1
|
Wang YL, Chu KY, Hsieh TF, Yao CCJ, Lin CH, Lee ZH, Wang SK. Orodental malformations associated with human MSX1 sequence variants. J Am Dent Assoc 2024; 155:484-495.e21. [PMID: 38713117 DOI: 10.1016/j.adaj.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND MSX1 sequence variants have been known to cause human tooth agenesis (TA) with or without orofacial clefts. However, their roles during the whole processes of tooth development are not fully understood. This study aimed to characterize a 4-membered family with TA carrying a novel MSX1 pathogenic variant and investigate the disease mechanism. METHODS The authors conducted whole exome analysis to define the disease-causing sequence variant. They performed microcomputed tomography, morphometric analyses, transcriptome profiling, and molecular characterization to study the affected teeth and the gene variant. RESULTS The authors identified an MSX1 pathogenic variant, p.Glu232∗, in affected family members with TA and concomitant orodental anomalies, namely, prominent maxillary labial frenum, central incisor diastema, median maxillary anterior alveolar cleft, tooth fusion, mandibular molar dysmorphology, thin dentin layer, and slender dental roots. MSX1-defective teeth were not apparently microdontic but had thin dentin layers. The mandibular molars showed a homeotic transformation to maxillary counterparts. Genes involved in extracellular matrix organization and dentinogenesis, such as DMP1 and MMP20, were downregulated in dental pulp tissues of MSX1-defective teeth. The p.Glu232∗-truncated MSX1 properly localized to the nucleus but partially lost its transactivation ability. Analyzing reported cases indicated that truncation sequence variants within the homeobox domain of MSX1 caused a more severe TA phenotype than those outside of the homeobox domain, probably due to dominant negativity compared with haploinsufficiency. CONCLUSIONS This study provides in vivo evidence that MSX1 contributes to developmental processes of various orodental tissues in humans. PRACTICAL IMPLICATIONS Clinically, hypertrophic labial frenum, incisor diastema, and median maxillary anterior alveolar cleft might be considered diagnostic for MSX1-associated TA.
Collapse
|
2
|
Zhao Y, Ren J, Meng L, Hou Y, Liu C, Zhang G, Shen W. Characterization of novel MSX1 variants causally associated with non-syndromic oligodontia in Chinese families. Mol Genet Genomic Med 2024; 12:e2334. [PMID: 38069551 PMCID: PMC10767605 DOI: 10.1002/mgg3.2334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND MSX1 (OMIM #142983) is crucial to normal dental development, and variants in MSX1 are associated with dental anomalies. The objective of this study was to characterize the pathogenicity of novel MSX1 variants in Chinese families with non-syndromic oligodontia (NSO). METHODS Genomic DNA was extracted from individuals representing 35 families with non-syndromic oligodontia and was analyzed by Sanger sequencing and whole-exome sequencing. Pathogenic variants were screened via analyses involving PolyPhen-2, Sorting-Intolerant from Tolerant, and MutationTaster, and conservative analysis of variants. Patterns of MSX1-related NSO were analyzed. MSX1 structural changes suggested functional consequences in vitro. RESULTS Three previously unreported MSX1 heterozygous variants were identified: one insertion variant (c.576_577insTAG; p.Gln193*) and two missense variants (c. 871T>C; p.Tyr291His and c. 644A>C; p.Gln215Pro). Immunofluorescence analysis revealed abnormal subcellular localization of the p.Gln193* MSX1 variant. In addition, we found that these MSX1 variants likely lead to the loss of second premolars. CONCLUSION Three novel MSX1 variants were identified in Chinese Han families with NSO, expanding the MSX1 variant spectrum and presenting a genetic origin for the pathogenesis detected in patients and their families.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Yan Hou
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Chunyan Liu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Guozhong Zhang
- College of Forensic MedicineHebei Medical UniversityShijiazhuangPR China
| | - Wenjing Shen
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| |
Collapse
|
3
|
Novel MSX1 variants identified in families with nonsyndromic oligodontia. Int J Oral Sci 2021; 13:2. [PMID: 33419968 PMCID: PMC7794556 DOI: 10.1038/s41368-020-00106-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
The goal of this study was to identify MSX1 gene variants in multiple Chinese families with nonsyndromic oligodontia and analyse the functional influence of these variants. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variants in five families with nonsyndromic oligodontia, and a series of bioinformatics databases were used for variant confirmation and functional prediction. Phenotypic characterization of the members of these families was described, and an in vitro analysis was performed for functional evaluation. Five novel MSX1 heterozygous variants were identified: three missense variants [c.662A>C (p.Q221P), c.670C>T (p.R224C), and c.809C>T (p.S270L)], one nonsense variant [c.364G>T (p.G122*)], and one frameshift variant [c.277delG (p.A93Rfs*67)]. Preliminary in vitro studies demonstrated that the subcellular localization of MSX1 was abnormal with the p.Q221P, p.R224C, p.G122*, and p.A93Rfs*67 variants compared to the wild type. Three variants (p.Q221P, p.G122*, and p.A93Rfs*67) were classified as pathogenic or likely pathogenic, while p.S270L and p.R224C were of uncertain significance in the current data. Moreover, we summarized and analysed the MSX1-related tooth agenesis positions and found that the type and variant locus were not related to the severity of tooth loss. Our results expand the variant spectrum of nonsyndromic oligodontia and provide valuable information for genetic counselling.
Collapse
|
4
|
Next generation sequencing reveals a novel nonsense mutation in MSX1 gene related to oligodontia. PLoS One 2018; 13:e0202989. [PMID: 30192788 PMCID: PMC6128526 DOI: 10.1371/journal.pone.0202989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Tooth agenesis is one of the most common craniofacial disorders in humans. More than 350 genes have been associated with teeth development. In this study, we enrolled 60 child patients (age 13 to 17) with various types of tooth agenesis. Whole gene sequences of PAX9, MSX1, AXIN2, EDA, EDAR and WNT10a genes were sequenced by next generation sequencing on the Illumina MiSeq platform. We found previously undescribed heterozygous nonsense mutation g.8177G>T (c.610G>T) in MSX1 gene in one child. Mutation was verified by Sanger sequencing. Sequencing analysis was performed in other family members of the affected child. All family members carrying g.8177G>T mutation suffered from oligodontia (missing more than 6 teeth excluding third molars). Mutation g.8177G>T leads to a stop codon (p.E204X) and premature termination of Msx1 protein translation. Based on previous in vitro experiments on mutation disrupting function of Msx1 homeodomain, we assume that the heterozygous g.8177G>T nonsense mutation affects the amount and function of Msx1 protein and leads to tooth agenesis.
Collapse
|
5
|
Fauzi NH, Ardini YD, Zainuddin Z, Lestari W. A review on non-syndromic tooth agenesis associated with PAX9 mutations. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:30-36. [PMID: 29628999 PMCID: PMC5884223 DOI: 10.1016/j.jdsr.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
Tooth agenesis in the reduction of tooth number which includes hypodontia, oligodontia and anodontia is caused by disturbances and gene mutations that occur during odontogenesis. To date, several genetic mutations that unlock the causes of non-syndromic tooth agenesis are being discovered; these have been associated with certain illnesses because tooth development involves the interaction of several genes for tooth epithelium and mesenchyme odontogenesis. Mutation of candidate genes PAX9 and MSX1 have been identified as the main causes of hypodontia and oligodontia; meanwhile, AXIN2 mutation is associated with anodontia. Previous study using animal models reported that PAX9-deficient knockout mice exhibit missing molars due to an arrest of tooth development at the bud stage. PAX9 frameshift, missense and nonsense mutations are reported to be responsible; however, the most severe condition showed by the phenotype is caused by haploinsufficiency. This suggests that PAX9 is dosage-sensitive. Understanding the mechanism of genetic mutations will benefit clinicians and human geneticists in future alternative treatment investigations.
Collapse
Affiliation(s)
- Nurul Hasyiqin Fauzi
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Malaysia
| | - Yunita Dewi Ardini
- Department of Pediatric Dentistry, Kulliyyah of Dentistry, International Islamic University Malaysia, Malaysia
| | - Zarina Zainuddin
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Malaysia
| | - Widya Lestari
- Department of Oral Biology, Kulliyyah of Dentistry, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
6
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Abid MF, Simpson M, Petridis C, Cobourne M, Sharpe P. Non-syndromic severe hypodontia caused by a novel frameshift insertion mutation in the homeobox of the MSX1 gene. Arch Oral Biol 2017; 75:8-13. [DOI: 10.1016/j.archoralbio.2016.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
|
8
|
Bock NC, Lenz S, Ruiz-Heiland G, Ruf S. Nonsyndromic oligodontia : Does the Tooth Agenesis Code (TAC) enable prediction of the causative mutation? J Orofac Orthop 2017; 78:112-120. [PMID: 28204848 DOI: 10.1007/s00056-016-0056-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/10/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The literature suggests an association between phenotype and causative mutation in nonsyndromic oligodontia. Thus, the present study was designed to verify this hypothesis in a consecutive cohort of patients. METHODS All patients with nonsyndromic oligodontia who had been treated at the study center (Department of Orthodontics, University of Giessen, Germany) over the period 1986-2013 were contacted. Candidates were included only if at least one more family member had hypo- or oligodontia (i.e., without regard to the number of congenitally missing teeth). A total of 20 patients were included. After evaluating the dental status of each participant, the Tooth Agenesis Code (TAC) was applied. On this basis, a tentative diagnosis was made to predict which gene (MSX1, AXIN2, EDA, or PAX9) was likely to show mutation. Afterwards this hypothesis was confirmed or rejected by analyzing a saliva sample for mutation of the predicted gene. If confirmed, any available family members were also genetically analyzed. RESULTS Based on their TAC scores and sums, gene mutations were predicted for MXS1 in 11, AXIN2 in 3, EDA in 6, and PAX9 in none of the patients. The evaluation of MSX1 yielded variants in 4 of 11 cases, all of which were classified as nonpathogenic since they were not considered as functional mutations. The evaluation of EDA yielded a pathogenic exon-7 mutation in 2 of 6 patients, both being brothers with different TAC scores; the same mutation, which represents a novel missense mutation, was also found in other members of the same family. The evaluation of AXIN2 yielded variants in 3 of 3 cases, all of which were classified as nonpathogenic. CONCLUSIONS Our findings obtained in consecutive patients with nonsyndromic oligodontia did not reveal any clinically relevant associations between oligodontia phenotype (based on TAC) and causative mutations for nonsyndromic oligodontia.
Collapse
Affiliation(s)
- Niko C Bock
- Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.
| | | | - Gisela Ruiz-Heiland
- Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany
| |
Collapse
|
9
|
Tatematsu T, Kimura M, Nakashima M, Machida J, Yamaguchi S, Shibata A, Goto H, Nakayama A, Higashi Y, Miyachi H, Shimozato K, Matsumoto N, Tokita Y. An aberrant splice acceptor site due to a novel intronic nucleotide substitution in MSX1 gene is the cause of congenital tooth agenesis in a Japanese family. PLoS One 2015; 10:e0128227. [PMID: 26030286 PMCID: PMC4451150 DOI: 10.1371/journal.pone.0128227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/24/2015] [Indexed: 12/26/2022] Open
Abstract
Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency.
Collapse
Affiliation(s)
- Tadashi Tatematsu
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
- Department of Perinatology, Institute for Developmental Research, Aichi-Human Service Center, Kasugai, Aichi, Japan
| | - Masashi Kimura
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
- Department of Dentistry Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
- Department of Perinatology, Institute for Developmental Research, Aichi-Human Service Center, Kasugai, Aichi, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Junichiro Machida
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
- Department of Oral and Maxillofacial Surgery, Toyota Memorial Hospital, Toyota, Aichi, Japan
| | - Seishi Yamaguchi
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
- Department of Dentistry and Oral Surgery, Aichi Children’s Health and Medical Center, Obu, Aichi, Japan
| | - Akio Shibata
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
- Department of Perinatology, Institute for Developmental Research, Aichi-Human Service Center, Kasugai, Aichi, Japan
| | - Hiroki Goto
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
- Department of Perinatology, Institute for Developmental Research, Aichi-Human Service Center, Kasugai, Aichi, Japan
| | - Atsuo Nakayama
- Department of Embryology, Institute for Developmental Research, Aichi-Human Service Center, Kasugai, Aichi, Japan
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi-Human Service Center, Kasugai, Aichi, Japan
| | - Hitoshi Miyachi
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
| | - Kazuo Shimozato
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihito Tokita
- Department of Perinatology, Institute for Developmental Research, Aichi-Human Service Center, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
10
|
AlFawaz S, Plagnol V, Wong FSL, Kelsell DP. A novel frameshift MSX1 mutation in a Saudi family with autosomal dominant premolar and third molar agenesis. Arch Oral Biol 2015; 60:982-8. [PMID: 25874811 DOI: 10.1016/j.archoralbio.2015.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES In this study, the aim was to investigate a consanguineous Saudi family with non-syndromic premolars and third molars agenesis and to identify the causal mutation(s) using whole exome sequencing. DESIGN Family phenotype and family pedigree were constructed from clinical and radiographic examinations. Whole exome sequencing was performed in two affected members of the Saudi family using the SureSelect Human all Exon 50 Mb kit (Agilent Technologies, Inc., Santa Clara, CA) and then sequenced on an Illumina HiSeq. SNP and indel calling were performed using samtools version 0.18 and were annotated using the software ANNOVAR. RESULTS The family pedigree showed that the inheritance was autosomal dominant. Whole exome sequencing revealed that the affected members in this family were heterozygous with a novel frameshift mutation in exon 2 of the MSX1 gene, (NM_002448:c.750_751insACCGGCTGCC, p.F251PfsX92). CONCLUSIONS The novel MSX1 frameshift mutation was linked to a family with moderate to severe tooth agenesis phenotype affecting second premolars and third molars in both arches. This expands the genotype-phenotype of MSX1 associated conditions.
Collapse
Affiliation(s)
- Shurog AlFawaz
- Centre for Oral Growth and Development, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | - Vincent Plagnol
- University College London (UCL), UCL Genetics Institute, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Ferranti S L Wong
- Centre for Oral Growth and Development, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK.
| | - David P Kelsell
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 4AT, UK
| |
Collapse
|
11
|
Ceyhan D, Kirzioglu Z, Calapoglu NS. Mutations in the MSX1 gene in Turkish children with non-syndromic tooth agenesis and other dental anomalies. Indian J Dent 2015; 5:172-82. [PMID: 25565750 PMCID: PMC4260382 DOI: 10.4103/0975-962x.144717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: To search for mutations on the MSX1 gene and to present a genetic basis for non-syndromic tooth agenesis in conjunction with dental anomalies in a Turkish population. Materials and Methods: The patients included in this study were otherwise healthy, with ages ranging from seven to eighteen years. Eighty-two of them had one to six teeth missing (Group I) and 26 had more than six teeth missing (Group II), except for the third molars,. The missing teeth and dental anomalies were examined clinically and radiographically. The MSX1 gene was sequenced from the blood samples of patients who consented to the study. Results: Mutations or polymorphisms on the MSX1 gene were identified in six patients. Taurodontism was seen in patients from both groups I and II. The nucleotide changes were identified by mutation screening. Conclusions: Performing family studies, screening other candidate genes, and investigation of interactions between genes will provide a basis for better analysis of tooth agenesis models and their association with other dental anomalies.
Collapse
Affiliation(s)
- Derya Ceyhan
- Department of Pediatric Dentistry, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Zuhal Kirzioglu
- Department of Pediatric Dentistry, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Nilufer Sahin Calapoglu
- Department of Medical Biology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
12
|
Wong SW, Liu HC, Han D, Chang HG, Zhao HS, Wang YX, Feng HL. A novel non-stop mutation in MSX1 causing autosomal dominant non-syndromic oligodontia. Mutagenesis 2014; 29:319-23. [PMID: 24914010 DOI: 10.1093/mutage/geu019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oligodontia, which is the congenital absence of six or more permanent teeth, excluding the third molars, may contribute to masticatory dysfunction, speech alteration, aesthetic problems and malocclusion. Msh homeobox 1 (MSX1) was the first gene identified as causing non-syndromic oligodontia. In this study, we identified a novel heterozygous non-stop mutation (c.910_911dupTA, p.*304Tyrext*48) in MSX1 in a Chinese family with autosomal dominant non-syndromic oligodontia. This novel mutation substitutes the stop codon with a tyrosine residue, potentially adding 48 amino acids to the C-terminus of MSX1. Further in vitro study found that mutant MSX1 could be expressed but had lost its ability to enter the nucleus. This is the first report indicating that a non-stop mutation in MSX1 is responsible for oligodontia. This study broadens the mutation spectrum for MSX1 and provides a new way to clarify the mechanism of MSX1 in tooth agenesis.
Collapse
Affiliation(s)
- Sing-Wai Wong
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Hao-Chen Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Dong Han
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Huai-Guang Chang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Hong-Shan Zhao
- Department of Medical Genetics and Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing 100191, China and
| | - Yi-Xiang Wang
- Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, China.
| | - Hai-Lan Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China,
| |
Collapse
|
13
|
Jobbágy-Óvári G, Páska C, Stiedl P, Trimmel B, Hontvári D, Soós B, Hermann P, Tóth Z, Kerekes-Máthé B, Nagy D, Szántó I, Nagy Á, Martonosi M, Nagy K, Hadadi É, Szalai C, Hullám G, Temesi G, Antal P, Varga G, Tarján I. Complex analysis of multiple single nucleotide polymorphisms as putative risk factors of tooth agenesis in the Hungarian population. Acta Odontol Scand 2014; 72:216-27. [PMID: 23964635 DOI: 10.3109/00016357.2013.822547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The role was studied of multiple single nucleotide polymorphisms in tooth agenesis in the Hungarian population using a complex approach. METHODS Eight SNPs, PAX9 -912 C/T, PAX9 -1031 A/G, MSX1 3755 A/G, FGFR1 T/C rs881301, IRF6 T/C rs764093, AXIN2-8150 A/G, AXIN2-8434 A/G and AXIN2-30224 C/T, were studied in 192 hypodontia and 17 oligodontia cases and in 260 healthy volunteers. Case-control analysis was performed to test both allelic and genotypic associations as well as associations at the level of haplotypes. Multivariate exploratory Bayesian network-based multi-level analysis of relevance (BN-BMLA) as well as logistic regression analysis were performed. RESULTS Conventional statistics showed that PAX9 SNP -912 C/T and the MSX1 SNP changed the incidence of hypodontia, although after Bonferroni correction for multiple hypothesis testing, the effects were only borderline tendencies. Using a statistical analysis better suited for handling multiple hypotheses, the BN-BMLA, PAX9 SNPs clearly showed a synergistic effect. This was confirmed by other multivariate analyses and it remained significant after corrections for multiple hypothesis testing (p < 0.0025). The PAX9-1031-A-PAX9-912-T haplotype was the most relevant combination causing hypodontia. Interaction was weaker between PAX9 and MSX1, while other SNPs had no joint effect on hypodontia. CONCLUSION This complex analysis shows the important role of PAX9 and MSX1 SNPs and of their interactions in tooth agenesis, while IRF6, FGFR1 and AXIN2 SNPs had no detectable role in the Hungarian population. These results also reveal that risk factors in hypodontia need to be identified in various populations, since there is considerable variability among them.
Collapse
|
14
|
Mu YD, Xu Z, Contreras CI, McDaniel JS, Donly KJ, Chen S. Mutational analysis of AXIN2, MSX1, and PAX9 in two Mexican oligodontia families. GENETICS AND MOLECULAR RESEARCH 2013; 12:4446-58. [PMID: 24222224 DOI: 10.4238/2013.october.10.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The genes for axin inhibition protein 2 (AXIN2), msh homeobox 1 (MSX1), and paired box gene 9 (PAX9) are involved in tooth root formation and tooth development. Mutations of the AXIN2, MSX1, and PAX9 genes are associated with non-syndromic oligodontia. In this study, we investigated phenotype and AXIN2, MSX1, and PAX9 gene variations in two Mexican families with non-syndromic oligodontia. Individuals from two families underwent clinical examinations, including an intra-oral examination and panoramic radiograph. Retrospective data were reviewed, and peripheral blood samples were collected. The exons and exon-intronic boundaries of the AXIN2, MSX1, and PAX9 genes were sequenced and analyzed. Protein and messenger RNA structures were predicted using bioinformative software programs. Clinical and oral examinations revealed isolated non-syndromic oligodontia in the two Mexican families. The average number of missing teeth was 12. The sequence analysis of exons and exon-intronic regions of AXIN2, MSX1, and PAX9 revealed 11 single-nucleotide polymorphisms (SNPs), including seven in AXIN2, two in MSX1, and three in PAX9. One novel SNP of MSX1, c.476T>G (Leu159Arg), was found in all of the studied patients in the families. MSX1 Leu159Arg and PAX9 Ala240Pro change protein and messenger RNA structures. Our findings suggested that a combined reduction of MSX1 and PAX9 gene dosages increased the risk for oligodontia in the Mexican families, as in vivo investigation has indicated that interaction between Msx1 and Pax9 is required for tooth development.
Collapse
Affiliation(s)
- Y D Mu
- Department of Developmental Dentistry, Dental School, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mostowska A, Zadurska M, Rakowska A, Lianeri M, Jagodziński PP. NovelPAX9mutation associated with syndromic tooth agenesis. Eur J Oral Sci 2013; 121:403-11. [DOI: 10.1111/eos.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry; The Medical University of Warsaw; Warsaw; Poland
| | - Adriana Rakowska
- Department of Dermatology; Central Clinical Hospital of Ministry of Internal Affaires; Warsaw; Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| |
Collapse
|
16
|
Ruf S, Klimas D, Hönemann M, Jabir S. Genetic background of nonsyndromic oligodontia: a systematic review and meta-analysis. J Orofac Orthop 2013; 74:295-308. [PMID: 23828301 DOI: 10.1007/s00056-013-0138-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The goal of this work was to identify all known gene mutations that have been associated with the development of nonsyndromic oligodontia. METHODS A systematic literature search was performed electronically in two databases (PubMed, Medpilot) supplemented by a hand search. Articles published up to March 2012 were considered. Search terms were combined as follows: oligodontia and genes, oligodontia and mutations, tooth agenesis and genes, and tooth agenesis and mutations. A meta-analysis of the data was conducted based on the Tooth Agenesis Code (TAC). RESULTS Seven genes are currently known to have a potential for causing nonsyndromic oligodontia. All these genes vary both in terms of number of identified mutations and in terms of number of documented patients: 33 mutations and 93 patients are on record for PAX9, 10 mutations and 51 patients for EDA, 12 mutations and 33 patients for MSX1, 6 mutations and 17 patients for AXIN2, and 1 mutation in 1 patient for EDARADD, NEMO, and KRT17 each. A total TAC score of 250 was found to have cutoff properties, as 100% of MSX1 and 80% of EDA patients exhibited TAC ≤ 250, whereas 96.9% of PAX9 and 90% of AXIN2 patients exhibited TAC >250. Furthermore, 94.3% of EDA patients but only 28.6% of MSX1 patients exhibited odd-numbered TAC scores in at least one quadrant, and 72.7% of PAX9 but none of the AXIN2 patients were found to show TAC scores of 112 in at least one quadrant. CONCLUSION In order of decreasing frequency, PAX9, EDA, MSX1, AXIN2, EDARADD, NEMO, and KRT17 are the seven genes currently known to have a potential for causing nonsyndromic oligodontia. TAC scores enabled us to identify an association between oligodontia phenotypes and genotypes in the patients covered by this meta-analysis.
Collapse
Affiliation(s)
- Sabine Ruf
- Department of Orthodontics, Medical Center for Dental and Oral Medicine, Justus-Liebig-Universität Gießen, Germany.
| | | | | | | |
Collapse
|
17
|
Qin H, Xu HZ, Xuan K. Clinical and genetic evaluation of a Chinese family with isolated oligodontia. Arch Oral Biol 2013; 58:1180-6. [PMID: 23731659 DOI: 10.1016/j.archoralbio.2013.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/29/2013] [Accepted: 04/17/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Oligodontia is defined as the congenital absence of 6 or more permanent teeth excluding the third molar. Tooth agenesis may be classified as syndromic/non-syndromic and as familial/sporadic. To date, more than 300 genes have been found to be involved in tooth development, but only a few of these genes, such as MSX1, PAX9 and AXIN2, are related to the condition of non-syndromic oligodontia. The objective of the present work was to investigate the disease-causing gene of non-syndromic oligodontia in a Han Chinese family and analyse the pathogenesis of mutations that result in oligodontia. DESIGN We examined all individuals of the oligodontia family by clinical and radiographic examinations. Based on the clinical manifestations, the candidate genes MSX, PAX9 and AXIN2 were selected to analyse and screen for mutations. RESULTS The clinical evaluation suggested that the family might show non-syndromic oligodontia. DNA sequencing of the MSX1 gene revealed two mutations in the two patients with oligodontia: a heterozygotic silent mutation, c.348C>T (P.Gly116=), in exon 1 and a homozygotic deletion of 11 nucleotides (c.469+56delins GCCGGGTGGGG) in the intron. However, the silent mutation and the deletion mutation were thought to be known polymorphisms (rs34165410 and rs34341187) by bioinformatics analysis. We did not detect any mutations in the PAX9 and AXIN2 genes of oligodontia patients. CONCLUSION Our finding suggests that identified polymorphisms (c.348C>T and c.469+56delins GCCGGGTGGGG) may be responsible for the oligodontia phenotype in this Chinese family, but the association requires further study.
Collapse
Affiliation(s)
- Han Qin
- Department of Dentistry, The First People's Hospital of Lianyungang City, 182 Tongguan Road, Lianyungang, Jiangsu Province, China
| | | | | |
Collapse
|
18
|
Dreesen K, Swinnen S, Devriendt K, Carels C. Tooth agenesis patterns and phenotype variation in a cohort of Belgian patients with hypodontia and oligodontia clustered in 79 families with their pedigrees. Eur J Orthod 2013; 36:99-106. [PMID: 23598609 DOI: 10.1093/ejo/cjt021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Even though tooth agenesis is the most common developmental anomaly of the human dentition, its genetic background and pathogenic mechanism(s) still remain poorly understood. Syndromic and isolated forms of hypodontia have been described and can occur sporadically or in families. OBJECTIVES We describe and analyse the hypo-/oligodontia phenotype variations in families. The index patient suffers from severe or mild hypodontia; case-parents/sib records are available. Furthermore, we aim to evaluate whether the different agenesis patterns in the pedigrees are predictive of mutations in specific genes based on reported genotype-phenotype associations. MATERIALS AND METHODS Dental records and pedigrees were collected from 79 families. In 67 families, the index patient presented with oligodontia while in 12 families with hypodontia. The phenotype data of 66 oligodontia index patients were analysed with the Tooth Agenesis Code software. RESULTS Nine families counted two members; one family counted three members affected with oligodontia. Twenty-four oligodontia families respectively had one (n = 17), two (n = 4), three (n = 2) or four (n = 1) additional family members presenting with hypodontia. Of the 77 oligodontia cases, two showed the same tooth agenesis pattern, while 75 patients showed unique tooth agenesis patterns. CONCLUSIONS Despite familial aggregation and expected Mendelian segregation, the number of missing teeth in the familial hypo-/oligodontia phenotypes and the tooth agenesis patterns are highly variable between the affected family members. Therefore, we hypothesize that tooth agenesis is not (always) a simple monogenic condition, but additional genetic or environmental factors can modify the expression of the phenotype.
Collapse
|
19
|
Liang J, Zhu L, Meng L, Chen D, Bian Z. Novel nonsense mutation in MSX1 causes tooth agenesis with cleft lip in a Chinese family. Eur J Oral Sci 2012; 120:278-82. [PMID: 22813217 DOI: 10.1111/j.1600-0722.2012.00965.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2012] [Indexed: 12/16/2022]
Abstract
Tooth agenesis is one of the most common developmental disorders in humans. Previous studies have attributed non-syndromic tooth agenesis to mutations in several genes, including MSX1, PAX9, EDA, and AXIN2. In this study, we investigated a Chinese family with tooth agenesis combined with cleft lip. Genomic DNA was isolated from blood samples of all available family members. Candidate genes MSX1 and PAX9 were amplified by the PCR and directly sequenced. A novel heterozygous mutation at c.C565T, exon 2 of MSX1, was identified in affected members. To analyze the effect of the nonsense mutation on MSX1 expression, vectors containing wild-type and mutated MSX1 were constructed and transfected into COS7 cell lines. Real-time PCR showed that the mRNA expression of the mutated MSX1 was dramatically reduced compared with that of the wild-type MSX1. Our findings suggest that the nonsense mutation in MSX1 might have resulted in rapid degradation of the mutated transcript and caused the phenotype of tooth agenesis with cleft lip in the Chinese family.
Collapse
Affiliation(s)
- Jia Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei-MOST, & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
20
|
Boeira Junior BR, Echeverrigaray S. Polymorphism in the MSX1 gene in a family with upper lateral incisor agenesis. Arch Oral Biol 2012; 57:1423-8. [PMID: 22591773 DOI: 10.1016/j.archoralbio.2012.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/06/2012] [Accepted: 04/22/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The MSX1 gene plays a key role in odontogenesis regulation, particularly during early stages. Since only a few genetic variants have thus far been associated with non-syndromic tooth agenesis, we screened for mutations in this gene, aiming to detect a relationship between genotype and phenotype. DESIGN The sample consisted of one proband with non-syndromic hypodontia involving upper lateral incisors, three relatives and ten unaffected controls. The proband and two affected relatives showed the same phenotype. DNA was extracted from buccal epithelial cells, and direct sequencing was performed. The two exons of MSX1 were first sequenced in the proband. When an alteration was detected, his relatives were investigated by the same method. RESULTS We identified the known polymorphism *6C>T in the homozygous state in all three affected family members. The unaffected father was heterozygous and ten control samples were negative for the *6C>T polymorphism. CONCLUSIONS The *6C>T polymorphism, when homozygous, may contribute to agenesis of upper lateral incisors. However, since the *6C>T polymorphism is quite common, additional genes must be involved in this phenotype.
Collapse
Affiliation(s)
- B R Boeira Junior
- Institute of Biotechnology, Biological Sciences Center, University of Caxias do Sul, Caxias do Sul, Brazil.
| | | |
Collapse
|
21
|
Galluccio G, Castellano M, La Monaca C. Genetic basis of non-syndromic anomalies of human tooth number. Arch Oral Biol 2012; 57:918-30. [PMID: 22325622 DOI: 10.1016/j.archoralbio.2012.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
Abstract
Teeth organogenesis develops through a well-ordered series of inductive events involving genes and BMP, FGF, SHH and WNT represent the main signalling pathways that regulate epithelial-mesenchymal interactions. Moreover, progress in genetics and molecular biology indicates that more than 300 genes are involved in different phases of teeth development. Mutations in genes involved in odontogenesis are responsible for many dental anomalies, including a number of dental anomalies that can be associated with other systemic skeletal or organic manifestations (syndromic dental anomalies) or not (non-syndromic dental anomalies). The knowledge of the genetic development mechanisms of the latter is of major interest. Understanding the mechanisms of pathogenesis of non-syndromic teeth anomalies would also clarify the role of teeth in craniofacial development, and this would represent an important contribution to the diagnosis, treatment and prognosis of congenital malformations, and the eventual association to other severe diseases. Future research in this area is likely to lead to the development of tests for doctors to formulate an early diagnosis of these anomalies.
Collapse
Affiliation(s)
- Gabriella Galluccio
- Sapienza University of Rome, Department of Oral Medicine, Course of Dentistry Degree, Courses of Orthognatodontics 2 and Clinical Gnatology 2, Italy.
| | | | | |
Collapse
|
22
|
Mostowska A, Biedziak B, Jagodzinski PP. Novel MSX1 mutation in a family with autosomal-dominant hypodontia of second premolars and third molars. Arch Oral Biol 2012; 57:790-5. [PMID: 22297032 DOI: 10.1016/j.archoralbio.2012.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/31/2011] [Accepted: 01/07/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Tooth agenesis is the most common developmental anomaly of the human dentition, with aetiology involving both genetic and environmental factors. The aim of the study was to search for casual mutations underlying hypodontia in a family with agenesis of the second premolars and third molars. DESIGN Direct sequencing of the coding regions including exon-intron boundaries of the MSX1 and PAX9 genes was performed in all affected family members. RESULTS Novel heterozygous mutation segregating in an autosomal dominant model was identified in the MSX1 gene. This c.T671C transition leads to a substitution of leucine by proline at position 224, which is the penultimate amino acid residue of the highly conserved homeodomain. None of the control subjects (600 chromosomes) were carriers of this novel, probably damaging to protein function, mutation. CONCLUSIONS Our results demonstrate for the first time that MSX1 might play a substantial role in familial cases of hypodontia involving only second premolars and third molars. The novel c.T671C mutation might be the etiological variant of the MSX1 gene responsible for the lack of permanent teeth in the tested family.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | |
Collapse
|
23
|
Wang J, Jian F, Chen J, Wang H, Lin Y, Yang Z, Pan X, Lai W. Sequence analysis of PAX9, MSX1 and AXIN2 genes in a Chinese oligodontia family. Arch Oral Biol 2011; 56:1027-34. [PMID: 21530942 DOI: 10.1016/j.archoralbio.2011.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/25/2011] [Accepted: 03/30/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The goal of our research was to look into the clinical traits and genetic mutations in nonsyndromic oligodontia in a Chinese family and to gain insight into the role of mutations of PAX9, MSX1 and AXIN2 in oligodontia phenotypes. MATERIALS AND METHODS 6 subjects from a family underwent complete oral examination, including panoramic radiographs. Retrospective data were reviewed and blood samples were collected. PCR primers for PAX9, MSX1, and AXIN2 were designed through the Oligo Primer Analysis Software. PCR products were purified and sequenced using the BigDye Terminator Kit and analysed by the 3730 DNA Analyzer. RESULTS The proband missed 4 permanent canines, 2 permanent maxillary lateral incisors, 2 permanent mandibular lateral incisors, and 2 permanent mandibular central incisors, whilst his maternal grandfather lacked only 2 permanent mandibular central incisors. Moreover, the size of some permanent teeth appeared smaller than normal values of crown width of Chinese people. Oligodontia and abnormalities of teeth were not present in other family members. Radiographic examination showed that the proband and the rest of family members retained all germs of the third molars. There was one known mutation A240P (rs4904210) of PAX9 in the coding region in the proband and the maternal family members (II-2, II-3, and II-4), which possibly contributed to structural and functional changes of proteins. No mutations were identified in MSX1 and AXIN2. CONCLUSIONS Our findings may imply that the PAX9 A240P mutation is a risk factor for oligodontia in the Chinese population. A240P is likely to be a genetic cause of oligodontia though previous literature suggested it as a polymorphism only.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China College of Stomatology, Sichuan University, Chengdu, Sichuan Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Clinical and functional data implicate the Arg(151)Ser variant of MSX1 in familial hypodontia. Eur J Hum Genet 2011; 19:844-50. [PMID: 21448236 DOI: 10.1038/ejhg.2011.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple previous reports confirm that several missense alleles of MSX1 exhibit Mendelian inheritance of an oligodontia phenotype (agenesis of more than six secondary teeth besides third molars). However, the extent to which missense MSX1 alleles contribute to common, multifactorial disorders is less certain. It is still not yet clear whether multiple non-synonomous MSX1-coding variants identified among patients with oral clefting are merely neutral polymorphisms or whether any of these might represent real mutations with mild effects. The present work steps toward resolving these issues for at least one MSX1 allele: R151S, previously identified in a single Japanese proband with unilateral cleft lip and palate. Candidate gene sequencing within a patient cohort demonstrating mild tooth agenesis (loss of six or less secondary teeth besides third molars, hypodontia), secondarily identified this same MSX1 variant, functioning as a mildly deleterious, moderately penetrant allele. Four of five heterozygous R151S individuals from one Japanese family exhibited the hypodontia phenotype. The in vitro functional assays of the variant protein display partial repression activity with normal nuclear localization. These data establish that the MSX1-R151S allele is a low-frequency, mildly deleterious allele for familial hypodontia that alone is insufficient to cause oral facial clefting. Yet, as this work also establishes its hypomorphic nature, it suggests that it may in fact contribute to the likelihood of common birth disorder phenotypes, such as partial tooth agenesis and oral facial clefting. Nevertheless, the exact mechanism in which differential pleiotropy is manifested will need further and deeper clinical and functional analyses.
Collapse
|
25
|
Abstract
Mutations in the transcription factors PAX9 and MSX1 cause selective tooth agenesis in humans. In tooth bud mesenchyme of mice, both proteins are required for the expression of Bmp4, which is the key signaling factor for progression to the next step of tooth development. We have previously shown that Pax9 can transactivate a 2.4-kb Bmp4 promoter construct, and that most tooth-agenesis-causing PAX9 mutations impair DNA binding and Bmp4 promoter activation. We also found that Msx1 by itself represses transcription from this proximal Bmp4 promoter, and that, in combination with Pax9, it acts as a potentiator of Pax9-induced Bmp4 transactivation. This synergism of Msx1 with Pax9 is significant, because it is currently the only documented mechanism for Msx1-mediated activation of Bmp4. In this study, we investigated whether the 5 known tooth-agenesis-causing MSX1 missense mutations disrupt this Pax9-potentiation effect, or if they lead to deficiencies in protein stability, protein-protein interactions, nuclear translocation, and DNA-binding. We found that none of the studied molecular mechanisms yielded a satisfactory explanation for the pathogenic effects of the Msx1 mutations, calling for an entirely different approach to the investigation of this step of odontogenesis on the molecular level.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Sciences, Texas A&M University Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | | | | | | |
Collapse
|
26
|
Pinho T, Silva-Fernandes A, Bousbaa H, Maciel P. Mutational analysis of MSX1 and PAX9 genes in Portuguese families with maxillary lateral incisor agenesis. Eur J Orthod 2010; 32:582-8. [DOI: 10.1093/ejo/cjp155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Report of a case of Zimmermann-Laband syndrome with new manifestations. Int J Oral Maxillofac Surg 2010; 39:937-41. [PMID: 20457511 DOI: 10.1016/j.ijom.2010.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 01/17/2010] [Accepted: 01/22/2010] [Indexed: 11/21/2022]
Abstract
Zimmermann-Laband syndrome is a rare disorder characterized by gingival fibromatosis, abnormalities of the nose and/or ears, absence and/or hyperplasia of the nails or terminal phalanges of the hands and feet, hyperextensibility of joints, hepatosplenomegaly, mild hirsutism and mental retardation. The syndromic characteristics of Zimmermann-Laband syndrome are highly variable and complicated. This paper described a patient with Zimmermann-Laband syndrome with new manifestations and discusses the possible underlying genetic mechanisms.
Collapse
|
28
|
Bianch FJ, de Oliveira TF, Saito CBP, Peres RCR, Line SRP. Association between polymorphism in the promoter region (G/C-915) of PAX9 gene and third molar agenesis. J Appl Oral Sci 2009; 15:382-6. [PMID: 19089165 PMCID: PMC4327256 DOI: 10.1590/s1678-77572007000500002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/29/2007] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Hypodontia is the congenital absence of one or more (up to six) permanent and/or deciduous teeth, being one of the most common alterations of the human dentition. Genetic polymorphisms are variations of DNA sequences occurring in a population. This study investigated whether G-915C single nucleotide polymorphism (SNPs) in the PAX9 gene promoter is associated with hypodontia in humans. MATERIAL AND METHODS The polymorphism in region G/C-915 of PAX9 gene (NCBI ref SNP ID: rs 2073247) of 240 patients was analyzed, being 110 controls and 130 individuals with third molar agenesis. After DNA extraction, the region of interest was amplified by PCR technique using two different primers. The significance of the differences in observed frequencies of polymorphisms in both groups was assessed by odds-ratio and chi-squared test with 95% confidence interval. RESULTS Genotype CC was more frequent in patients with agenesis (11.5%) compared to the control (1.8%), while GG was more prevalent in the control group (39.1%) compared to the individuals with agenesis (26.2%). CONCLUSION These data showed that the allele C could be associated with the third molar agenesis.
Collapse
Affiliation(s)
- Fabio José Bianch
- Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
29
|
Gomes RR, da Fonseca JAC, Paula LM, Faber J, Acevedo AC. Prevalence of hypodontia in orthodontic patients in Brasilia, Brazil. Eur J Orthod 2009; 32:302-6. [PMID: 19837747 DOI: 10.1093/ejo/cjp107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this retrospective study was to determine the prevalence of hypodontia and associated dental anomalies in patients undergoing orthodontic treatment in Brasília, Brazil, over a 2 year period (1998-2000). The records of 1049 orthodontic patients between 10 and 15.7 years of age (507 males and 542 females) from 16 orthodontic clinics were analysed. Descriptive statistics were performed for the study variables. A chi-square test was used to determine the difference in the prevalence of hypodontia between genders. The prevalence of hypodontia was 6.3 per cent (39.4 per cent males and 60.6 per cent females) with no statistically significant difference between the genders. One case of oligodontia was observed. The maxillary lateral incisor was the most frequently missing tooth, followed by the mandibular second premolar. All cases of hypodontia, except one, were associated with at least one other dental anomaly. These associated dental anomalies were retained primary teeth (30.3 per cent), ectopic canine eruption (25.8 per cent), taurodontism (21.2 per cent), and peg-shaped maxillary lateral incisors (16.7 per cent).
Collapse
|
30
|
Abstract
A detailed sequence comparison of the MSX homeobox family sheds light on its evolution and identifies new conserved motifs. But in the absence of corroborative genetic data, phylogenomics alone can provide only limited insights into the pathogenicity of heterozygous missense substitutions in human genes.
Collapse
|
31
|
De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2008; 38:1-17. [PMID: 18771513 DOI: 10.1111/j.1600-0714.2008.00699.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dental agenesis is the most common developmental anomaly in humans and is frequently associated with several other oral abnormalities. Whereas the incidence of missing teeth may vary considerably depending on dentition, gender, and demographic or geographic profiles, distinct patterns of agenesis have been detected in the permanent dentition. These frequently involve the last teeth of a class to develop (I2, P2, M3) suggesting a possible link with evolutionary trends. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) involving one (80% of cases), a few (less than 10%) or many teeth (less than 1%), or can be associated with a systemic condition or syndrome (syndromic hypodontia), essentially reflecting the genetically and phenotypically heterogeneity of the condition. Based on our present knowledge of genes and transcription factors that are involved in tooth development, it is assumed that different phenotypic forms are caused by different genes involving different interacting molecular pathways, providing an explanation not only for the wide variety in agenesis patterns but also for associations of dental agenesis with other oral anomalies. At present, the list of genes involved in human non-syndromic hypodontia includes not only those encoding a signaling molecule (TGFA) and transcription factors (MSX1 and PAX9) that play critical roles during early craniofacial development, but also genes coding for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). Our objective was to review the current literature on the molecular mechanisms that are responsible for selective dental agenesis in humans and to present a detailed overview of syndromes with hypodontia and their causative genes. These new perspectives and future challenges in the field of identification of possible candidate genes involved in dental agenesis are discussed.
Collapse
Affiliation(s)
- P J De Coster
- Department of Paediatric Dentistry and Special Care, Paecamed Research, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
32
|
Swinnen S, Bailleul-Forestier I, Arte S, Nieminen P, Devriendt K, Carels C. Investigating the etiology of multiple tooth agenesis in three sisters with severe oligodontia. Orthod Craniofac Res 2008; 11:24-31. [PMID: 18199077 DOI: 10.1111/j.1601-6343.2008.00410.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To describe the dentofacial phenotypes of three sisters with severe non-syndromic oligodontia, to report on the mutation analysis in three genes, previously shown to cause various phenotypes of non-syndromic oligodontia and in two other suspected genes. Based on the phenotypes in the pedigree of this family, the different possible patterns of transmission are discussed. METHODS Anamnestic data and a panoramic radiograph were taken to study the phenotype of the three sisters and their first-degree relatives. Blood samples were also taken to obtain their karyotypes and DNA samples. Mutational screening was performed for the MSX1, PAX9, AXIN2, DLX1 and DLX2 genes. RESULTS The probands' pedigree showed evidence for a recessive or multifactorial inheritance pattern. Normal chromosomal karyotypes were found and - despite the severe oligodontia present in all three sisters - no mutation appeared to be present in the five genes studied so far in these patients. CONCLUSIONS In the three sisters reported, their common oligodontia phenotype is not caused by mutations in the coding regions of MSX1, PAX9, AXIN2, DLX1 or DLX2 genes, but genetic factors most probably play a role as all three sisters were affected. Environmental and epigenetic factors as well as genes regulating odontogenesis need further in vivo and in vitro investigation to explain the phenotypic heterogeneity and to increase our understanding of the odontogenic processes.
Collapse
Affiliation(s)
- S Swinnen
- Department of Orthodontics, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Pan Y, Wang L, Ma J, Zhang W, Wang M, Zhong W, Huang Y. PAX9 polymorphisms and susceptibility to sporadic tooth agenesis: a case-control study in southeast China. Eur J Oral Sci 2008; 116:98-103. [PMID: 18353002 DOI: 10.1111/j.1600-0722.2007.00517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tooth agenesis is one of the most common developmental disorders in humans. The PAX9 gene, which plays an important role in odontogenesis, is associated with familial and sporadic tooth agenesis. A case-control study was performed in 102 subjects with tooth agenesis (cases) and 116 healthy controls. We genotyped four PAX9 gene polymorphisms using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The allele and genotype frequencies of the four polymorphisms were not significantly different between the controls and the subjects with tooth agenesis. Similar results were observed in a subgroup analysis of test subjects only with mandibular incisor agenesis. Further analysis showed no significant difference in the haplotype distribution between the controls and the subjects with tooth agenesis or mandibular incisor agenesis. However, we found that the AGGC haplotype was associated with a decreased risk of tooth agenesis, compared with the most common haplotype, AGCC (odds ratio, 0.14; 95% confidence interval: 0.00-0.95). These results suggest that the four PAX9 polymorphisms alone have a non-significant main effect on the risk of tooth agenesis but that the AGGC haplotype may have a protective effect associated with a decreased risk of tooth agenesis.
Collapse
Affiliation(s)
- Yongchu Pan
- Dental Research Institute, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Xuan K, Jin F, Liu YL, Yuan LT, Wen LY, Yang FS, Wang XJ, Wang GH, Jin Y. Identification of a novel missense mutation of MSX1 gene in Chinese family with autosomal-dominant oligodontia. Arch Oral Biol 2008; 53:773-9. [PMID: 18374898 DOI: 10.1016/j.archoralbio.2008.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/07/2008] [Accepted: 02/16/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Oligodontia is defined as the congenital absence of 6 or more permanent teeth excluding the third molar. The occurrence of non-syndromic still remains poorly understood, but in recent years some cases have been reported where mutations or polymorphisms of PAX9 and MSX1 had been associated with non-syndromic oligodontia. The objective of the present work was to study the phenotype and genotype of three generations of a Han Chinese family affected by non-syndromic autosomal-dominant oligodontia. DESIGN We examined all individuals of the oligodontia family by clinical and radiographic examinations. Based on clinical manifestations, candidate genes MSX1 and PAX9 were picked up to analyse and screen mutations. RESULTS Dental evaluation showed that the most commonly missing teeth are the mandibular second premolars, followed by the maxillary second premolars and maxillary lateral incisors, and subsequently the maxillary first premolars. The probability of missing a particular type of tooth is not always bilaterally symmetrical, and differences exist between maxilla and mandible. PCR-SSCP analysis and DNA sequencing revealed a novel missense mutation c.662C>A in a highly conserved homeobox sequence of MSX1 and a known polymorphisms c.347C>G. CONCLUSION Our finding suggests the missense transversion (c.662C>A) and the polymorphisms (c.347C>G) may be responsible for oligodontia phenotype in this Chinese family.
Collapse
Affiliation(s)
- Kun Xuan
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Carmichael RP, Sándor GKB. Dental implants in the management of nonsyndromal oligodontia. Atlas Oral Maxillofac Surg Clin North Am 2008; 16:11-31. [PMID: 18319167 DOI: 10.1016/j.cxom.2007.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Robert P Carmichael
- Bloorview Kids Rehab, Suite 2E-285, 150 Kilgour Road, Toronto, Ontario M4G 1R8, Canada.
| | | |
Collapse
|
36
|
Abstract
Many genes that interact in a complex and interdependent manner participate in the development of the craniofacial complex. One of them, the Msxl homeobox gene, a transcription factor, is expressed from early developmental stages to adulthood in accordance with specific spatio-temporal patterns. When it is suppressed, transgenic mice exhibit craniofacial abnormalities that demonstrate what is its function in normal growth, just as it has been shown that certain Msxl mutations in humans are commonly associated with tooth agenesis.
Collapse
Affiliation(s)
- Brigitte Vi-Fane
- Université Denis Diderot (Paris VII), Faculté de Chirurgie Dentaire, 5 rue Garancière, 75006 Paris, France.
| | | | | |
Collapse
|