac preconditioning and declines with age, this study was designed to investigate how age influences mitophagy in response to preconditioning and whether TEMPOL pretreatment improves it. Old (22-24 months) rats were pretreated with or without 4-week TEMPOL and compared with young (4-6 months) untreated rats. Cardioprotection induced by isoflurane (ISO) in vivo and in isolated cardiomyocytes in vitro was assessed following ischemia/reperfusion and simulated hypoxia/reoxygenation, respectively. Mitophagy was determined by comparing the levels/subcellular locations of key mitophagic markers using Western blotting and immunofluorescence techniques. ISO preconditioned the young but not old heart in vivo and in vitro. Aging impaired ISO-induced mitochondrial accumulation of PINK1 and Parkin, as well as mitochondrial ubiquitination, and baseline and ISO-induced autophagic flux assessed by LC3 puncta, membrane associated LC3-II and p62. Pretreatment with TEMPOL improved these processes and restored ISO preconditioning. Inhibition of autophagy abolished ISO-induced protection in cardiomyocytes from young and TEMPOL pretreated old rats. Thus, antioxidant pretreatment significantly improves mitophagic response to ISO in old myocardium, which may contribute to restoration of cardioprotection in senescent animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Anesthesiology, School of Medicine, Stony Brook University, New York
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qun Gao
- Department of Anesthesiology, School of Medicine, Stony Brook University, New York
| | - Mario J Rebecchi
- Department of Anesthesiology, School of Medicine, Stony Brook University, New York
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Lixin Liu
- Department of Anesthesiology, School of Medicine, Stony Brook University, New York
| |
Collapse
|
10
|
Vetrovoy OV, Rybnikova EA, Samoilov MO. Cerebral mechanisms of hypoxic/ischemic postconditioning. BIOCHEMISTRY (MOSCOW) 2017; 82:392-400. [DOI: 10.1134/s000629791703018x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Neuroprotective effect of hypobaric hypoxic postconditioning is accompanied by dna protection and lipid peroxidation changes in rat hippocampus. Neurosci Lett 2016; 639:49-52. [PMID: 28025115 DOI: 10.1016/j.neulet.2016.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022]
Abstract
The present study was performed to explore the effect of severe hypobaric hypoxia (180Torr, 3h) and severe hypoxia followed by hypoxic postconditioning (360Torr, 2h, 3 episodes) on DNA fragmentation and dynamics of lipid peroxidation products in rat hippocampus. The severe hypoxia induced intense DNA fragmentation in the hippocampus. A persistent decrease of thiobarbituric acid reactive substances in the hippocampus was also detected in response to severe hypoxia while the levels of Schiff bases did not significantly change. The postconditioning prevented severe hypoxia-induced DNA fragmentation, returned the levels of thiobarbituric acid reactive substances to the baseline and decreased the levels of Schiff bases. These findings indicate that the neuroprotective effect of hypoxic postconditioning on hippocampal neurons detected as suppression of hypoxia-induced DNA fragmentation is accompanied by the changes in lipid peroxidation processes.
Collapse
|
12
|
Liu JD, Deng Q, Tian HH, Pang YT, Deng GL. Wnt/Glycogen Synthase Kinase 3β/β-catenin Signaling Activation Mediated Sevoflurane Preconditioning-induced Cardioprotection. Chin Med J (Engl) 2016; 128:2346-53. [PMID: 26315083 PMCID: PMC4733809 DOI: 10.4103/0366-6999.163375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Sevoflurane preconditioning (SP) has been shown to invoke potent myocardial protection in animal studies and clinical trials. However, the mechanisms underlying SP are complex and not yet well understood. We investigated the hypothesis that the cardioprotection afforded by SP is mediated via the Wnt/glycogen synthase kinase 3β (GSK3β)/β-catenin signaling pathway. Methods: Two models were established: A Langendorff perfused rat heart model and the H9C2 cell hypoxia/reoxygenation model. Both rats and H9C2 cells were randomly divided into 6 groups as follows: S group, ischemia-reperfusion (I/R) group, DMSO group, IWP group, SP group, and SP + IWP group. Hemodynamic parameters, lactate dehydrogenase (LDH) activity in coronary effluent and cell culture supernatant, and the infarct size were measured to evaluate myocardial ischemia-reperfusion injuries. To determine the activity of Wnt/GSK3β/β-catenin signaling pathway, the expressions of Wnt3a, phospho-GSK3β, and β-catenin were measured by Western blotting. Results: SP improved cardiac function recovery, reduced infarct size (18 ± 2% in the SP group compared with 35 ± 4% in the I/R group; P < 0.05), decreased LDH activity in coronary effluent, and culture supernatant. IWP-2, an inhibitor of Wnt, abolished the cardioprotection by SP. In addition, Western blotting analysis demonstrated that the expressions of Wnt3a, phospho-GSK3β, and β-catenin significantly (P < 0.05) increased in the I/R group, compared with the S group; and compared to I/R group, SP significantly (P < 0.05) increased Wnt3a, phospho-GSK3β, and β-catenin expressions. Pretreatment with IWP-2 significantly (P < 0.05) abolished SP-induced Wnt/GSK3β/β-catenin signaling activation. Conclusions: The results showed for the first time that cardioprotection afforded by SP may be mediated partly via the Wnt/GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jin-Dong Liu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | | | | | | | | |
Collapse
|
13
|
Lemoine S, Tritapepe L, Hanouz JL, Puddu PE. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: anaesthetic post-conditioning potentially translatable to humans? Br J Anaesth 2016; 116:456-75. [PMID: 26794826 DOI: 10.1093/bja/aev451] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myocardial conditioning is actually an essential strategy in the management of ischaemia-reperfusion injury. The concept of anaesthetic post-conditioning is intriguing, its action occurring at a pivotal moment (that of reperfusion when ischaemia reperfusion lesions are initiated) where the activation of these cardio-protective mechanisms could overpower the mechanisms leading to ischaemia reperfusion injuries. Desflurane and sevoflurane are volatile anaesthetics frequently used during cardiac surgery. This review focuses on the efficacy of desflurane and sevoflurane administered during early reperfusion as a potential cardio-protective strategy. In the context of experimental studies in animal models and in human atrial tissues in vitro, the mechanisms underlying the cardio-protective effect of these agents and their capacity to induce post-conditioning have been reviewed in detail, underlining the role of reactive oxygen species generation, the activation of the cellular signalling pathways, and the actions on mitochondria along with the translatable actions in humans; this might well be sufficient to set the basis for launching randomized clinical studies, actually needed to confirm this strategy as one of real impact.
Collapse
Affiliation(s)
- S Lemoine
- Department of Anaesthesiology and Intensive Care, France and Faculty of Medicine, Centre Hospitalier Universitaire de Caen, Normandie Université, Pôle d'Anesthésie-Réanimation Chirurgicale - Niveau 6, CHU de Caen, Avenue Cote de Nacre, Caen Cedex 14033, France
| | - L Tritapepe
- Department of Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - J L Hanouz
- Department of Anaesthesiology and Intensive Care, France and Faculty of Medicine, Centre Hospitalier Universitaire de Caen, Normandie Université, Pôle d'Anesthésie-Réanimation Chirurgicale - Niveau 6, CHU de Caen, Avenue Cote de Nacre, Caen Cedex 14033, France
| | - P E Puddu
- Department of Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Activation of Adenosine Triphosphate-regulated Potassium Channels during Reperfusion Restores Isoflurane Postconditioning-induced Cardiac Protection in Acutely Hyperglycemic Rabbits. Anesthesiology 2015; 122:1299-311. [PMID: 25812079 DOI: 10.1097/aln.0000000000000648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hyperglycemia is known to inhibit myocardial anesthetic postconditioning. The authors tested whether activation of adenosine triphosphate-regulated potassium (KATP) channels would restore anesthetic postconditioning during acute hyperglycemia. METHODS Rabbits subjected to 40-min myocardial ischemia and 3-h reperfusion (ischemia-reperfusion [I/R]) were assigned to groups (n = 10 in each group) with or without isoflurane postconditioning (2.1% for 5 min) in the presence or absence of hyperglycemia and/or the KATP channel agonist diazoxide. Creatine kinase MB fraction and infarct size were measured. Phosphorylated protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) were assessed. Oxidative stress was evaluated by measuring malondialdehyde, and apoptosis was assessed by dUTP nick-end labeling and activated caspase-3. RESULTS Postconditioning significantly reduced myocardial infarct size (26 ± 4% in the isoflurane [ISO] group vs. 53 ± 2% in the I/R group; P = 0.007); whereas, hyperglycemia inhibited this effect (infarct size: 47 ± 2%, P = 0.02 vs. the ISO group). Phosphorylated and eNOS levels increased, whereas malondialdehyde and myocardial apoptosis were significantly lower after isoflurane postconditioning compared with I/R. These effects were inhibited by acute hyperglycemia. Diazoxide restored the protective effect of isoflurane in the hyperglycemic animals (infarct size: 29 ± 2%; P = 0.01 vs. the I/R group), reduced malondialdehyde levels and myocardial apoptosis, but did not affect the expression of phosphorylated Akt or eNOS. CONCLUSIONS KATP channel activation restored anesthetic postconditioning-induced myocardial protection under acute hyperglycemia. This effect occurred without increasing Akt or eNOS phosphorylation, suggesting that KATP channels are located downstream to Akt and eNOS in the pathway of isoflurane-induced myocardial postconditioning.
Collapse
|
15
|
Lotz C, Kehl F. Volatile Anesthetic-Induced Cardiac Protection: Molecular Mechanisms, Clinical Aspects, and Interactions With Nonvolatile Agents. J Cardiothorac Vasc Anesth 2015; 29:749-60. [DOI: 10.1053/j.jvca.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/07/2023]
|
16
|
Yao H, Han X, Han X. The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am J Cardiovasc Drugs 2014; 14:433-42. [PMID: 25160498 DOI: 10.1007/s40256-014-0089-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis occurs frequently in myocardial infarction, oxidative stress injury, and ischemia/reperfusion injury, and plays a pivotal role in the development of heart diseases. Inhibition of apoptosis alone does not necessarily lead to meaningful rescue in terms of either cardiomyocyte survival or function. Activation of the PI3K/Akt signaling pathway induced by insulin not only inhibits cardiomyocyte apoptosis but also substantially preserves and even improves regional and overall cardiac function. Insulin can protect cardiomyocytes from apoptosis by regulating a number of signaling molecules, such as eNOS, FOXOs, Bad, GSK-3β, mTOR, NDRG2, and Nrf2, through activating PI3K and Akt. This review focuses on the protective mechanisms and targets of insulin identified in the prevention and treatment of myocardial injury.
Collapse
|
17
|
Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AKS. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 2014; 5:341. [PMID: 25278902 PMCID: PMC4165278 DOI: 10.3389/fphys.2014.00341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during cardiac ischemia and reperfusion (IR) injury. The molecular mechanisms by which VA impart cardioprotection are still poorly understood. Because of the emerging role of mitochondria as therapeutic targets in diseases, including ischemic heart disease, it is important to know if VA-induced cytoprotective mechanisms are mediated at the mitochondrial level. In recent years, considerable evidence points to direct effects of VA on mitochondrial channel/transporter protein functions and electron transport chain (ETC) complexes as potential targets in mediating cardioprotection. This review furnishes an integrated overview of targets that VA impart on mitochondrial channels/transporters and ETC proteins that could provide a basis for cation regulation and homeostasis, mitochondrial bioenergetics, and reactive oxygen species (ROS) emission in redox signaling for cardiac cell protection during IR injury.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - David F. Stowe
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
- Zablocki VA Medical CenterMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
| | - Ranjan K. Dash
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| |
Collapse
|
18
|
Álvarez P, Tapia L, Mardones LA, Pedemonte JC, Farías JG, Castillo RL. Cellular mechanisms against ischemia reperfusion injury induced by the use of anesthetic pharmacological agents. Chem Biol Interact 2014; 218:89-98. [PMID: 24835546 DOI: 10.1016/j.cbi.2014.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/20/2014] [Accepted: 04/28/2014] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion (IR) cycle in the myocardium is associated with activation of an injurious cascade, thus leading to new myocardial challenges, which account for up to 50% of infarct size. Some evidence implicates reactive oxygen species (ROS) as a probable cause of myocardial injury in prooxidant clinical settings. Damage occurs during both ischemia and post-ischemic reperfusion in animal and human models. The mechanisms that contribute to this damage include the increase in cellular calcium (Ca(2+)) concentration and induction of ROS sources during reperfusion. Pharmacological preconditioning, which includes pharmacological strategies that counteract the ROS burst and Ca(2+) overload followed to IR cycle in the myocardium, could be effective in limiting injury. Currently widespread evidence supports the use of anesthetics agents as an important cardioprotective strategy that act at various levels such as metabotropic receptors, ion channels or mitochondrial level. Their administration before a prolonged ischemic episode is known as anesthetic preconditioning, whereas when given at the very onset of reperfusion, is termed anesthetic postconditioning. Both types of anesthetic conditioning reduce, albeit not to the same degree, the extent of myocardial injury. This review focuses on cellular and pathophysiological concepts on the myocardial damage induced by IR and how anesthetic pharmacological agents commonly used could attenuate the functional and structural effects induced by oxidative stress in cardiac tissue.
Collapse
Affiliation(s)
- P Álvarez
- Critical Care Unit, Hospital Clínico Metropolitano La Florida, Santiago, Chile; Faculty of Medicine, University Finis Terrae, Chile; Pathophysiology Program, Faculty of Medicine, University of Chile, Chile
| | - L Tapia
- Pathophysiology Program, Faculty of Medicine, University of Chile, Chile; Emergency Unit, Clínica Dávila, Santiago, Chile
| | - L A Mardones
- Pathophysiology Program, Faculty of Medicine, University of Chile, Chile
| | - J C Pedemonte
- Anesthesia Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Casilla 54-D, Temuco, Chile
| | - R L Castillo
- Pathophysiology Program, Faculty of Medicine, University of Chile, Chile.
| |
Collapse
|
19
|
Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J Anesth 2014; 28:740-58. [PMID: 24610035 DOI: 10.1007/s00540-014-1805-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/04/2014] [Indexed: 01/12/2023]
Abstract
Inhalational anesthetics-induced organoprotection has received much research interest and has been consistently demonstrated in different models of organ damage, in particular, ischemia-reperfusion injury, which features prominently in the perioperative period and in cardiovascular events. The cellular mechanisms accountable for effective organoprotection over heart, brain, kidneys, and other vital organs have been elucidated in turn in the past two decades, including receptor stimulations, second-messenger signal relay and amplification, end-effector activation, and transcriptional modification. This review summarizes the signaling pathways and the molecular participants in inhalational anesthetics-mediated organ protection published in the current literature, comparing and contrasting the 'preconditioning' and 'postconditioning' phenomena, and the similarities and differences in mechanisms between organs. The salubrious effects of inhalational anesthetics on vital organs, if reproducible in human subjects in clinical settings, would be of exceptional clinical importance, but clinical studies with better design and execution are prerequisites for valid conclusions to be made. Xenon as the emerging inhalational anesthetic, and its organoprotective efficacy, mechanism, and relative advantages over other anesthetics, are also discussed.
Collapse
|
20
|
Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 2012; 7:e46092. [PMID: 23029398 PMCID: PMC3461004 DOI: 10.1371/journal.pone.0046092] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ischemic postconditioning (IPOC), or relief of ischemia in a stuttered manner, has emerged as an innovative treatment strategy to reduce programmed cell death, attenuate ischemic injuries, and improve neurological outcomes. However, the mechanisms involved have not been completely elucidated. Recent studies indicate that autophagy is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. This study aims to determine the role of autophagy in IPOC-induced neuroprotection against focal cerebral ischemia in rats. METHODOLOGY/PRINCIPAL FINDINGS A focal cerebral ischemic model with permanent middle cerebral artery (MCA) occlusion plus transient common carotid artery (CCA) occlusion was established. The autophagosomes and the expressions of LC3/Beclin 1/p62 were evaluated for their contribution to the activation of autophagy. We found that autophagy was markedly induced with the upregulation of LC3/Beclin 1 and downregulation of p62 in the penumbra at various time intervals following ischemia. IPOC, performed at the onset of reperfusion, reduced infarct size, mitigated brain edema, inhibited the induction of LC3/Beclin 1 and reversed the reduction of p62 simultaneously. Rapamycin, an inducer of autophagy, partially reversed all the aforementioned effects induced by IPOC. Conversely, autophagy inhibitor 3-methyladenine (3-MA) attenuated the ischemic insults, inhibited the activation of autophagy, and elevated the expression of anti-apoptotic protein Bcl-2, to an extent comparable to IPOC. CONCLUSIONS/SIGNIFICANCE The present study suggests that inhibition of the autophagic pathway plays a key role in IPOC-induced neuroprotection against focal cerebral ischemia. Thus, pharmacological inhibition of autophagy may provide a novel therapeutic strategy for the treatment of stroke.
Collapse
|
21
|
Zhao H, Ren C, Chen X, Shen J. From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets 2012; 13:173-87. [PMID: 22204317 DOI: 10.2174/138945012799201621] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 01/13/2023]
Abstract
Ischemic postconditioning is a concept originally defined to contrast with that of ischemic preconditioning. While both preconditioning and postconditioning confer a neuroprotective effect on brain ischemia, preconditioning is a sublethal insult performed in advance of brain ischemia, and postconditioning, which conventionally refers to a series of brief occlusions and reperfusions of the blood vessels, is conducted after ischemia/reperfusion. In this article, we first briefly review the history of preconditioning, including the experimentation that initially uncovered its neuroprotective effects and later revealed its underlying mechanisms-of-action. We then discuss how preconditioning research evolved into that of postconditioning--a concept that now represents a broad range of stimuli or triggers, including delayed postconditioning, pharmacological postconditioning, remote postconditioning--and its underlying protective mechanisms involving the Akt, MAPK, PKC and K(ATP) channel cell-signaling pathways. Because the concept of postconditioning is so closely associated with that of preconditioning, and both share some common protective mechanisms, we also discuss whether a combination of preconditioning and postconditioning offers greater protection than preconditioning or postconditioning alone.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5327, USA.
| | | | | | | |
Collapse
|
22
|
Redel A, Stumpner J, Smul TM, Lange M, Jazbutyte V, Ridyard DG, Roewer N, Kehl F. Endothelial nitric oxide synthase mediates the first and inducible nitric oxide synthase mediates the second window of desflurane-induced preconditioning. J Cardiothorac Vasc Anesth 2012; 27:494-501. [PMID: 22683156 DOI: 10.1053/j.jvca.2012.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Nitric oxide synthases (NOSs) mediate the first window of anesthetic-induced preconditioning (APC). The authors tested the hypothesis that endothelial NOS (eNOS) mediates the first window and inducible NOS (iNOS) mediates the second window of APC. DESIGN Randomized, prospective, blinded laboratory investigation. SETTING Experimental laboratory. PARTICIPANTS Mice. INTERVENTIONS Mice were subjected to a 45-minute coronary artery occlusion (CAO) and a 180-minute reperfusion. C57BL/6 mice received desflurane, 1.0 minimum alveolar concentration, for 30 minutes or 12, 24, 48, or 96 hours before CAO. In eNOS(-/-) and iNOS(-/-) mice, desflurane was given 30 minutes and 48 hours before CAO. In the control groups, no desflurane was administered. Myocardial infarct size (IS) was determined after staining with Evans blue and triphenyltetrazolium chloride. MEASUREMENTS AND MAIN RESULTS The second window of APC was detectable at 48 hours but not at 12, 24, and 96 hours after preconditioning. In the control groups, IS was not different among the wild-type (50 ± 10%), eNOS(-/-) (52 ± 14%), and iNOS(-/-) (46 ± 10%) mice. The IS decreased significantly (p < 0.05) when desflurane was administered 30 minutes (10 ± 6%) or 48 hours (16 ± 7%) before CAO in wild-type mice, 48 hours (21 ± 13%) before CAO in eNOS(-/-) mice, and 30 minutes (13 ± 6%) before CAO in iNOS(-/-) mice. Desflurane given 30 minutes before CAO in eNOS(-/-) mice (60 ± 10%) and 48 hours before CAO in iNOS(-/-) mice (48 ± 21%) did not decrease the IS significantly compared with controls. CONCLUSIONS Endothelial NOS and iNOS work independently to mediate the first and second windows of APC, respectively. Endothelial NOS is not necessary to trigger the second window of APC.
Collapse
Affiliation(s)
- Andreas Redel
- Department of Anesthesia and Critical Care, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Andrews DT, Royse C, Royse AG. The mitochondrial permeability transition pore and its role in anaesthesia-triggered cellular protection during ischaemia-reperfusion injury. Anaesth Intensive Care 2012; 40:46-70. [PMID: 22313063 DOI: 10.1177/0310057x1204000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarises the most recent data in support of the role of the mitochondrial permeability transition pore (mPTP) in ischaemia-reperfusion injury, how anaesthetic agents interact with this molecular channel, and the relevance this holds for current anaesthetic practice. Ischaemia results in damage to the electron transport chain of enzymes and sets into play the assembly of a non-specific mega-channel (the mPTP) that transgresses the inner mitochondrial membrane. During reperfusion, uncontrolled opening of the mPTP causes widespread depolarisation of the inner mitochondrial membrane, hydrolysis of ATP, mitochondrial rupture and eventual necrotic cell death. Similarly, transient opening of the mPTP during less substantial ischaemia leads to differential swelling of the intermembrane space compared to the mitochondrial matrix, rupture of the outer mitochondrial membrane and release of pro-apoptotic factors into the cytosol. Recent data suggests that cellular protection from volatile anaesthetic agents follows specific downstream interactions with this molecular channel that are initiated early during anaesthesia. Intravenous anaesthetic agents also prevent the opening of the mPTP during reperfusion. Although by dissimilar mechanisms, both volatiles and propofol promote cell survival by preventing uncontrolled opening of the mPTP after ischaemia. It is now considered that anaesthetic-induced closure of the mPTP is the underlying effector mechanism that is responsible for the cytoprotection previously demonstrated in clinical studies investigating anaesthetic-mediated cardiac and neuroprotection. Manipulation of mPTP function offers a novel means of preventing ischaemic cell injury. Anaesthetic agents occupy a unique niche in the pharmacological armamentarium available for use in preventing cell death following ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- David T Andrews
- Department of Anaesthesia, Mater Misericordiae Health Services, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
24
|
Smul TM, Stumpner J, Blomeyer C, Lotz C, Redel A, Lange M, Roewer N, Kehl F. Propofol Inhibits Desflurane-Induced Preconditioning in Rabbits. J Cardiothorac Vasc Anesth 2011; 25:276-81. [DOI: 10.1053/j.jvca.2010.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 11/11/2022]
|
25
|
Yu LN, Yu J, Zhang FJ, Yang MJ, Ding TT, Wang JK, He W, Fang T, Chen G, Yan M. Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins. J Zhejiang Univ Sci B 2011; 11:661-72. [PMID: 20803770 DOI: 10.1631/jzus.b1000155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sevoflurane postconditioning reduces myocardial infarct size. The objective of this study was to examine the role of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway in anesthetic postconditioning and to determine whether PI3K/Akt signaling modulates the expression of pro- and antiapoptotic proteins in sevoflurane postconditioning. Isolated and perfused rat hearts were prepared first, and then randomly assigned to the following groups: Sham-operation (Sham), ischemia/reperfusion (Con), sevoflurane postconditioning (SPC), Sham plus 100 nmol/L wortmannin (Sham+Wort), Con+Wort, SPC+Wort, and Con+dimethylsulphoxide (DMSO). Sevoflurane postconditioning was induced by administration of sevoflurane (2.5%, v/v) for 10 min from the onset of reperfusion. Left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximum increase in rate of LVDP (+dP/dt), maximum decrease in rate of LVDP (-dP/dt), heart rate (HR), and coronary flow (CF) were measured at baseline, R30 min (30 min of reperfusion), R60 min, R90 min, and R120 min. Creatine kinase (CK) and lactate dehydrogenase (LDH) were measured after 5 min and 10 min reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining at the end of reperfusion. Total Akt and phosphorylated Akt (phospho-Akt), Bax, Bcl-2, Bad, and phospho-Bad were determined by Western blot analysis. Analysis of variance (ANOVA) and Student-Newman-Keuls' test were used to investigate the significance of differences between groups. The LVDP, + or - dP/dt, and CF were higher and LVEDP was lower in the SPC group than in the Con group at all points of reperfusion (P<0.05). The SPC group had significantly reduced CK and LDH release and decreased infarct size compared with the Con group [(22.9 + or - 8)% vs. (42.4 + or - 9.4)%, respectively; P<0.05]. The SPC group also had increased the expression of phospho-Akt, Bcl-2, and phospho-Bad, and decreased the expression of Bax. Wortmannin abolished the cardioprotection of sevoflurane postconditioning. Sevoflurane postconditioning may protect the isolated rat heart. Activation of PI3K and modulation of the expression of pro- and antiapoptotic proteins may play an important role in sevoflurane-induced myocardial protection.
Collapse
Affiliation(s)
- Li-na Yu
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Amr YM, Yassin IM. Cardiac Protection During On-Pump Coronary Artery Bypass Grafting: Ischemic Versus Isoflurane Preconditioning. Semin Cardiothorac Vasc Anesth 2010; 14:205-11. [DOI: 10.1177/1089253210376839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives. To compare the cardioprotective effects of anesthetic preconditioning by isoflurane with ischemic preconditioning. Methods. A total of 45 patients scheduled for elective coronary artery bypass graft (CABG) surgery were randomized to preconditioning either by 3 episodes of 1-minute aortic cross-clamping followed by 4 minutes of reperfusion after each episode, a 10-minute exposure to isoflurane 2.5% followed by 5 minutes of washout, or no preconditioning technique (control group). Hemodynamic data, cardiac troponin I (cTnI), creatine kinase isoenzyme MB (CK-MB) release, need for inotropic support, hospital stay, and adverse cardiac events were measured and recorded. Results. Preconditioned patients showed marked improvement in hemodynamic data, less need for inotropic support, and less postoperative increase in the serum levels of CK-MB and cTnI. No significant difference in hospital stay was found. Also, 4 patients in the control group had adverse cardiac events versus 1 patient in the isoflurane and ischemic groups in 1 year of follow-up. Conclusions. Based on this very small sample size, these data support a cardioprotective effect of isoflurane and ischemic preconditioning during CABG surgery.
Collapse
|
27
|
Dai AL, Fan LH, Zhang FJ, Yang MJ, Yu J, Wang JK, Fang T, Chen G, Yu LN, Yan M. Effects of sevoflurane preconditioning and postconditioning on rat myocardial stunning in ischemic reperfusion injury. J Zhejiang Univ Sci B 2010; 11:267-74. [PMID: 20349523 DOI: 10.1631/jzus.b0900390] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ischemic preconditioning and postconditioning distinctly attenuate ventricular arrhythmia after ischemia without affecting the severity of myocardial stunning. Therefore, we report the effects of sevoflurane preconditioning and postconditioning on stunned myocardium in isolated rat hearts. Isolated rat hearts were underwent 20 min of global ischemia and 40 min of reperfusion. After an equilibration period (20 min), the hearts in the preconditioning group were exposed to sevoflurane for 5 min and next washout for 5 min before ischemia. Hearts in the sevoflurane postconditioning group underwent equilibration and ischemia, followed immediately by sevoflurane exposure for the first 5 min of reperfusion. The control group received no treatment before and after ischemia. Left ventricular pressure, heart rate, coronary flow, electrocardiogram, and tissue histology were measured as variables of ventricular function and cellular injury, respectively. There was no significant difference in the duration of reperfusion ventricular arrhythmias between control and sevoflurane preconditioning group (P=0.195). The duration of reperfusion ventricular arrhythmias in the sevoflurane postconditioning group was significantly shorter than that in the other two groups (P<0.05). +/-(dP/dt)(max) in the sevoflurane preconditioning group at 5, 10, 15, 20, and 30 min after reperfusion was significantly higher than that in the control group (P<0.05), and there were no significant differences at 40 min after reperfusion among the three groups (P>0.05). As expected, for a 20-min general ischemia, infarct size in heart slices determined by 2,3,5-triphenyltetrazolium chloride staining among the groups was not obvious. Sevoflurane postconditioning reduces reperfusion arrhythmias without affecting the severity of myocardial stunning. In contrast, sevoflurane preconditioning has no beneficial effects on reperfusion arrhythmias, but it is in favor of improving ventricular function and recovering myocardial stunning. Sevoflurane preconditioning and postconditioning may be useful for correcting the stunned myocardium.
Collapse
Affiliation(s)
- An-lu Dai
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhu J, Rebecchi MJ, Tan M, Glass PSA, Brink PR, Liu L. Age-associated differences in activation of Akt/GSK-3beta signaling pathways and inhibition of mitochondrial permeability transition pore opening in the rat heart. J Gerontol A Biol Sci Med Sci 2010; 65:611-9. [PMID: 20427381 DOI: 10.1093/gerona/glq035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pretreatment with isoflurane decreased myocardial infarction size in young rats (3-5 months) but not in old rats (20-24 months). To understand the mechanisms underlying the failure to protect the old myocardium, differences in phosphorylation of Akt/GSK-3beta and age-associated differences in mitochondrial permeability transition pore (mPTP) opening in the aging heart in vivo were measured. Isoflurane significantly increased Akt and GSK-3beta phosphorylation in the young groups. In contrast, levels of p-Akt and p-GSK-3beta were highly elevated in the old sham control groups. Isoflurane preconditioning significantly reduced the fall in NAD(+) levels induced by ischemia/reperfusion injury in the young animals, reflecting the inhibition of mPTP opening. In the old animals, however, isoflurane failed to prevent the fall in NAD(+) levels induced by ischemia/reperfusion injury. Lack of isoflurane-induced cardioprotective effects, seen in the old animals, can be explained by age-related differences in Akt/GSK-3beta signaling pathway and the inability to reduce mPTP opening following ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Anesthesiology, Stony Brook University School of Medicine, HSC L4 060, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hyperglycemia Inhibits Anesthetic-induced Postconditioning in the Rabbit Heart via Modulation of Phosphatidylinositol-3-kinase/Akt and Endothelial Nitric Oxide Synthase Signaling. J Cardiovasc Pharmacol 2010; 55:348-57. [DOI: 10.1097/fjc.0b013e3181d26583] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Fang NX, Yao YT, Shi CX, Li LH. Attenuation of ischemia–reperfusion injury by sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts. Mol Biol Rep 2010; 37:3763-9. [DOI: 10.1007/s11033-010-0030-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
|
31
|
Raphael J. Physiology and Pharmacology of Myocardial Preconditioning. Semin Cardiothorac Vasc Anesth 2010; 14:54-59. [DOI: 10.1177/1089253210363008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Perioperative myocardial ischemia and infarction are not only major sources of morbidity and mortality in patients undergoing surgery but also important causes of prolonged hospital stay and resource utilization. Ischemic and pharmacological preconditioning and postconditioning have been known for more than two decades to provide protection against myocardial ischemia and reperfusion and limit myocardial infarct size in many experimental animal models, as well as in clinical studies (1-3). This paper will review the physiology and pharmacology of ischemic and drug-induced preconditioning and postconditioning of the myocardium with special emphasis on the mechanisms by which volatile anesthetics provide myocardial protection. Insights gained from animal and clinical studies will be presented and reviewed and recommendations for the use of perioperative anesthetics and medications will be given.
Collapse
Affiliation(s)
- Jacob Raphael
- University of Virginia Health Center, Charlottesville, VA, USA,
| |
Collapse
|
32
|
|
33
|
Isoflurane postconditioning protects against reperfusion injury by preventing mitochondrial permeability transition by an endothelial nitric oxide synthase-dependent mechanism. Anesthesiology 2010; 112:73-85. [PMID: 19996950 DOI: 10.1097/aln.0b013e3181c4a607] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The role of endothelial nitric oxide synthase (eNOS) in isoflurane postconditioning (IsoPC)-elicited cardioprotection is poorly understood. The authors addressed this issue using eNOS mice. METHODS In vivo or Langendorff-perfused mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in the presence and absence of postconditioning produced with isoflurane 5 min before and 3 min after reperfusion. Ca+-induced mitochondrial permeability transition (MPT) pore opening was assessed in isolated mitochondria. Echocardiography was used to evaluate ventricular function. RESULTS Postconditioning with 0.5, 1.0, and 1.5 minimum alveolar concentrations of isoflurane decreased infarct size from 56 +/- 10% (n = 10) in control to 48 +/- 10%, 41 +/- 8% (n = 8, P < 0.05), and 38 +/- 10% (n = 8, P < 0.05), respectively, and improved cardiac function in wild-type mice. Improvement in cardiac function by IsoPC was blocked by N-nitro-L-arginine methyl ester (a nonselective nitric oxide synthase inhibitor) administered either before ischemia or at the onset of reperfusion. Mitochondria isolated from postconditioned hearts required significantly higher in vitro Ca+ loading than did controls (78 +/- 29 microm vs. 40 +/- 25 microm CaCl2 per milligram of protein, n = 10, P < 0.05) to open the MPT pore. Hearts from eNOS mice displayed no marked differences in infarct size, cardiac function, and sensitivity of MPT pore to Ca+, compared with wild-type hearts. However, IsoPC failed to alter infarct size, cardiac function, or the amount of Ca+ necessary to open the MPT pore in mitochondria isolated from the eNOS hearts compared with control hearts. CONCLUSIONS IsoPC protects mouse hearts from reperfusion injury by preventing MPT pore opening in an eNOS-dependent manner. Nitric oxide functions as both a trigger and a mediator of cardioprotection produced by IsoPC.
Collapse
|
34
|
Sevoflurane postconditioning converts persistent ventricular fibrillation into regular rhythm. Eur J Anaesthesiol 2010; 26:766-71. [PMID: 19367168 DOI: 10.1097/eja.0b013e32832a58fa] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Recent studies showed that ischaemic postconditioning converted persistent ventricular fibrillation to sinus rhythm. The influence of anaesthetic postconditioning on ventricular fibrillation has not yet been determined. In the present study, we studied the possible effect of sevoflurane postconditioning on persistent reperfusion-induced ventricular fibrillation in the isolated rat heart model. METHODS Isolated Langendorff-perfused rat hearts (n=80) were subjected to 40 min of global ischaemia and reperfusion. The hearts with persistent ventricular fibrillation (n=16) present after 15 min of reperfusion were then randomly assigned into one of the two groups: controls (n=8), reperfusion was continued for 25 min without any intervention, and sevoflurane postconditioning (n=8), rat hearts in the sevoflurane postconditioning group were exposed to sevoflurane at a concentration of 8.0% for 2 min followed by 23 min of reperfusion. As for the third group, the rest of the hearts were included in the nonpersistently fibrillating hearts group (n=64). Left ventricular pressures, heart rate, coronary flow, electrogram and infarct size were measured as variables of ventricular function and cellular injury, respectively. RESULTS Conversion of ventricular fibrillation into regular rhythm was observed in all hearts subjected to sevofluane postconditioning. Regular beating was maintained by all anaesthetic postconditioned hearts during the subsequent reperfusion. None of the hearts in the control group had normal rhythm at the end of the experiment. At the end of reperfusion, the coronary flow was increased in sevoflurane postconditioned hearts compared with the hearts that did not develop persistent ventricular fibrillation. CONCLUSION Sevoflurane postconditioning possesses strong antiarrhythmic effect against persistent reperfusion-induced ventricular fibrillation. Anaesthetic postconditioning may have the potential to be an antiarrhythmic therapy for reperfusion-related arrhythmias.
Collapse
|
35
|
Wagner C, Tillack D, Simonis G, Strasser RH, Weinbrenner C. Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3beta, and apoptosis. Mol Cell Biochem 2010; 339:135-47. [PMID: 20054613 DOI: 10.1007/s11010-009-0377-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 12/21/2009] [Indexed: 12/18/2022]
Abstract
Post-conditioning by repetitive cycles of reperfusion/ischemia after prolonged ischemia protects the heart from infarction. The objectives of this study were: Are kinases (PI3-kinase, mTOR, and GSK-3beta) involved in the signaling pathway of post-conditioning? Does post-conditioning result in a diminished necrosis or apoptosis? In open chest rats the infarct size was determined after 30 min of regional ischemia and 30 min of reperfusion using propidium iodide and microspheres. Post-conditioning was performed by three cycles of 30 s reperfusion and reocclusion each, immediately upon reperfusion. PI3-kinase and mTOR were blocked using wortmannin (0.6 mg/kg) or rapamycin (0.25 mg/kg), respectively. The phosphorylation of GSK-3beta and p70S6K was determined with phospho-specific antibodies. TUNEL staining and detection of apoptosis-inducing factor (AIF) were used for the determination of apoptosis. Control hearts had an infarct size of 49 +/- 3%, while post-conditioning significantly reduced it to 29 +/- 3% (P < 0.01). Wortmannin as well as rapamycin completely blocked the infarct size reduction of post-conditioning (51 +/- 2% and 54 +/- 5%, respectively). Western blot analysis revealed that post-conditioning increased the phosphorylation of GSK-3beta by 2.3 times (P < 0.01), and this increase could be blocked by wortmannin, a PI3-kinase inhibitor. Although rapamycin blocked the infarct size reduction, phosphorylation of p70S6K was not increased in post-conditioned hearts. After 2 h of reperfusion, the post-conditioned hearts had significantly fewer TUNEL-positive nuclei (35 %) compared to control hearts (53%; P < 0.001). AIF was equally reduced in post-conditioned rat hearts (P < 0.05 vs. control). Infarct size reduction by ischemic post-conditioning of the in vivo rat heart is PI3-kinase dependent and involves mTOR. Furthermore, GSK-3beta, which is thought to be a regulator of the mPTP, is part of the signaling pathway of post-conditioning. Finally, apoptosis was inhibited by post-conditioning, which was shown by two independent methods. The role of apoptosis and/or autophagy in post-conditioning has to be further elucidated to find therapeutic targets to protect the heart from the consequences of acute myocardial infarction.
Collapse
Affiliation(s)
- Claudia Wagner
- Department of Medicine and Cardiology, Heart Center Dresden University Hospital, University of Technology Dresden, P.O. Box 95, Fetscherstr. 76, Dresden 01307, Germany
| | | | | | | | | |
Collapse
|
36
|
Pagel PS. Cardioprotection by Volatile Anesthetics: Established Scientific Principle or Lingering Clinical Uncertainty? J Cardiothorac Vasc Anesth 2009; 23:589-93. [DOI: 10.1053/j.jvca.2009.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Indexed: 01/12/2023]
|
37
|
Smul TM, Lange M, Redel A, Stumpner J, Lotz CA, Roewer N, Kehl F. Desflurane-Induced Cardioprotection Against Ischemia-Reperfusion Injury Depends On Timing. J Cardiothorac Vasc Anesth 2009; 23:600-6. [DOI: 10.1053/j.jvca.2008.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Indexed: 11/11/2022]
|
38
|
Yao YT, Li LH, Chen L, Wang WP, Li LB, Gao CQ. Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury: the role of radical oxygen species, extracellular signal-related kinases 1/2 and mitochondrial permeability transition pore. Mol Biol Rep 2009; 37:2439-46. [PMID: 19693689 DOI: 10.1007/s11033-009-9755-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/06/2009] [Indexed: 01/08/2023]
Abstract
The roles of reactive oxygen species (ROS), extracellular signal-regulated kinase 1/2 (ERK 1/2) and mitochondrial permeability transition pore (mPTP) in sevoflurane postconditioning induced cardioprotection against ischemia-reperfusion injury in Langendorff rat hearts were investigated. When compared with the unprotected hearts subjected to 30 min of ischemia followed by 1 h of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved functional recovery, decreased infarct size, reduced lactate dehydrogenase and creatine kinase-MB release, and reduced myocardial malondialdehyde production. However, these protective effects were abolished in the presence of either ROS scavenger N-acetylcysteine or ERK 1/2 inhibitor PD98059, and accompanied by prevention of ERK 1/2 phosphorylation and elimination of inhibitory effect on mPTP opening. These findings suggested that sevoflurane postconditioning protected isolated rat hearts against ischemia-reperfusion injury via the recruitment of the ROS-ERK 1/2-mPTP signaling cascade.
Collapse
Affiliation(s)
- Yun-Tai Yao
- Department of Anesthesiology, Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
Matchett GA, Allard MW, Martin RD, Zhang JH. Neuroprotective effect of volatile anesthetic agents: molecular mechanisms. Neurol Res 2009; 31:128-34. [PMID: 19298752 DOI: 10.1179/174313209x393546] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Intra-operative cerebral ischemia can be catastrophic, and volatile anesthetic agents have been recognized for their potential neuroprotective properties since the 1960s. In this review, we examine the neuroprotective effects of five volatile anesthetic agents in current or recent clinical use: isoflurane, sevoflurane, desflurane, halothane and enflurane. METHODS A review of publications in the National Library of Medicine and National Institutes of Health database from 1970 to 2007 was conducted. RESULTS Volatile anesthetic agents have been shown to be neuroprotective in multiple animal works of ischemic brain injury. Short-term neuroprotection (<1 week post-ischemia) in experimental cerebral ischemia has been reported in multiple works, although long-term neuroprotection (> or = 1 week post-ischemia) remains controversial. Comparison works have not demonstrated superiority of one specific volatile agent over another in experimental models of brain injury. Relatively few human works have examined the protective effects of volatile anesthetic agents and conclusive evidence of a neuroprotective effect has yet to emerge from human works. CONCLUSION Proposed mechanisms related to the neuroprotective effect of volatile anesthetic agents include activation of ATP-dependent potassium channels, up-regulation of nitric oxide synthase, reduction of excitotoxic stressors and cerebral metabolic rate, augmentation of peri-ischemic cerebral blood flow and up-regulation of antiapoptotic factors including MAP kinases.
Collapse
Affiliation(s)
- Gerald A Matchett
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Ischemic postconditioning initially referred to a stuttering reperfusion performed immediately after reperfusion, for preventing ischemia/reperfusion injury in both myocardial and cerebral infarction. It has evolved into a concept that can be induced by a broad range of stimuli or triggers, and may even be performed as late as 6 h after focal ischemia and 2 days after transient global ischemia. The concept is thought to be derived from ischemic preconditioning or partial/gradual reperfusion, but in fact the first experiment for postconditioning was carried out much earlier than that of preconditioning or partial/gradual reperfusion, in the research on myocardial ischemia. This review first examines the protective effects and parameters of postconditioning in various cerebral ischemic models. Thereafter, it provides insights into the protective mechanisms of postconditioning associated with reperfusion injury and the Akt, mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and ATP-sensitive K+ (K(ATP)) channel cell signaling pathways. Finally, some open issues and future challenges regarding clinical translation of postconditioning are discussed.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5327, USA.
| |
Collapse
|
41
|
Huffmyer J, Raphael J. Physiology and pharmacology of myocardial preconditioning and postconditioning. Semin Cardiothorac Vasc Anesth 2009; 13:5-18. [PMID: 19329471 DOI: 10.1177/1089253208330709] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perioperative myocardial ischemia and infarction are not only major sources of morbidity and mortality in patients undergoing surgery but also important causes of prolonged hospital stay and resource utilization. Ischemic and pharmacological preconditioning and postconditioning have been known for more than 2 decades to provide protection against myocardial ischemia and reperfusion and limit myocardial infarct size in many experimental animal models, as well as in clinical studies. This article reviews the physiology and pharmacology of ischemic and drug-induced preconditioning and postconditioning of the myocardium with special emphasis on the mechanisms by which volatile anesthetics provide myocardial protection. Insights gained from animal and clinical studies are reviewed and recommendations given for the use of perioperative anesthetics and medications.
Collapse
Affiliation(s)
- Julie Huffmyer
- Department of Anesthesiology, University of Virginia Health Sciences System, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
42
|
Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology 2009; 110:317-25. [PMID: 19194158 DOI: 10.1097/aln.0b013e3181942cb4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. METHODS Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning within 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pretreatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or N-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or N-nitro-L-arginine methyl ester. Interactions between Hsp90 and eNOS, and eNOS activation, were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. RESULTS APC and IPC decreased infarct size (by 50% and 59%, respectively), and this action was abolished by Hsp90 inhibitors. N-nitro-L-arginine methyl ester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes, and eNOS was below the level of detection. CONCLUSION The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signaling during APC.
Collapse
|
43
|
Yao Y, Li L, Li L, Gao C, Shi C. Sevoflurane Postconditioning Protects Chronically-Infarcted Rat Hearts against Ischemia-Reperfusion Injury by Activation of Pro-survival Kinases and Inhibition of Mitochondrial Permeability Transition Pore Opening upon Reperfusion. Biol Pharm Bull 2009; 32:1854-61. [DOI: 10.1248/bpb.32.1854] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuntai Yao
- Department of Anesthesiology, Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College
| | - Lihuan Li
- Department of Anesthesiology, Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College
| | - Libing Li
- Department of Cardiovascular Surgery and Cardiovascular Institute, General Hospital of the People's Liberation Army
| | - Changqing Gao
- Department of Cardiovascular Surgery and Cardiovascular Institute, General Hospital of the People's Liberation Army
| | - Chunxia Shi
- Department of Anesthesiology, Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College
| |
Collapse
|
44
|
Pagel PS, Krolikowski JG, Pratt PF, Shim YH, Amour J, Warltier DC, Weihrauch D. The mechanism of helium-induced preconditioning: a direct role for nitric oxide in rabbits. Anesth Analg 2008; 107:762-8. [PMID: 18713880 DOI: 10.1213/ane.0b013e3181815995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Helium produces preconditioning against myocardial infarction by activating prosurvival signaling, but whether nitric oxide (NO) generated by endothelial NO synthase plays a role in this phenomenon is unknown. We tested the hypothesis that NO mediates helium-induced cardioprotection in vivo. METHODS Rabbits (n = 62) instrumented for hemodynamic measurement were subjected to a 30-min left anterior descending coronary artery occlusion and 3 h reperfusion, and received 0.9% saline (control) or three cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture before left anterior descending coronary artery occlusion in the absence or presence of pretreatment with the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg), the selective inducible NOS inhibitor aminoguanidine hydrochloride (AG; 300 mg/kg), or selective neuronal NOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg). In additional rabbits, the fluorescent probe 4,5-diaminofluroscein diacetate (DAF-2DA) and confocal laser microscopy were used to detect NO production in the absence or presence of helium with or without L-NAME pretreatment. RESULTS Helium reduced (P < 0.05) infarct size (24% +/- 4% of the left ventricular area at risk; mean +/- sd) compared with control (46% +/- 3%). L-NAME, AG, and 7-NI did not alter myocardial infarct size when administered alone. L-NAME, but not 7-NI or AG, abolished helium-induced cardioprotection. Helium enhanced DAF-2DA fluorescence compared with control (26 +/- 8 vs 15 +/- 5 U, respectively). Pretreatment with L-NAME abolished these helium-induced increases in DAF-2DA fluorescence. CONCLUSIONS The results indicate that cardioprotection by helium is mediated by NO that is probably generated by endothelial NOS in vivo.
Collapse
Affiliation(s)
- Paul S Pagel
- Department of Anesthesiology, Medical College of Wisconsin, Clement J. Zablocki Veterans Affairs Medical Center, Anesthesia Service, 5000 W. National Ave., Milwaukee, WI 53295, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Li H, Wang JK, Zeng YM, Yang CX, Chen HT, Wen XJ, Shui CL, Liang H. SEVOFLURANE POST-CONDITIONING PROTECTS AGAINST MYOCARDIAL REPERFUSION INJURY BY ACTIVATION OF PHOSPHATIDYLINOSITOL-3-KINASE SIGNAL TRANSDUCTION. Clin Exp Pharmacol Physiol 2008; 35:1043-51. [PMID: 18505453 DOI: 10.1111/j.1440-1681.2008.04952.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heng Li
- Department of Anaesthesiology, Affiliated Hospital of First Clinical College, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shim YH, Kersten JR. Preconditioning, anesthetics, and perioperative medication. Best Pract Res Clin Anaesthesiol 2008; 22:151-65. [PMID: 18494394 DOI: 10.1016/j.bpa.2007.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of endogenous signal transduction pathways, by a variety of stimuli including ischemic and anesthetic pre- and post-conditioning, protects myocardium against ischemia and reperfusion injury. Experimental evidence suggests that adenosine-regulated potassium channels, cyclooxygenase-2, intracellular kinases, endothelial nitric oxide synthase, and membrane bound receptors play critical roles in signal transduction, and that intracellular signaling pathways ultimately converge on mitochondria to produce cardioprotection. Disease states, and perioperative medications such as sulfonylureas and COX-2 antagonists, could have adverse effects on cardioprotection by impairing activation of ion channels and proteins that are important in cell signaling. Insights gained from animal and clinical studies are reviewed and recommendations given for the use of perioperative anesthetics and medications.
Collapse
Affiliation(s)
- Yon Hee Shim
- Department of Anesthesiology, Pharmacology and Toxicology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
47
|
Chen HT, Yang CX, Li H, Zhang CJ, Wen XJ, Zhou J, Fan YL, Huang T, Zeng YM. Cardioprotection of sevoflurane postconditioning by activating extracellular signal-regulated kinase 1/2 in isolated rat hearts. Acta Pharmacol Sin 2008; 29:931-41. [PMID: 18664326 DOI: 10.1111/j.1745-7254.2008.00824.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM The activation of extracellular signal-regulated kinase (ERK)1/2 protects against ischemic-reperfusion injury. Whether ERK1/2 mediates the cardioprotection of sevoflurane postconditioning is unknown. We tested whether sevoflurane postconditioning produces cardioprotection via an ERK1/2-dependent mechanism. METHODS In protocol 1, Langendorff-perfused Sprague-Dawley rat hearts (n=84, 12 per group), with the exception of the Sham group, were subjected to 30 min ischemia followed by 90 min reperfusion and were assigned to the untreated (control) group, followed by 4 cycles of ischemic postconditioning (25 s of each), 3% (v/v) sevoflurane postconditioning (for 5 min and 10 min of washout), and the PD98059 solvent DMSO (<0.2%), ERK1/2 inhibitor PD98059 (20 micromol/L), and Sevo+PD administration. Left ventricular hemodynamics and coronary flow at 30 min of equilibrium were recorded at 30, 60, and 90 min of reperfusion, respectively. Acute infarct size was measured by triphenyltetrazolium chloride staining. The configuration of mitochondria was observed by an electron microscope. Western blot analysis was used to determine the contents of cytosolic and mitochondrial cytochrome c at the end of reperfusion. In protocol 2, after 15 min of reperfusion, the expression of total and phosphorylated forms of ERK1/2 and its downstream target p70S6K was determined by Western blotting. RESULTS No differences in baseline hemodynamics were observed among the experimental groups (P>0.05). After reperfusion, compared with the control group, sevoflurane postconditioning and ischemic postconditioning significantly(P<0.05) improved functional recovery and largely (P<0.05) decreased myocardial infarct size (22.9%+/-4.6% and 21.2%+/-3.8%, vs 39.4%+/- 5.7%, both P<0.05). Sevoflurane-mediated protection was abolished by PD98059. CONCLUSION Anesthetic postconditioning by sevoflurane effectively protects against reperfusion damage by activating ERK1/2 in vitro.
Collapse
Affiliation(s)
- Hong-tao Chen
- Jiangsu Province Key Laboratory of Anaesthesiology, Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pagel PS. Postconditioning by volatile anesthetics: salvaging ischemic myocardium at reperfusion by activation of prosurvival signaling. J Cardiothorac Vasc Anesth 2008; 22:753-65. [PMID: 18922439 DOI: 10.1053/j.jvca.2008.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Indexed: 12/26/2022]
Affiliation(s)
- Paul S Pagel
- Anesthesia Service, Clement J Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| |
Collapse
|
49
|
Rao Y, Wang YL, Zhang WS, Liu J. Emulsified isoflurane produces cardiac protection after ischemia-reperfusion injury in rabbits. Anesth Analg 2008; 106:1353-9, table of contents. [PMID: 18420844 DOI: 10.1213/ane.0b013e3181679347] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In this study, we examined the cardioprotective effects of parental emulsified isoflurane compared with inhaled isoflurane. METHODS Thirty-two rabbits were subjected to 30 min of myocardial ischemia induced by temporary ligation of the left anterior descending coronary artery followed by 3 h of reperfusion. Before left anterior descending coronary artery occlusion, the rabbits were randomly allocated into one of four groups (eight for each group): group C, no ischemia preconditioning treatment; group IS, inhaled isoflurane 1.1% end-tidal; group EI, a continuous infusion of 8% emulsified isoflurane to an end-tidal concentration of 0.64%; and group IN, a continuous infusion of 30% Intralipid started 30 min. Treatments were started 30 min before ischemia followed by a 15 min washout period for isoflurane groups. Myocardial infarct volume, lactate dehydrogenase, and creatine kinase levels were measured and changes in mitochondrial ultrastructure assessed after 3 h myocardial reperfusion. RESULTS Myocardial infarct size 3 h after reperfusion was lower in groups IS and EI compared with groups C and IN (20% +/- 8%, 18% +/- 8%, 39% +/- 6%, and 34% +/- 9%, respectively, P < 0.01). There were no differences in myocardial infarct size between groups IS and EI or between groups C and IN. Plasma lactate dehydrogenase and creatine kinase levels were lower in group IS (456 +/- 58 U/L and 1725 +/- 230 U/L) and group EI (451 +/- 54 U/L and 1686 +/- 444 U/L) 3 h after myocardial reperfusion compared with groups C (676 +/- 82 U/L and 2373 +/- 529 U/L; P < 0.01). Mitochondrial ultrastructure changes were less pronounced in groups IS and EI compared with group C. CONCLUSIONS Our results indicate that, in rabbits, i.v. emulsified isoflurane provides similar myocardial protection against ischemia-reperfusion injury as inhaled isoflurane.
Collapse
Affiliation(s)
- Yan Rao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | | | | | | |
Collapse
|
50
|
|