1
|
Patial V, Kumar S, Joshi R, Singh D. Biochemical characterization of glutaminase-free L-asparaginases from Himalayan Pseudomonas and Rahnella spp. for acrylamide mitigation. Int J Biol Macromol 2024; 257:128576. [PMID: 38048933 DOI: 10.1016/j.ijbiomac.2023.128576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
L-asparaginase having low glutaminase activity is important in clinical and food applications. Herein, glutaminase-free L-asparaginase (type I) coding genes from Pseudomonas sp. PCH182 (Ps-ASNase I) and Rahnella sp. PCH162 (Rs-ASNase I) was amplified using gene-specific primers, cloned into a pET-47b(+) vector, and plasmids were transformed into Escherichia coli (E. coli). Further, affinity chromatography purified recombinant proteins to homogeneity with monomer sizes of ~37.0 kDa. Purified Ps-ASNase I and Rs-ASNase I were active at wide pHs and temperatures with optimum activity at 50 °C (492 ± 5 U/mg) and 37 °C (308 ± 4 U/mg), respectively. Kinetic constant Km and Vmax for L-asparagine (Asn) were 2.7 ± 0.06 mM and 526.31 ± 4.0 U/mg for Ps-ASNase I, and 4.43 ± 1.06 mM and 434.78 ± 4.0 U/mg for Rs-ASNase I. Circular dichroism study revealed 29.3 % and 24.12 % α-helix structures in Ps-ASNase I and Rs-ASNase I, respectively. Upon their evaluation to mitigate acrylamide formation, 43 % and 34 % acrylamide (AA) reduction were achieved after pre-treatment of raw potato slices, consistent with 65 % and 59 % Asn reduction for Ps-ASNase I and Rs-ASNase I, respectively. Current findings suggested the potential of less explored intracellular L-asparaginase in AA mitigation for food safety.
Collapse
Affiliation(s)
- Vijeta Patial
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Lefin N, Miranda J, Beltrán JF, Belén LH, Effer B, Pessoa A, Farias JG, Zamorano M. Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Front Pharmacol 2023; 14:1208277. [PMID: 37426818 PMCID: PMC10323146 DOI: 10.3389/fphar.2023.1208277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Heterologous expression of L-asparaginase (L-ASNase) has become an important area of research due to its clinical and food industry applications. This review provides a comprehensive overview of the molecular and metabolic strategies that can be used to optimize the expression of L-ASNase in heterologous systems. This article describes various approaches that have been employed to increase enzyme production, including the use of molecular tools, strain engineering, and in silico optimization. The review article highlights the critical role that rational design plays in achieving successful heterologous expression and underscores the challenges of large-scale production of L-ASNase, such as inadequate protein folding and the metabolic burden on host cells. Improved gene expression is shown to be achievable through the optimization of codon usage, synthetic promoters, transcription and translation regulation, and host strain improvement, among others. Additionally, this review provides a deep understanding of the enzymatic properties of L-ASNase and how this knowledge has been employed to enhance its properties and production. Finally, future trends in L-ASNase production, including the integration of CRISPR and machine learning tools are discussed. This work serves as a valuable resource for researchers looking to design effective heterologous expression systems for L-ASNase production as well as for enzymes production in general.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Brian Effer
- Center of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge G. Farias
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Zamorano
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Izadpanah Qeshmi F, Homaei A, Khajeh K, Kamrani E, Fernandes P. Production of a Novel Marine Pseudomonas aeruginosa Recombinant L-Asparaginase: Insight on the Structure and Biochemical Characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:599-613. [PMID: 35507234 DOI: 10.1007/s10126-022-10129-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The present study focused on the cloning, expression, and characterization of L-asparaginase of marine Pseudomonas aeruginosa HR03 isolated from fish intestine. Thus, a gene fragment containing the L-asparaginase sequence of Pseudomonas aeruginosa HR03 isolated from the fish intestine was cloned in the pET21a vector and then expressed in Escherichia coli BL21 (DE3) cells. Thereafter, the recombinant L-asparaginase (HR03Asnase) was purified by nickel affinity chromatography, and the enzymatic properties of HR03Asnase, including the effects of pH and temperature on HR03Asnase activity and its kinetic parameters, were determined. The recombinant enzyme HR03Asnase showed the highest similarity to type I L-asparaginase from Pseudomonas aeruginosa. The three-dimensional (3D) modeling results indicate that HR03Asnase exists as a homotetramer. Its molecular weight was 35 kDa, and the maximum activity of the purified enzyme was observed at pH8 and at 40 °C. The km and Vmax of the enzyme obtained with L-asparagine as substrate were 10.904 mM and 3.44 × 10-2 mM/min, respectively. The maximum activity of HR03Asnase was reduced by 50% at 90 °C after 10-min incubation; however, the enzyme maintained more than 20% of its activity after 30-min incubation. This enzyme also maintained almost 50% of its activity at pH 12 after 40-min incubation. The evaluation of pH and temperature stability of HR03Asnase showed that the enzyme has a wide range of activity, which is a suitable characteristic for its application in different industries. Overall, the results of the present study indicate that marine sources are promising biological reservoirs for enzymes to be used for biotechnological purposes, and marine thermostable HR03Asnase is likely a potential candidate for its future usage in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Fatemeh Izadpanah Qeshmi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Pedro Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades E Tecnologias, Av. Campo Grande 376, 1749-024, Lisbon, Portugal
| |
Collapse
|
4
|
Rafeeq H, Hussain A, Tarar MHA, Afsheen N, Bilal M, Iqbal HMN. Expanding the bio-catalysis scope and applied perspectives of nanocarrier immobilized asparaginases. 3 Biotech 2021; 11:453. [PMID: 34616647 PMCID: PMC8486911 DOI: 10.1007/s13205-021-02999-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023] Open
Abstract
l-asparaginase is an essential enzyme in medicine and a well-known chemotherapeutic agent. This enzyme's importance is not limited to its use as an anti-cancer agent; it also has a wide variety of medicinal applications. Antimicrobial properties, prevention of infectious disorders, autoimmune diseases, and canine and feline cancer are among the applications. Apart from the healthcare industry, its importance has been identified in the food industry as a food manufacturing agent to lower acrylamide levels. When isolated from their natural habitats, they are especially susceptible to different denaturing conditions due to their protein composition. The use of an immobilization technique is one of the most common approaches suggested to address these limitations. Immobilization is a technique that involves fixing enzymes to or inside stable supports, resulting in a heterogeneous immobilized enzyme framework. Strong support structures usually stabilize the enzymes' configuration, and their functions are maintained as a result. In recent years, there has been a lot of curiosity and focus on the ability of immobilized enzymes. The nanomaterials with ideal properties can be used to immobilize enzymes to regulate key factors that determine the efficacy of bio-catalysis. With applications in biotechnology, immunosensing, biomedicine, and nanotechnology sectors have opened a realm of opportunities for enzyme immobilization.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | | | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|
5
|
Castro D, Marques ASC, Almeida MR, de Paiva GB, Bento HBS, Pedrolli DB, Freire MG, Tavares APM, Santos-Ebinuma VC. L-asparaginase production review: bioprocess design and biochemical characteristics. Appl Microbiol Biotechnol 2021; 105:4515-4534. [PMID: 34059941 DOI: 10.1007/s00253-021-11359-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022]
Abstract
In the past decades, the production of biopharmaceuticals has gained high interest due to its great sensitivity, specificity, and lower risk of negative effects to patients. Biopharmaceuticals are mostly therapeutic recombinant proteins produced through biotechnological processes. In this context, L-asparaginase (L-asparagine amidohydrolase, L-ASNase (E.C. 3.5.1.1)) is a therapeutic enzyme that has been abundantly studied by researchers due to its antineoplastic properties. As a biopharmaceutical, L-ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), and other lymphoid malignancies, in combination with other drugs. Besides its application as a biopharmaceutical, this enzyme is widely used in food processing industries as an acrylamide mitigation agent and as a biosensor for the detection of L-asparagine in physiological fluids at nano-levels. The great demand for L-ASNase is supplied by recombinant enzymes from Escherichia coli and Erwinia chrysanthemi. However, production processes are associated to low yields and proteins associated to immunogenicity problems, which leads to the search for a better enzyme source. Considering the L-ASNase pharmacological and food importance, this review provides an overview of the current biotechnological developments in L-ASNase production and biochemical characterization aiming to improve the knowledge about its production. KEY POINTS: • Microbial enzyme applications as biopharmaceutical and in food industry • Biosynthesis process: from the microorganism to bioreactor technology • Enzyme activity and kinetic properties: crucial for the final application.
Collapse
Affiliation(s)
- Daniel Castro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Sofia C Marques
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mafalda R Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gabriela B de Paiva
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil
| | - Heitor B S Bento
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil
| | - Danielle B Pedrolli
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana P M Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Valéria C Santos-Ebinuma
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil.
| |
Collapse
|
6
|
Characterization of a novel type I l-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. J Biosci Bioeng 2020; 129:672-678. [DOI: 10.1016/j.jbiosc.2020.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/28/2019] [Accepted: 01/26/2020] [Indexed: 12/20/2022]
|
7
|
Sharma D, Singh K, Singh K, Mishra A. Insights into the Microbial L-Asparaginases: from Production to Practical Applications. Curr Protein Pept Sci 2019; 20:452-464. [PMID: 30426897 DOI: 10.2174/1389203720666181114111035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 01/10/2023]
Abstract
L-asparaginase is a valuable protein therapeutic drug utilized for the treatment of leukemia and lymphomas. Administration of asparaginase leads to asparagine starvation causing inhibition of protein synthesis, growth, and proliferation of tumor cells. Besides its clinical significance, the enzyme also finds application in the food sector for mitigation of a cancer-causing agent acrylamide. The numerous applications ensue huge market demands and create a continued interest in the production of costeffective, more specific, less immunogenic and stable formulations which can cater both the clinical and food processing requirements. The current review article approaches the process parameters of submerged and solid-state fermentation strategies for the microbial production of the L-asparaginase from diverse sources, genetic engineering approaches used for the production of L-asparaginase enzyme and major applications in clinical and food sectors. The review also addresses the immunological issues associated with the L-asparaginase usage and the immobilization strategies, drug delivery systems employed to circumvent the toxicity complications are also discussed. The future prospects for microbial Lasparaginase production are discussed at the end of the review article.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kushagri Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kavita Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
8
|
Yim S, Kim M. Purification and characterization of thermostable l-asparaginase from Bacillus amyloliquefaciens MKSE in Korean soybean paste. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Feng Y, Liu S, Jiao Y, Wang Y, Wang M, Du G. Gene cloning and expression of the l-asparaginase from Bacillus cereus BDRD-ST26 in Bacillus subtilis WB600. J Biosci Bioeng 2019; 127:418-424. [DOI: 10.1016/j.jbiosc.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023]
|
10
|
Sindhu R, Manonmani H. Expression and characterization of recombinant l -asparaginase from Pseudomonas fluorescens. Protein Expr Purif 2018; 143:83-91. [DOI: 10.1016/j.pep.2017.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
11
|
Izadpanah Qeshmi F, Homaei A, Fernandes P, Javadpour S. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res 2018; 208:99-112. [PMID: 29551216 DOI: 10.1016/j.micres.2018.01.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
Abstract
The marine environment is a rich source of biological and chemical diversity. It covers more than 70% of the Earth's surface and features a wide diversity of habitats, often displaying extreme conditions, where marine organisms thrive, offering a vast pool for microorganisms and enzymes. Given the dissimilarity between marine and terrestrial habitats, enzymes and microorganisms, either novel or with different and appealing features as compared to terrestrial counterparts, may be identified and isolated. L-asparaginase (E.C. 3.5.1.1), is among the relevant enzymes that can be obtained from marine sources. This amidohydrolase acts on L-asparagine and produce L-aspartate and ammonia, accordingly it has an acknowledged chemotherapeutic application, namely in acute lymphoblastic leukemia. Moreover, L-asparaginase is also of interest in the food industry as it prevents acrylamide formation. Terrestrial organisms have been largely tapped for L-asparaginases, but most failed to comply with criteria for practical applications, whereas marine sources have only been marginally screened. This work provides an overview on the relevant features of this enzyme and the framework for its application, with a clear emphasis on the use of L-asparaginase from marine sources. The review envisages to highlight the unique properties of marine L-asparaginases that could make them good candidates for medical applications and industries, especially in food safety.
Collapse
Affiliation(s)
| | - Ahmad Homaei
- Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Pedro Fernandes
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Sedigheh Javadpour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
12
|
Vidya J, Sajitha S, Ushasree MV, Sindhu R, Binod P, Madhavan A, Pandey A. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. BIORESOURCE TECHNOLOGY 2017; 245:1775-1781. [PMID: 28596071 DOI: 10.1016/j.biortech.2017.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
L-asparaginase is one of the protein drugs for countering leukemia and lymphoma. A major challenge in the therapeutic potential of the enzyme is its immunogenicity, low-plasma half-life and glutaminase activity that are found to be the reasons for toxicities attributed to asparaginase therapy. For addressing these challenges, several research and developmental activities are going on throughout the world for an effective drug delivery for treatment of cancer. Hence there is an urgent need for the development of asparaginase with improved properties for efficient drug delivery. The strategies selected should be economically viable to ensure the availability of the drug at low cost. The current review addresses various strategies adopted for the production of asparaginase from different sources, approaches for increasing the therapeutic efficiency of the protein and new drug delivery systems for L-asparaginase.
Collapse
Affiliation(s)
- Jalaja Vidya
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| | - Syed Sajitha
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Mrudula Vasudevan Ushasree
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, Punjab, India
| |
Collapse
|
13
|
Sharma A, Bala K, Husain I. Preliminary evaluation of arginine deiminase activity of indigenous bacterial strains for suitable chemotherapeutic applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Susan Aishwarya S, Iyappan S, Vijaya Lakshmi K, Rajnish KN. In silico analysis, molecular cloning, expression and characterization of l-asparaginase gene from Lactobacillus reuteri DSM 20016. 3 Biotech 2017; 7:348. [PMID: 28955645 DOI: 10.1007/s13205-017-0974-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022] Open
Abstract
l-Asparaginase is employed in leukaemic treatment and in processing starchy foods. The in silico analysis of Lactobacillus reuteri DSM 20016 reveals the presence of an l-asparaginase gene with theoretical pI value of 4.99. 3D structure prediction was carried out and one model was selected based on the validation scores of 86.293 for ERRAT, 92.10% for VERIFY 3D and Ramachandran plot. Multiple sequence alignment of the protein sequences of l-asparaginases I and II of Escherichia coli, Erwinia chrysanthemum and Homo sapiens shows their sequence similarity. The ORF LREU_RS09880 from L. reuteri DSM 20016 genome was cloned and expressed in E. coli. The recombinant protein was purified to homogeneity using Ni-NTA chromatography and showed higher substrate specificity for l-asparagine. Kinetic parameters like Km and Vmax of recombinant l-asparaginase were calculated as 0.3332 mM, 14.06 mM/min, respectively. Temperature and pH profile of recombinant l-asparaginase were analysed and maximum activity was found between 30 and 40 °C and at pH 6. The recombinant enzyme was thermally stable up to 24 h at 28 °C. Recombinant l-asparaginase has a recovery percentage of 92 and 10.5 fold purification. HPLC-MS-MS and SDS-PAGE analysis of the purified protein indicated a molecular weight of 35 kDa as a monomer.
Collapse
|
15
|
Vimal A, Kumar A. Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol Genet Eng Rev 2017; 33:40-61. [PMID: 28766374 DOI: 10.1080/02648725.2017.1357294] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-asparaginase is a vital enzyme of medical importance, and renowned as a chemotherapeutic agent. The relevance of this enzyme is not only limited as an anti-cancer agent, it also possesses a wide range of medical application. The application includes the antimicrobial property, treatment of infectious diseases, autoimmune diseases, canine and feline cancer. Apart from the health care industry, its significance is also established in the food sector as a food processing agent to reduce the acrylamide concentration. L-asparaginase is known to be produced from various bacterial, fungal and plant sources. However, there is a huge market demand due to its wide range of application. Therefore, the industry is still in the search of better-producing source in terms of high yield and low immunogenicity. It can be produced by both submerged and solid state fermentation, and each fermentation process has its own merits and demerits. This review paper focuses on its improved production strategy by adopting statistical experimental optimization techniques, development of recombinant strains, through mutagenesis and nanoparticle immobilization, adopting advanced and cost-effective purification techniques. Available research literature proves the competence and therapeutic potential of this enzyme. Therefore, research orientation toward the exploration of this clinical significant enzyme has to be accelerated. The objectives of this review are to discuss the high yielding sources, current production strategies, improvement of production, effective downstream processing and therapeutic application of L-asparaginase.
Collapse
Affiliation(s)
- Archana Vimal
- a Department of Biotechnology , National Institute of Technology (NIT) , Raipur , India
| | - Awanish Kumar
- a Department of Biotechnology , National Institute of Technology (NIT) , Raipur , India
| |
Collapse
|
16
|
Trang THN, Cuong TN, Thanh SLN, Tuyen TD. Optimization, purification and characterization of recombinant L-asparaginase II in Escherichia coli. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Evaluation of Antitumor Activity of Glutaminase-Free Periplasmic Asparaginase from Indigenous Bacterial Isolates as Candidates for Cancer Therapy. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40011-015-0681-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Onishi Y, Prihanto AA, Yano S, Takagi K, Umekawa M, Wakayama M. Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis. 3 Biotech 2015; 5:783-789. [PMID: 28324531 PMCID: PMC4569621 DOI: 10.1007/s13205-015-0278-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 12/01/2022] Open
Abstract
It has been reported that acrylamide, a potential carcinogen, is formed from the reaction of L-asparagine (L-Asn) and reducing sugars contained in foods during heating processes and free asparagine is a limiting factor for acrylamide formation. It has been reported that potato products such as potato chips, which are made through heating processes, contain high levels of acrylamide. To decrease the amount of L-Asn in potatoes using L-asparaginase, effective treatment conditions of sliced potatoes with the enzyme have been investigated. By treating sliced potatoes with Bacillus subtilis L-asparaginase II (BAsnase; 4 U/g potato), appriximately 40 % of L-Asn in the sliced potatoes was converted into L-aspartic acid (L-Asp). To make this enzyme more effective, prior to enzymatic treatment, sliced potatoes were freeze-thawed, dried at 90 °C for 20 min, and vacuum treated for 10 min under decompressed condition, resulting in the hydrolysis of approximately 90 % of L-Asn to L-Asp. The acrylamide content of BAsnase-treated fried potato chips decreased to below 20 % of that of BAsnase-untreated fried potato chips. Treatment conditions examined in this study were found to be effective to suppress the formation of acrylamide in fried potato chips.
Collapse
Affiliation(s)
- Yohei Onishi
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Asep A Prihanto
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Kazuyoshi Takagi
- Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Midori Umekawa
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
19
|
Kuwabara T, Prihanto AA, Wakayama M, Takagi K. Purification and Characterization of Pseudomonas aeruginosa PAO1 Asparaginase. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Recent research progress on microbial l-asparaginases. Appl Microbiol Biotechnol 2014; 99:1069-79. [DOI: 10.1007/s00253-014-6271-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
21
|
AZARA RIMA, HELIANTI IS, KUSNADI JONI, YUNIANTA YUNIANTA. Cloning and Gene Expression of AnsZ Encoding L-Asparaginase Enzyme from Local Bacillus sp. MICROBIOLOGY INDONESIA 2014. [DOI: 10.5454/mi.8.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Jia M, Xu M, He B, Rao Z. Cloning, expression, and characterization of L-asparaginase from a newly isolated Bacillus subtilis B11-06. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9428-9434. [PMID: 24003863 DOI: 10.1021/jf402636w] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study focused on the cloning, overexpression, and characterization of the gene encoding L-asparaginase (ansZ) from a nonpathogenic strain of Bacillus subtilis B11-06. The recombinant enzyme showed high thermostability and low affinity to L-glutamine. The ansZ gene, encoding a putative L-asparaginase II, was amplified by PCR and expressed in B. subtilis 168 using the shuttle vector pMA5. The activity of the recombinant enzyme was 9.98 U/mL, which was significantly higher than that of B. subtilis B11-06. The recombinant enzyme was purified by a two-step procedure including ammonium sulfate fractionation and hydrophobic interaction chromatography. The optimum pH and temperature of the recombinant enzyme were 7.5 and 40 °C, respectively. The enzyme was quite stable at a pH range of 6.0-9.0 and exhibited about 14.7 and 9.0% retention of activity following 2 h incubation at 50 or 60 °C, respectively. The Km for L-asparagine was 0.43 mM, and the Vmax was 77.51 μM/min. Results of this study also revealed the potential industrial application of this enzyme in reducing acrylamide formation during the potato frying process.
Collapse
Affiliation(s)
- Mingmei Jia
- The Key Laboratory of Industrial Biotechnology, Ministry of Educationand Lab of Applied Microbiology and Metabolic Engineering, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu Province 214122, China
| | | | | | | |
Collapse
|
23
|
Onishi Y, Yano S, Thongsanit J, Takagi K, Yoshimune K, Wakayama M. Expression in Escherichia coli of a gene encoding type II l-asparaginase from Bacillus subtilis, and characterization of its unique properties. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0167-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|