1
|
Chen D, Jiang J, Lu J, Wu P, Zhang H, Zuo C, Shi K. Brain Network and Abnormal Hemispheric Asymmetry Analyses to Explore the Marginal Differences in Glucose Metabolic Distributions Among Alzheimer's Disease, Parkinson's Disease Dementia, and Lewy Body Dementia. Front Neurol 2019; 10:369. [PMID: 31031697 PMCID: PMC6473028 DOI: 10.3389/fneur.2019.00369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Facilitating accurate diagnosis and ensuring appropriate treatment of dementia subtypes, including Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and Lewy body dementia (DLB), is clinically important. However, the differences in glucose metabolic distribution among these three dementia subtypes are minor, which can result in difficulties in diagnosis by visual assessment or traditional quantification methods. Here, we explored this issue using novel approaches, including brain network and abnormal hemispheric asymmetry analyses. We generated 18F-labeled fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) images from patients with AD, PDD, and DLB, and healthy control (HC) subjects (n = 22, 18, 22, and 22, respectively) from Huashan hospital, Shanghai, China. Brain network properties were measured and between-group differences evaluated using graph theory. We also calculated and explored asymmetry indices for the cerebral hemispheres in the four groups, to explore whether differences between the two hemispheres were characteristic of each group. Our study revealed significant differences in the network properties of the HC and AD groups (small-world coefficient, 1.36 vs. 1.28; clustering coefficient, 1.48 vs. 1.59; characteristic path length, 1.57 vs. 1.64). In addition, differing hub regions were identified in the different dementias. We also identified rightward asymmetry in the hemispheric brain networks of patients with AD and DLB, and leftward asymmetry in the hemispheric brain networks of patients with PDD, which were attributable to aberrant topological properties in the corresponding hemispheres.
Collapse
Affiliation(s)
- Danyan Chen
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Jiehui Jiang
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai, China
| | - Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Kuangyu Shi
- Department Nuclear Medicine, University of Bern, Bern, Switzerland.,Department of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Walker Z, Gandolfo F, Orini S, Garibotto V, Agosta F, Arbizu J, Bouwman F, Drzezga A, Nestor P, Boccardi M, Altomare D, Festari C, Nobili F. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia. Eur J Nucl Med Mol Imaging 2018; 45:1534-1545. [PMID: 29779045 PMCID: PMC6061481 DOI: 10.1007/s00259-018-4031-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
Purpose There are no comprehensive guidelines for the use of FDG PET in the following three clinical scenarios: (1) diagnostic work-up of patients with idiopathic Parkinson’s disease (PD) at risk of future cognitive decline, (2) discriminating idiopathic PD from progressive supranuclear palsy, and (3) identifying the underlying neuropathology in corticobasal syndrome. Methods We therefore performed three literature searches and evaluated the selected studies for quality of design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were the sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiving operating characteristic curve, and positive/negative likelihood ratio of FDG PET in detecting the target condition. Using the Delphi method, a panel of seven experts voted for or against the use of FDG PET based on published evidence and expert opinion. Results Of 91 studies selected from the three literature searches, only four included an adequate quantitative assessment of the performance of FDG PET. The majority of studies lacked robust methodology due to lack of critical outcomes, inadequate gold standard and no head-to-head comparison with an appropriate reference standard. The panel recommended the use of FDG PET for all three clinical scenarios based on nonquantitative evidence of clinical utility. Conclusion Despite widespread use of FDG PET in clinical practice and extensive research, there is still very limited good quality evidence for the use of FDG PET. However, in the opinion of the majority of the panellists, FDG PET is a clinically useful imaging biomarker for idiopathic PD and atypical parkinsonism associated with dementia.
Collapse
Affiliation(s)
- Zuzana Walker
- Division of Psychiatry, University College London, London, UK. .,St Margaret's Hospital, Essex Partnership University NHS Foundation Trust, Epping, CM16 6TN, UK.
| | - Federica Gandolfo
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Stefania Orini
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, University Hospitals of Geneva, Geneva University, Geneva, Switzerland
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Femke Bouwman
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne and German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Queensland Brain Institute, University of Queensland and the Mater Hospital, Brisbane, Australia
| | - Marina Boccardi
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry, University of Geneva, Geneva, Switzerland.,LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Daniele Altomare
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa & Clinical Neurology Polyclinic IRCCS San Martino-IST, Genoa, Italy.
| | | |
Collapse
|
3
|
Song IU, Chung YA, Chung SW, Jeong J. Early diagnosis of Alzheimer's disease and Parkinson's disease associated with dementia using cerebral perfusion SPECT. Dement Geriatr Cogn Disord 2015; 37:276-85. [PMID: 24356537 DOI: 10.1159/000357128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Since patterns of cognitive dysfunction in mild Parkinson's disease associated with dementia (PDD) are similar to those in mild Alzheimer's disease (AD), it is difficult to accurately differentiate between these two types of dementia in their early phases using neuropsychological tests. The purpose of the current study was to investigate differences in cerebral perfusion patterns of patients with AD and PDD at the earliest stages using single photon emission computed tomography (SPECT). METHODS We consecutively recruited 31 patients with mild PDD, 32 patients with mild probable AD and 33 age-matched healthy subjects. All subjects underwent (99m)Tc-hexamethylpropyleneamine oxime perfusion SPECT and completed general neuropsychological tests. RESULTS We found that both mild PDD and AD patients showed distinct hypoperfusion in frontal, parietal and temporal regions, compared with healthy subjects. More importantly, hypoperfusion in occipital and cerebellar regions was observed only in mild PDD. CONCLUSION The observation of a significant decrease in cerebral perfusion in occipital and cerebellar regions in patients with mild PDD is likely useful to differentiate between PDD and AD at the earliest stages.
Collapse
Affiliation(s)
- In-Uk Song
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | |
Collapse
|
4
|
Barreto GE, Iarkov A, Moran VE. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson's disease. Front Aging Neurosci 2015; 6:340. [PMID: 25620929 PMCID: PMC4288130 DOI: 10.3389/fnagi.2014.00340] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 01/10/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, which is characterized by neuroinflammation, dopaminergic neuronal cell death and motor dysfunction, and for which there are no proven effective treatments. The negative correlation between tobacco consumption and PD suggests that tobacco-derived compounds can be beneficial against PD. Nicotine, the more studied alkaloid derived from tobacco, is considered to be responsible for the beneficial behavioral and neurological effects of tobacco use in PD. However, several metabolites of nicotine, such as cotinine, also increase in the brain after nicotine administration. The effect of nicotine and some of its derivatives on dopaminergic neurons viability, neuroinflammation, and motor and memory functions, have been investigated using cellular and rodent models of PD. Current evidence shows that nicotine, and some of its derivatives diminish oxidative stress and neuroinflammation in the brain and improve synaptic plasticity and neuronal survival of dopaminergic neurons. In vivo these effects resulted in improvements in mood, motor skills and memory in subjects suffering from PD pathology. In this review, we discuss the potential benefits of nicotine and its derivatives for treating PD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana Bogotá, D. C., Colombia
| | - Alexander Iarkov
- Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile ; Research & Development Service, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Valentina Echeverria Moran
- Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile ; Research & Development Service, Bay Pines VA Healthcare System Bay Pines, FL, USA ; Research Service, James A Haley Veterans' Hospital Tampa, FL, USA ; Department of Molecular Medicine, Morsani College of Medicine, University of South Tampa, FL, USA
| |
Collapse
|
5
|
Song IU, Park JW, Chung SW, Chung YA. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease. J Clin Neurosci 2014; 21:1533-7. [PMID: 24814853 DOI: 10.1016/j.jocn.2013.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/22/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
Abstract
There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET.
Collapse
Affiliation(s)
- In-Uk Song
- Department of Neurology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271 Cheonbo-ro, Uijeongbu 480-717, Republic of Korea
| | - Jeong-Wook Park
- Department of Neurology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271 Cheonbo-ro, Uijeongbu 480-717, Republic of Korea.
| | - Sung-Woo Chung
- Department of Neurology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271 Cheonbo-ro, Uijeongbu 480-717, Republic of Korea
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| |
Collapse
|
6
|
Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, Walker Z, Turkheimer FE, Brooks DJ. Microglia, amyloid, and glucose metabolism in Parkinson's disease with and without dementia. Neuropsychopharmacology 2013; 38:938-49. [PMID: 23303049 PMCID: PMC3629382 DOI: 10.1038/npp.2012.255] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[(11)C](R)PK11195-PET measures upregulation of translocator protein, which is associated with microglial activation, [(11)C]PIB-PET is a marker of amyloid, while [(18)F]FDG-PET measures cerebral glucose metabolism (rCMRGlc). We hypothesize that microglial activation is an early event in the Parkinson's disease (PD) spectrum and is independent of the amyloid pathology. The aim of this study is to evaluate in vivo the relationship between microglial activation, amyloid deposition, and glucose metabolism in Parkinson's disease dementia (PDD) and PD subjects without dementia. Here, we evaluated 11 PDD subjects, 8 PD subjects without dementia, and 24 control subjects. Subjects underwent T1 and T2 MRI, [(11)C](R)PK11195, [(18)F]FDG, and [(11)C]PIB PET scans. Parametric maps of [(11)C](R)PK11195 binding potential, rCMRGlc, and [(11)C]PIB uptake were interrogated using region of interest and SPM (statistical parametric mapping) analysis. The PDD patients showed a significant increase of microglial activation in anterior and posterior cingulate, striatum, frontal, temporal, parietal, and occipital cortical regions compared with the controls. The PD subjects also showed a statistically significant increase in microglial activation in temporal, parietal, and occipital regions. [(11)C]PIB uptake was marginally increased in PDD and PD. There was a significant reduction in glucose metabolism in PDD and PD. We have also demonstrated pixel-by-pixel correlation between mini-mental state examination (MMSE) score and microglial activation, and MMSE score and rCMRGlc. In conclusion, we have demonstrated that cortical microglial activation and reduced glucose metabolism can be detected early on in this disease spectrum. Significant microglial activation may be a factor in driving the disease process in PDD. Given this, agents that affect microglial activation could have an influence on disease progression.
Collapse
Affiliation(s)
- Paul Edison
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK,Clinical Senior Lecturer, Imperial College London, MRC Cyclotron Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK E-mail:
| | - Imtiaz Ahmed
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK
| | - Zhen Fan
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK
| | - Rainer Hinz
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Giorgio Gelosa
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK,Department of Neurology, University of Milan-Bicocca, Milan, Italy
| | - K Ray Chaudhuri
- MRC Centre of Neurodegeneration Research, Kings College London, London, UK
| | - Zuzana Walker
- Department of Mental Health Sciences, University College London, London, UK
| | - Federico E Turkheimer
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK,MRC Centre of Neurodegeneration Research, Kings College London, London, UK
| | - David J Brooks
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK,Hammersmith Imanet, GE Healthcare, London, UK
| |
Collapse
|
7
|
Cortical hypometabolism and hypoperfusion in Parkinson's disease is extensive: probably even at early disease stages. Brain Struct Funct 2010; 214:303-17. [PMID: 20361208 DOI: 10.1007/s00429-010-0246-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Recent cerebral blood flow (CBF) and glucose consumption (CMRglc) studies of Parkinson's disease (PD) revealed conflicting results. Using simulated data, we previously demonstrated that the often-reported subcortical hypermetabolism in PD could be explained as an artifact of biased global mean (GM) normalization, and that low-magnitude, extensive cortical hypometabolism is best detected by alternative data-driven normalization methods. Thus, we hypothesized that PD is characterized by extensive cortical hypometabolism but no concurrent widespread subcortical hypermetabolism and tested it on three independent samples of PD patients. We compared SPECT CBF images of 32 early-stage and 33 late-stage PD patients with that of 60 matched controls. We also compared PET FDG images from 23 late-stage PD patients with that of 13 controls. Three different normalization methods were compared: (1) GM normalization, (2) cerebellum normalization, (3) reference cluster normalization (Yakushev et al.). We employed standard voxel-based statistics (fMRIstat) and principal component analysis (SSM). Additionally, we performed a meta-analysis of all quantitative CBF and CMRglc studies in the literature to investigate whether the global mean (GM) values in PD are decreased. Voxel-based analysis with GM normalization and the SSM method performed similarly, i.e., both detected decreases in small cortical clusters and concomitant increases in extensive subcortical regions. Cerebellum normalization revealed more widespread cortical decreases but no subcortical increase. In all comparisons, the Yakushev method detected nearly identical patterns of very extensive cortical hypometabolism. Lastly, the meta-analyses demonstrated that global CBF and CMRglc values are decreased in PD. Based on the results, we conclude that PD most likely has widespread cortical hypometabolism, even at early disease stages. In contrast, extensive subcortical hypermetabolism is probably not a feature of PD.
Collapse
|
8
|
Liepelt I, Reimold M, Maetzler W, Godau J, Reischl G, Gaenslen A, Herbst H, Berg D. Cortical hypometabolism assessed by a metabolic ratio in Parkinson's disease primarily reflects cognitive deterioration-[18
F]FDG-PET. Mov Disord 2009; 24:1504-11. [DOI: 10.1002/mds.22662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Artefactual subcortical hyperperfusion in PET studies normalized to global mean: Lessons from Parkinson’s disease. Neuroimage 2009; 45:249-57. [DOI: 10.1016/j.neuroimage.2008.07.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 11/21/2022] Open
|
10
|
Data-driven intensity normalization of PET group comparison studies is superior to global mean normalization. Neuroimage 2009; 46:981-8. [PMID: 19303935 DOI: 10.1016/j.neuroimage.2009.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/13/2009] [Accepted: 03/10/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Global mean (GM) normalization is one of the most commonly used methods of normalization in PET and SPECT group comparison studies of neurodegenerative disorders. It requires that no between-group GM difference is present, which may be strongly violated in neurodegenerative disorders. Importantly, such GM differences often elude detection due to the large intrinsic variance in absolute values of cerebral blood flow or glucose consumption. Alternative methods of normalization are needed for this type of data. MATERIALS AND METHODS Two types of simulation were performed using CBF images from 49 controls. Two homogeneous groups of 20 subjects were sampled repeatedly. In one group, cortical CBF was artificially decreased moderately (simulation I) or slightly (simulation II). The other group served as controls. Ratio normalization was performed using five reference regions: (1) Global mean; (2) An unbiased VOI; (3) Data-driven region extraction (Andersson); (4-5) Reference cluster methods (Yakushev et al.). Using voxel-based statistics, it was determined how much of the original signal was detected following each type of normalization. RESULTS For both simulations, global mean normalization performed poorly, with only a few percent of the original signal recovered. Global mean normalization moreover created artificial increases. In contrast, the data-driven reference cluster method detected 65-95% of the original signal. CONCLUSION In the present simulation, the reference cluster method was superior to GM normalization. We conclude that the reference cluster method will likely yield more accurate results in the study of patients with early to moderate stage neurodegenerative disorders.
Collapse
|
11
|
Borghammer P, Jonsdottir KY, Cumming P, Ostergaard K, Vang K, Ashkanian M, Vafaee M, Iversen P, Gjedde A. Normalization in PET group comparison studies--the importance of a valid reference region. Neuroimage 2008; 40:529-540. [PMID: 18258457 DOI: 10.1016/j.neuroimage.2007.12.057] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 11/28/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION In positron emission tomography (PET) studies of cerebral blood flow (CBF) and metabolism, the large interindividual variation commonly is minimized by normalization to the global mean prior to statistical analysis. This approach requires that no between-group or between-state differences exist in the normalization region. Given the variability typical of global CBF and the practical limit on sample size, small group differences in global mean easily elude detection, but still bias the comparison, with profound consequences for the physiological interpretation of the results. MATERIALS AND METHODS Quantitative [15O]H2O PET recordings of CBF were obtained in 45 healthy subjects (21-81 years) and 14 patients with hepatic encephalopathy (HE). With volume-of-interest (VOI) and voxel-based statistics, we conducted regression analyses of CBF as function of age in the healthy group, and compared the HE group to a subset of the controls. We compared absolute CBF values, and CBF normalized to the gray matter (GM) and white matter (WM) means. In additional simulation experiments, we manipulated the cortical values of 12 healthy subjects and compared these to unaltered control data. RESULTS In healthy aging, CBF was shown to be unchanged in WM and central regions. In contrast, with normalization to the GM mean, CBF displayed positive correlation with age in the central regions. Very similar artifactual increases were seen in the HE comparison and also in the simulation experiment. CONCLUSION Ratio normalization to the global mean readily elevates CBF in unchanged regions when a systematic between-group difference exists in gCBF, also when this difference is below the detection threshold. We suggest that the routine normalization to the global mean in earlier studies resulted in spurious interpretations of perturbed CBF. Normalization to central WM yields less biased results in aging and HE and could potentially serve as a normalization reference region in other disorders as well.
Collapse
Affiliation(s)
- Per Borghammer
- PET center, Aarhus University Hospitals, Denmark; Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Denmark.
| | | | - Paul Cumming
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Denmark
| | | | - Kim Vang
- PET center, Aarhus University Hospitals, Denmark
| | - Mahmoud Ashkanian
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Denmark
| | - Manoucher Vafaee
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Denmark
| | - Peter Iversen
- PET center, Aarhus University Hospitals, Denmark; Department of Internal Medicine (V), Aarhus University Hospitals, Denmark
| | - Albert Gjedde
- PET center, Aarhus University Hospitals, Denmark; Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Denmark
| |
Collapse
|
12
|
Kikuchi A, Takeda A, Kimpara T, Nakagawa M, Kawashima R, Sugiura M, Kinomura S, Fukuda H, Chida K, Okita N, Takase S, Itoyama Y. Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson's disease. J Neurol Sci 2001; 193:29-36. [PMID: 11718747 DOI: 10.1016/s0022-510x(01)00641-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The changes of regional cerebral blood flow (rCBF) in Parkinson's disease (PD) were investigated. Because of individual differences in brain volume and the extent of brain atrophy, previous functional imaging studies involved potential methodological difficulties. In this study, using the statistical parametric mapping technique, 99mTechnetium-labeled hexamethylpropyleneamineoxime brain single-photon emission computed tomography images from 18 patients with PD were transformed into standard brain-based stereotaxic coordinate spaces and then compared with such images for 11 control subjects matched for age and extent of brain atrophy. A rCBF decrement in the supplementary motor area (SMA) and such decrement in the dorsolateral prefrontal cortex (DLPFC) were observed in the summarized PD images as compared with controls (p<0.005). In a subgroup in the Hoehn-Yahr III/IV stage (11 cases), the rCBF decrement was demonstrated not only in the SMA, but also in the DLPFC and insular cortex (p<0.001). There was a correlation between the degree of the rCBF decrement in the DLPFC or the insular cortex and the score of the unified Parkinson's disease rating scale (p<0.05), while the rCBF decrement in the SMA showed no relationship with the severity of disease. The function of the SMA is closely associated with the nigro-striatal pathway and its impairment can explain the basic akinetic symptoms in PD, which are responsive to L-DOPA treatment. On the other hand, the DLPFC and insular cortex may play key roles in specific symptoms of impairment at advanced stages, such as impaired working memory, postural instability and autonomic dysfunction. We hypothesize that the impairment of the DLPFC and insular function is correlated with the progression of the disease and is related to DOPA-refractory symptoms, which are major problems in the care of patients with advanced PD.
Collapse
Affiliation(s)
- A Kikuchi
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Miyagi, 980-8574, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Arahata Y, Hirayama M, Ieda T, Koike Y, Kato T, Tadokoro M, Ikeda M, Ito K, Sobue G. Parieto-occipital glucose hypometabolism in Parkinson's disease with autonomic failure. J Neurol Sci 1999; 163:119-26. [PMID: 10371072 DOI: 10.1016/s0022-510x(99)00011-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the characteristics of regional cerebral metabolism in a subgroup of patients with Parkinson's disease and autonomic failure, we studied seven patients with Parkinson's disease with autonomic failure (PA group), 11 patients with Parkinson's disease without apparent autonomic failure (PD group), and nine normal controls using fluoro-deoxyglucose positron emission tomography (FDG-PET). To determine differences in metabolic distribution among these groups, regional relative glucose metabolic rates (RGMR), which were normalized with cerebellar values, were calculated and age-adjusted covariance analyses were done. When compared with that of controls. RGMR in the cerebral cortex of the PA group was markedly reduced in the occipital cortex (P<0.001), inferior parietal cortex (P<0.005) and superior parietal cortex (P<0.005), but without a decrease in the sensory motor and medial temporal cortices, putamen and thalamus. In contrast, the PD group did not show significant focal hypometabolic distribution. Our findings raise the possibility that Parkinson's disease with autonomic failure may overlap with the features of dementia with Lewy bodies.
Collapse
Affiliation(s)
- Y Arahata
- Department of Neurology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tanji H, Nagasawa H, Araki T, Onodera J, Takase S, Itoh M, Itoyama Y. PET study of striatal fluorodopa uptake and dopamine D2 receptor binding in a patient with juvenile parkinsonism. Eur J Neurol 1998; 5:243-248. [PMID: 10210838 DOI: 10.1046/j.1468-1331.1998.530243.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied pre-synaptic and post-synaptic function in the striatum of a patient with juvenile parkinsonism (JP) using positron emission tomography (PET). [18F]6-fluorodopa (18FDOPA), 11C-YM-09151-2 and [18F]fluoro-2-deoxy-d-glucose (18FDG) were used to measure fluorodopa uptake, dopamine D2 receptor binding and glucose metabolism, respectively. In this patient, 18FDOPA accumulation was decreased markedly in the caudate nucleus and the putamen bilaterally. In the images of 11C-YM-09151-2 and 18FDG, in contrast, no conspicuous changes were observed in the striatum. Thus our PET studies using 18FDOPA, 11C-YM-09151-2 and 18FDG provide a useful approach for assisting the diagnosis of JP, because the present findings are different from the results in patients with dopa-responsive dystonia and hereditary progressive dystonia with marked diurnal fluctuation. Furthermore, our findings are of particular interest in relation to the pathogenesis of JP.Copyright Lippincott-Raven Publishers
Collapse
Affiliation(s)
- H Tanji
- Department of Neurology, Tohoku University School of Medicine, Tohoku, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Otsuka M, Ichiya Y, Kuwabara Y, Hosokawa S, Sasaki M, Yoshida T, Fukumura T, Kato M, Masuda K. Glucose metabolism in the cortical and subcortical brain structures in multiple system atrophy and Parkinson's disease: a positron emission tomographic study. J Neurol Sci 1996; 144:77-83. [PMID: 8994107 DOI: 10.1016/s0022-510x(96)00172-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The brain glucose metabolism was studied by PET with 18F-FDG in 11 patients with multiple system atrophy (MSA) and 12 patients with idiopathic Parkinson's disease (PD). Seven of the 11 MSA patients were diagnosed as having olivopontocerebellar atrophy, two had striatonigral degeneration, while two demonstrated Shy-Drager syndrome. The glucose metabolic rates for each region in the PD patients showed no difference from the normal controls. The frontal, temporal and parietal cortical glucose metabolic rates and the caudate, the putaminal, the cerebellar and the brainstem glucose metabolic rates in the MSA patients decreased significantly from the controls. The atrophy of the cerebellum and the brainstem in the MSA patients were scored by MRI. The cerebellar and brainstem glucose metabolism in the MSA patients decreased as the atrophy score in such regions advanced in each group; however, some patients with no atrophy showed a decreased glucose metabolism. Although the cerebellar and the brainstem glucose metabolism decreased in all MSA patients, such a decrease was not observed in the SND patients. The decrease in the glucose metabolism for the non-cortical regions in the MSA patients seems to be due to a diffuse depletion of the neurons not restricted to the nigrostriatal neurons. Deafferentation to the cerebral cortices seems to result in a decreased cortical metabolism. The differences in the glucose metabolism between MSA and PD as assessed by PET may be caused by the pathophysiological differences between MSA and PD, and such differences therefore appear to be useful when making a differential diagnosis between MSA and PD. The relative sparing of the brainstem and cerebellar glucose metabolism is considered to be a feature of patients with SND.
Collapse
Affiliation(s)
- M Otsuka
- Department of Radiology, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tachibana H, Kawabata K, Tomino Y, Sugita M, Fukuchi M. Three-dimensional surface display of brain perfusion with 123I-IMP in Parkinson's disease. Neuroradiology 1994; 36:276-80. [PMID: 8065570 DOI: 10.1007/bf00593259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We reconstructed three-dimensional (3D) surface images from single-photon emission computed tomography (SPECT) data using N-isopropyl-p[123I]-iodoamphetamine (123I-IMP) in 27 patients with Parkinson's disease and 11 normal control subjects. The 3D reconstruction was performed using distance-shaded methods at threshold levels with an interval of 5% from 45-80%. Any area of decreased perfusion at each threshold level was visualised as a defect area by the algorithm. In nondemented patients with Parkinson's disease, perfusion defects were frequently found in the parietal cortex at a threshold value of 65%. In demented patients, perfusion defects were frequently seen at thresholds of 45-65%, and were more marked in the temporal and parietal cortex bilaterally. This suggests that dementia in Parkinson's disease is related to a reduction of perfusion in the temporoparietal cortex.
Collapse
Affiliation(s)
- H Tachibana
- Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | |
Collapse
|
17
|
Otsuka M, Ichiya Y, Kuwabara Y, Hosokawa S, Sasaki M, Fukumura T, Masuda K, Goto I, Kato M. Cerebral glucose metabolism and striatal 18F-dopa uptake by PET in cases of chorea with or without dementia. J Neurol Sci 1993; 115:153-7. [PMID: 8482976 DOI: 10.1016/0022-510x(93)90218-n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cerebral glucose metabolism was studied by positron emission tomography with [18F]fluorodeoxyglucose in 12 patients with chorea due to different underlying diseases. The striatal 18F-dopa uptake was also studied with 6-L-[18F]fluorodopa in 6 of them. Five of them were diagnosed as Huntington's disease two were as 'sporadic progressive chorea and dementia' with characteristic symptoms and signs of Huntington's disease but no family histories, two were as choreoacanthocytosis, and two had hemichorea caused by suspected vascular lesions in the contralateral striatum revealed by MRI. Caudate and putaminal glucose metabolism decreased in chorea compared to the controls. Hemichorea showed decreased glucose metabolism only in the contralateral striatum. Moreover the glucose metabolism decreased in demented each 7 patients in the frontal, temporal and parietal cortices as well as in the striatum. The caudate and putaminal 18F-dopa uptake in patients with chorea showed no difference with that in the controls. The pathogenetic mechanism of chorea may involve decreased glucose metabolism and normal presynaptic dopaminergic activity in the striatum, and that of the demented state in chorea may also involve an additional decrease of the glucose metabolism in the frontal, temporal and parietal cortices.
Collapse
Affiliation(s)
- M Otsuka
- Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|